new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

ReFineVLA: Reasoning-Aware Teacher-Guided Transfer Fine-Tuning

Vision-Language-Action (VLA) models have gained much attention from the research community thanks to their strength in translating multimodal observations with linguistic instructions into robotic actions. Despite their recent advancements, VLAs often overlook the explicit reasoning and only learn the functional input-action mappings, omitting these crucial logical steps for interpretability and generalization for complex, long-horizon manipulation tasks. In this work, we propose ReFineVLA, a multimodal reasoning-aware framework that fine-tunes VLAs with teacher-guided reasons. We first augment robotic datasets with reasoning rationales generated by an expert teacher model, guiding VLA models to learn to reason about their actions. Then, we use ReFineVLA to fine-tune pre-trained VLAs with the reasoning-enriched datasets, while maintaining their inherent generalization abilities and boosting reasoning capabilities. In addition, we conduct an attention map visualization to analyze the alignment among visual attention, linguistic prompts, and to-be-executed actions of ReFineVLA, showcasing its ability to focus on relevant tasks and actions. Through the latter step, we explore that ReFineVLA-trained models exhibit a meaningful attention shift towards relevant objects, highlighting the enhanced multimodal understanding and improved generalization. Evaluated across manipulation tasks, ReFineVLA outperforms the state-of-the-art baselines. Specifically, it achieves an average increase of 5.0% success rate on SimplerEnv WidowX Robot tasks, improves by an average of 8.6% in variant aggregation settings, and by 1.7% in visual matching settings for SimplerEnv Google Robot tasks. The source code will be publicly available.

  • 5 authors
·
May 25

Video-CoM: Interactive Video Reasoning via Chain of Manipulations

Recent multimodal large language models (MLLMs) have advanced video understanding, yet most still "think about videos" ie once a video is encoded, reasoning unfolds entirely in text, treating visual input as a static context. This passive paradigm creates a semantic bottleneck: models cannot rewatch, refocus, or verify evidence, leading to shallow visual reasoning on tasks requiring fine grained spatio temporal understanding. In this work, we introduce Interactive Video Reasoning, a new paradigm that transforms video into an active cognitive workspace, enabling models to "think with videos". Our model, Video CoM, reasons through a Chain of Manipulations (CoM), performing iterative visual actions to gather and refine evidence. To support this behavior, we construct Video CoM Instruct, an 18K instruction tuning dataset curated for multi step manipulation reasoning. Beyond supervised learning, we further optimize the manipulation policy via reinforcement learning with reasoning aware Group Relative Policy Optimization (GRPO). Unlike prior work that relies solely on sparse answer rewards, our method introduces step level reasoning rewards, guiding the model toward grounded and consistent reasoning. Video CoM achieves strong results across nine video reasoning benchmarks, improving average performance by 3.6 percent over recent state of the art models, while training on only 25K SFT and 3K GRPO video samples, significantly fewer than comparable large scale models. Ablation studies demonstrate that reasoning aware rewards improve both accuracy and interpretability. Code: https://github.com/mbzuai-oryx/Video-CoM

  • 6 authors
·
Nov 28

OncoReason: Structuring Clinical Reasoning in LLMs for Robust and Interpretable Survival Prediction

Predicting cancer treatment outcomes requires models that are both accurate and interpretable, particularly in the presence of heterogeneous clinical data. While large language models (LLMs) have shown strong performance in biomedical NLP, they often lack structured reasoning capabilities critical for high-stakes decision support. We present a unified, multi-task learning framework that aligns autoregressive LLMs with clinical reasoning for outcome prediction on the MSK-CHORD dataset. Our models are trained to jointly perform binary survival classification, continuous survival time regression, and natural language rationale generation. We evaluate three alignment strategies: (1) standard supervised fine-tuning (SFT), (2) SFT with Chain-of-Thought (CoT) prompting to elicit step-by-step reasoning, and (3) Group Relative Policy Optimization (GRPO), a reinforcement learning method that aligns model outputs to expert-derived reasoning trajectories. Experiments with LLaMa3-8B and Med42-8B backbones demonstrate that CoT prompting improves F1 by +6.0 and reduces MAE by 12%, while GRPO achieves state-of-the-art interpretability and predictive performance across BLEU, ROUGE, and BERTScore. We further show that existing biomedical LLMs often fail to produce valid reasoning traces due to architectural constraints. Our findings underscore the importance of reasoning-aware alignment in multi-task clinical modeling and set a new benchmark for interpretable, trustworthy LLMs in precision oncology.

  • 4 authors
·
Oct 20

Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing

Large Multi-modality Models (LMMs) have made significant progress in visual understanding and generation, but they still face challenges in General Visual Editing, particularly in following complex instructions, preserving appearance consistency, and supporting flexible input formats. To address this gap, we introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE). RISEBench focuses on four key reasoning types: Temporal, Causal, Spatial, and Logical Reasoning. We curate high-quality test cases for each category and propose an evaluation framework that assesses Instruction Reasoning, Appearance Consistency, and Visual Plausibility with both human judges and an LMM-as-a-judge approach. Our experiments reveal that while GPT-4o-Native significantly outperforms other open-source and proprietary models, even this state-of-the-art system struggles with logical reasoning tasks, highlighting an area that remains underexplored. As an initial effort, RISEBench aims to provide foundational insights into reasoning-aware visual editing and to catalyze future research. Though still in its early stages, we are committed to continuously expanding and refining the benchmark to support more comprehensive, reliable, and scalable evaluations of next-generation multimodal systems. Our code and data will be released at https://github.com/PhoenixZ810/RISEBench.

RULER-Bench: Probing Rule-based Reasoning Abilities of Next-level Video Generation Models for Vision Foundation Intelligence

Recent advances in video generation have enabled the synthesis of videos with strong temporal consistency and impressive visual quality, marking a crucial step toward vision foundation models. To evaluate these video generation models, existing benchmarks primarily focus on factors related to visual perception and understanding, like visual aesthetics, instruction adherence, and temporal coherence. However, the rule-based reasoning capabilities of video generation models remain largely unexplored. Although recent studies have carried out preliminary explorations into whether video models can serve as zero-shot learners, they still lack a fine-grained decomposition of reasoning capabilities and a comprehensive evaluation protocol. To address this gap, we introduce RULER-Bench, a benchmark designed to evaluate the reasoning ability of video generation models from the perspective of cognitive rules. Built upon two fundamental paradigms: text-to-video and image-to-video, RULER-Bench covers 40 representative tasks spanning six rule categories with 622 high-quality annotated instances. For the evaluation of each generated video, we construct a checklist covering four metrics and leverage GPT-o3 to assign scores to each question, achieving 85% alignment with human judgements. Extensive experiments show that the state-of-the-art model achieves only 48.87% on the rule coherence metric, highlighting significant room for improvement in the reasoning capability of next-level video models. We expect that the insight obtained from RULER-Bench will facilitate further development of reasoning-aware video generation, advancing video generation models toward vision foundation intelligence.

Learn Globally, Speak Locally: Bridging the Gaps in Multilingual Reasoning

Large Language Models (LLMs) have achieved strong performance in domains like mathematics, factual QA, and code generation, yet their multilingual reasoning capabilities in these tasks remain underdeveloped. Especially for low-resource languages such as Swahili or Thai, LLMs can often misinterpret prompts or default to reasoning in English. This implicit bias toward high-resource languages undermines factual accuracy, interpretability, and trust. Current multilingual benchmarks focus only on final answers, overlooking whether models actually reason in the target language. To address this gap, we introduce GeoFact-X, a geography-based multilingual factual reasoning benchmark with annotated reasoning traces in five languages: English, Hindi, Japanese, Swahili, and Thai. We further propose BRIDGE, a novel training method that guides supervised fine-tuning and test-time reinforcement learning with a language-consistency reward to align reasoning with the input language. Finally, we develop an automatic evaluation protocol using LLM-as-a-judge to assess answer correctness and the quality and language consistency of reasoning traces, enabling nuanced and scalable analysis beyond surface-level metrics. Our results show that BRIDGE significantly enhances multilingual reasoning fidelity, demonstrating that reasoning-aware multilingual reinforcement learning is crucial for robust cross-lingual generalization. https://jd730.github.io/projects/GeoFact-X_BRIDGE

  • 8 authors
·
Jul 7

Increasing LLM Coding Capabilities through Diverse Synthetic Coding Tasks

Large language models (LLMs) have shown impressive promise in code generation, yet their progress remains limited by the shortage of large-scale datasets that are both diverse and well-aligned with human reasoning. Most existing resources pair problems with solutions, but omit the intermediate thought process that guides coding. To close this gap, we present a scalable synthetic data generation pipeline that produces nearly 800k instruction-reasoning-code-test quadruplets. Each sample combines a task, a step-by-step reasoning trace, a working solution, and executable tests, enabling models to learn not just the what but also the how of problem solving. Our pipeline combines four key components: curated contest problems, web-mined content filtered by relevance classifiers, data expansion guided by reasoning patterns, and multi-stage execution-based validation. A genetic mutation algorithm further increases task diversity while maintaining consistency between reasoning traces and code implementations. Our key finding is that fine-tuning LLMs on this dataset yields consistent improvements on coding benchmarks. Beyond raw accuracy, reasoning-aware data can substitute for model scaling, generalize across architectures, and outperform leading open-source alternatives under identical sample budgets. Our work establishes reasoning-centered synthetic data generation as an efficient approach for advancing coding capabilities in LLMs. We publish our dataset and generation pipeline to facilitate further research.

  • 4 authors
·
Oct 27

Learning to Reason for Text Generation from Scientific Tables

In this paper, we introduce SciGen, a new challenge dataset for the task of reasoning-aware data-to-text generation consisting of tables from scientific articles and their corresponding descriptions. Describing scientific tables goes beyond the surface realization of the table content and requires reasoning over table values. The unique properties of SciGen are that (1) tables mostly contain numerical values, and (2) the corresponding descriptions require arithmetic reasoning. SciGen is therefore the first dataset that assesses the arithmetic reasoning capabilities of generation models on complex input structures, i.e., tables from scientific articles. We study the effectiveness of state-of-the-art data-to-text generation models on SciGen and evaluate the results using common metrics as well as human evaluation. Our results and analyses show that (a) while humans like to reason for describing scientific tables, the ability of state-of-the-art models is severely limited on this task, (b) while adding more training data improves the results, it is not the solution for reasoning-aware text generation, and (c) one of the main bottlenecks for this task is the lack of proper automatic evaluation metrics. The data, code, and annotations for human evaluation will be available at https://github.com/UKPLab/SciGen. SciGen opens new avenues for future research in reasoning-aware text generation and evaluation.

  • 4 authors
·
Apr 16, 2021

LawFlow : Collecting and Simulating Lawyers' Thought Processes

Legal practitioners, particularly those early in their careers, face complex, high-stakes tasks that require adaptive, context-sensitive reasoning. While AI holds promise in supporting legal work, current datasets and models are narrowly focused on isolated subtasks and fail to capture the end-to-end decision-making required in real-world practice. To address this gap, we introduce LawFlow, a dataset of complete end-to-end legal workflows collected from trained law students, grounded in real-world business entity formation scenarios. Unlike prior datasets focused on input-output pairs or linear chains of thought, LawFlow captures dynamic, modular, and iterative reasoning processes that reflect the ambiguity, revision, and client-adaptive strategies of legal practice. Using LawFlow, we compare human and LLM-generated workflows, revealing systematic differences in structure, reasoning flexibility, and plan execution. Human workflows tend to be modular and adaptive, while LLM workflows are more sequential, exhaustive, and less sensitive to downstream implications. Our findings also suggest that legal professionals prefer AI to carry out supportive roles, such as brainstorming, identifying blind spots, and surfacing alternatives, rather than executing complex workflows end-to-end. Building on these findings, we propose a set of design suggestions, rooted in empirical observations, that align AI assistance with human goals of clarity, completeness, creativity, and efficiency, through hybrid planning, adaptive execution, and decision-point support. Our results highlight both the current limitations of LLMs in supporting complex legal workflows and opportunities for developing more collaborative, reasoning-aware legal AI systems. All data and code are available on our project page (https://minnesotanlp.github.io/LawFlow-website/).

History-Aware Reasoning for GUI Agents

Advances in Multimodal Large Language Models have significantly enhanced Graphical User Interface (GUI) automation. Equipping GUI agents with reliable episodic reasoning capabilities is essential for bridging the gap between users' concise task descriptions and the complexities of real-world execution. Current methods integrate Reinforcement Learning (RL) with System-2 Chain-of-Thought, yielding notable gains in reasoning enhancement. For long-horizon GUI tasks, historical interactions connect each screen to the goal-oriented episode chain, and effectively leveraging these clues is crucial for the current decision. However, existing native GUI agents exhibit weak short-term memory in their explicit reasoning, interpreting the chained interactions as discrete screen understanding, i.e., unawareness of the historical interactions within the episode. This history-agnostic reasoning challenges their performance in GUI automation. To alleviate this weakness, we propose a History-Aware Reasoning (HAR) framework, which encourages an agent to reflect on its own errors and acquire episodic reasoning knowledge from them via tailored strategies that enhance short-term memory in long-horizon interaction. The framework mainly comprises constructing a reflective learning scenario, synthesizing tailored correction guidelines, and designing a hybrid RL reward function. Using the HAR framework, we develop a native end-to-end model, HAR-GUI-3B, which alters the inherent reasoning mode from history-agnostic to history-aware, equipping the GUI agent with stable short-term memory and reliable perception of screen details. Comprehensive evaluations across a range of GUI-related benchmarks demonstrate the effectiveness and generalization of our method.

  • 7 authors
·
Nov 12

ReEx-SQL: Reasoning with Execution-Aware Reinforcement Learning for Text-to-SQL

In Text-to-SQL, execution feedback is essential for guiding large language models (LLMs) to reason accurately and generate reliable SQL queries. However, existing methods treat execution feedback solely as a post-hoc signal for correction or selection, failing to integrate it into the generation process. This limitation hinders their ability to address reasoning errors as they occur, ultimately reducing query accuracy and robustness. To address this issue, we propose ReEx-SQL (Reasoning with Execution-Aware Reinforcement Learning), a framework for Text-to-SQL that enables models to interact with the database during decoding and dynamically adjust their reasoning based on execution feedback. ReEx-SQL introduces an execution-aware reasoning paradigm that interleaves intermediate SQL execution into reasoning paths, facilitating context-sensitive revisions. It achieves this through structured prompts with markup tags and a stepwise rollout strategy that integrates execution feedback into each stage of generation. To supervise policy learning, we develop a composite reward function that includes an exploration reward, explicitly encouraging effective database interaction. Additionally, ReEx-SQL adopts a tree-based decoding strategy to support exploratory reasoning, enabling dynamic expansion of alternative reasoning paths. Notably, ReEx-SQL achieves 88.8% on Spider and 64.9% on BIRD at the 7B scale, surpassing the standard reasoning baseline by 2.7% and 2.6%, respectively. It also shows robustness, achieving 85.2% on Spider-Realistic with leading performance. In addition, its tree-structured decoding improves efficiency and performance over linear decoding, reducing inference time by 51.9% on the BIRD development set.

  • 9 authors
·
May 19

OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning

Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible.To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io

GraphCoT-VLA: A 3D Spatial-Aware Reasoning Vision-Language-Action Model for Robotic Manipulation with Ambiguous Instructions

Vision-language-action models have emerged as a crucial paradigm in robotic manipulation. However, existing VLA models exhibit notable limitations in handling ambiguous language instructions and unknown environmental states. Furthermore, their perception is largely constrained to static two-dimensional observations, lacking the capability to model three-dimensional interactions between the robot and its environment. To address these challenges, this paper proposes GraphCoT-VLA, an efficient end-to-end model. To enhance the model's ability to interpret ambiguous instructions and improve task planning, we design a structured Chain-of-Thought reasoning module that integrates high-level task understanding and planning, failed task feedback, and low-level imaginative reasoning about future object positions and robot actions. Additionally, we construct a real-time updatable 3D Pose-Object graph, which captures the spatial configuration of robot joints and the topological relationships between objects in 3D space, enabling the model to better understand and manipulate their interactions. We further integrates a dropout hybrid reasoning strategy to achieve efficient control outputs. Experimental results across multiple real-world robotic tasks demonstrate that GraphCoT-VLA significantly outperforms existing methods in terms of task success rate and response speed, exhibiting strong generalization and robustness in open environments and under uncertain instructions.

  • 6 authors
·
Aug 11

AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG

Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated Critic Language Model (CLM) to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation.

  • 9 authors
·
Apr 21

GUI-ReWalk: Massive Data Generation for GUI Agent via Stochastic Exploration and Intent-Aware Reasoning

Graphical User Interface (GUI) Agents, powered by large language and vision-language models, hold promise for enabling end-to-end automation in digital environments. However, their progress is fundamentally constrained by the scarcity of scalable, high-quality trajectory data. Existing data collection strategies either rely on costly and inconsistent manual annotations or on synthetic generation methods that trade off between diversity and meaningful task coverage. To bridge this gap, we present GUI-ReWalk: a reasoning-enhanced, multi-stage framework for synthesizing realistic and diverse GUI trajectories. GUI-ReWalk begins with a stochastic exploration phase that emulates human trial-and-error behaviors, and progressively transitions into a reasoning-guided phase where inferred goals drive coherent and purposeful interactions. Moreover, it supports multi-stride task generation, enabling the construction of long-horizon workflows across multiple applications. By combining randomness for diversity with goal-aware reasoning for structure, GUI-ReWalk produces data that better reflects the intent-aware, adaptive nature of human-computer interaction. We further train Qwen2.5-VL-7B on the GUI-ReWalk dataset and evaluate it across multiple benchmarks, including Screenspot-Pro, OSWorld-G, UI-Vision, AndroidControl, and GUI-Odyssey. Results demonstrate that GUI-ReWalk enables superior coverage of diverse interaction flows, higher trajectory entropy, and more realistic user intent. These findings establish GUI-ReWalk as a scalable and data-efficient framework for advancing GUI agent research and enabling robust real-world automation.

  • 9 authors
·
Sep 19

SMART: Self-Aware Agent for Tool Overuse Mitigation

Current Large Language Model (LLM) agents demonstrate strong reasoning and tool use capabilities, but often lack self-awareness, failing to balance these approaches effectively. This imbalance leads to Tool Overuse, where models unnecessarily rely on external tools for tasks solvable with parametric knowledge, increasing computational overhead. Inspired by human metacognition, we introduce SMART (Strategic Model-Aware Reasoning with Tools), a paradigm that enhances an agent's self-awareness to optimize task handling and reduce tool overuse. To support this paradigm, we introduce SMART-ER, a dataset spanning three domains, where reasoning alternates between parametric knowledge and tool-dependent steps, with each step enriched by rationales explaining when tools are necessary. Through supervised training, we develop SMARTAgent, a family of models that dynamically balance parametric knowledge and tool use. Evaluations show that SMARTAgent reduces tool use by 24% while improving performance by over 37%, enabling 7B-scale models to match its 70B counterpart and GPT-4o. Additionally, SMARTAgent generalizes to out-of-distribution test data like GSM8K and MINTQA, maintaining accuracy with just one-fifth the tool calls. These highlight the potential of strategic tool use to enhance reasoning, mitigate overuse, and bridge the gap between model size and performance, advancing intelligent and resource-efficient agent designs.

  • 8 authors
·
Feb 16

VideoRFT: Incentivizing Video Reasoning Capability in MLLMs via Reinforced Fine-Tuning

Reinforcement fine-tuning (RFT) has shown great promise in achieving humanlevel reasoning capabilities of Large Language Models (LLMs), and has recently been extended to MLLMs. Nevertheless, reasoning about videos, which is a fundamental aspect of human intelligence, remains a persistent challenge due to the complex logic, temporal and causal structures inherent in video data. To fill this gap, we propose VideoRFT, a novel approach that extends the RFT paradigm to cultivate human-like video reasoning capabilities in MLLMs. VideoRFT follows the standard two-stage scheme in RFT: supervised fine-tuning (SFT) with chain-of-thought (CoT) annotations, followed by reinforcement learning (RL) to improve generalization. A central challenge to achieve this in the video domain lies in the scarcity of large-scale, high-quality video CoT datasets. We address this by building a multi-expert-driven, cognition-inspired CoT curation pipeline. First, we devise a cognition-inspired prompting strategy to elicit a reasoning LLM to generate preliminary CoTs based solely on rich, structured, and literal representations of video content. Subsequently, these CoTs are revised by a MLLM conditioned on the actual video, ensuring visual consistency and reducing visual hallucinations. This pipeline results in two new datasets, i.e.VideoRFT-CoT-102K for SFT and VideoRFT-RL-310K for RL. To further strengthen the RL phase, we introduce a novel semantic-consistency reward that explicitly promotes the alignment between textual reasoning and visual evidence. This reward encourages the model to produce coherent, context-aware reasoning outputs grounded in visual input. Extensive experiments show that VideoRFT achieves state-of-the-art performance on six video reasoning benchmarks.

  • 5 authors
·
May 18

Enhancing Physical Plausibility in Video Generation by Reasoning the Implausibility

Diffusion models can generate realistic videos, but existing methods rely on implicitly learning physical reasoning from large-scale text-video datasets, which is costly, difficult to scale, and still prone to producing implausible motions that violate fundamental physical laws. We introduce a training-free framework that improves physical plausibility at inference time by explicitly reasoning about implausibility and guiding the generation away from it. Specifically, we employ a lightweight physics-aware reasoning pipeline to construct counterfactual prompts that deliberately encode physics-violating behaviors. Then, we propose a novel Synchronized Decoupled Guidance (SDG) strategy, which leverages these prompts through synchronized directional normalization to counteract lagged suppression and trajectory-decoupled denoising to mitigate cumulative trajectory bias, ensuring that implausible content is suppressed immediately and consistently throughout denoising. Experiments across different physical domains show that our approach substantially enhances physical fidelity while maintaining photorealism, despite requiring no additional training. Ablation studies confirm the complementary effectiveness of both the physics-aware reasoning component and SDG. In particular, the aforementioned two designs of SDG are also individually validated to contribute critically to the suppression of implausible content and the overall gains in physical plausibility. This establishes a new and plug-and-play physics-aware paradigm for video generation.

  • 5 authors
·
Sep 29

Strefer: Empowering Video LLMs with Space-Time Referring and Reasoning via Synthetic Instruction Data

Next-generation AI companions must go beyond general video understanding to resolve spatial and temporal references in dynamic, real-world environments. Existing Video Large Language Models (Video LLMs), while capable of coarse-level comprehension, struggle with fine-grained, spatiotemporal reasoning, especially when user queries rely on time-based event references for temporal anchoring, or gestural cues for spatial anchoring to clarify object references and positions. To bridge this critical gap, we introduce Strefer, a synthetic instruction data generation framework designed to equip Video LLMs with spatiotemporal referring and reasoning capabilities. Strefer produces diverse instruction-tuning data using a data engine that pseudo-annotates temporally dense, fine-grained video metadata, capturing rich spatial and temporal information in a structured manner, including subjects, objects, their locations as masklets, and their action descriptions and timelines. Our approach enhances the ability of Video LLMs to interpret spatial and temporal references, fostering more versatile, space-time-aware reasoning essential for real-world AI companions. Without using proprietary models, costly human annotation, or the need to annotate large volumes of new videos, experimental evaluations show that models trained with data produced by Strefer outperform baselines on tasks requiring spatial and temporal disambiguation. Additionally, these models exhibit enhanced space-time-aware reasoning, establishing a new foundation for perceptually grounded, instruction-tuned Video LLMs.

  • 7 authors
·
Sep 3

MemoTime: Memory-Augmented Temporal Knowledge Graph Enhanced Large Language Model Reasoning

Large Language Models (LLMs) have achieved impressive reasoning abilities, but struggle with temporal understanding, especially when questions involve multiple entities, compound operators, and evolving event sequences. Temporal Knowledge Graphs (TKGs), which capture vast amounts of temporal facts in a structured format, offer a reliable source for temporal reasoning. However, existing TKG-based LLM reasoning methods still struggle with four major challenges: maintaining temporal faithfulness in multi-hop reasoning, achieving multi-entity temporal synchronization, adapting retrieval to diverse temporal operators, and reusing prior reasoning experience for stability and efficiency. To address these issues, we propose MemoTime, a memory-augmented temporal knowledge graph framework that enhances LLM reasoning through structured grounding, recursive reasoning, and continual experience learning. MemoTime decomposes complex temporal questions into a hierarchical Tree of Time, enabling operator-aware reasoning that enforces monotonic timestamps and co-constrains multiple entities under unified temporal bounds. A dynamic evidence retrieval layer adaptively selects operator-specific retrieval strategies, while a self-evolving experience memory stores verified reasoning traces, toolkit decisions, and sub-question embeddings for cross-type reuse. Comprehensive experiments on multiple temporal QA benchmarks show that MemoTime achieves overall state-of-the-art results, outperforming the strong baseline by up to 24.0%. Furthermore, MemoTime enables smaller models (e.g., Qwen3-4B) to achieve reasoning performance comparable to that of GPT-4-Turbo.

  • 7 authors
·
Oct 15

SAMP: Spatial Anchor-based Motion Policy for Collision-Aware Robotic Manipulators

Neural-based motion planning methods have achieved remarkable progress for robotic manipulators, yet a fundamental challenge lies in simultaneously accounting for both the robot's physical shape and the surrounding environment when generating safe and feasible motions. Moreover, existing approaches often rely on simplified robot models or focus primarily on obstacle representation, which can lead to incomplete collision detection and degraded performance in cluttered scenes. To address these limitations, we propose spatial anchor-based motion policy (SAMP), a unified framework that simultaneously encodes the environment and the manipulator using signed distance field (SDF) anchored on a shared spatial grid. SAMP incorporates a dedicated robot SDF network that captures the manipulator's precise geometry, enabling collision-aware reasoning beyond coarse link approximations. These representations are fused on spatial anchors and used to train a neural motion policy that generates smooth, collision-free trajectories in the proposed efficient feature alignment strategy. Experiments conducted in both simulated and real-world environments consistently show that SAMP outperforms existing methods, delivering an 11% increase in success rate and a 7% reduction in collision rate. These results highlight the benefits of jointly modelling robot and environment geometry, demonstrating its practical value in challenging real-world environments.

  • 7 authors
·
Sep 14

PRISM: Robust VLM Alignment with Principled Reasoning for Integrated Safety in Multimodality

Safeguarding vision-language models (VLMs) is a critical challenge, as existing methods often suffer from over-defense, which harms utility, or rely on shallow alignment, failing to detect complex threats that require deep reasoning. To this end, we introduce PRISM (Principled Reasoning for Integrated Safety in Multimodality), a system2-like framework that aligns VLMs by embedding a structured, safety-aware reasoning process. Our framework consists of two key components: PRISM-CoT, a dataset that teaches safety-aware chain-of-thought reasoning, and PRISM-DPO, generated via Monte Carlo Tree Search (MCTS) to further refine this reasoning through Direct Preference Optimization to help obtain a delicate safety boundary. Comprehensive evaluations demonstrate PRISM's effectiveness, achieving remarkably low attack success rates including 0.15% on JailbreakV-28K for Qwen2-VL and 90% improvement over the previous best method on VLBreak for LLaVA-1.5. PRISM also exhibits strong robustness against adaptive attacks, significantly increasing computational costs for adversaries, and generalizes effectively to out-of-distribution challenges, reducing attack success rates to just 8.70% on the challenging multi-image MIS benchmark. Remarkably, this robust defense is achieved while preserving, and in some cases enhancing, model utility. To promote reproducibility, we have made our code, data, and model weights available at https://github.com/SaFoLab-WISC/PRISM.

  • 3 authors
·
Aug 25

Benchmarking Spatiotemporal Reasoning in LLMs and Reasoning Models: Capabilities and Challenges

Spatiotemporal reasoning plays a key role in Cyber-Physical Systems (CPS). Despite advances in Large Language Models (LLMs) and Large Reasoning Models (LRMs), their capacity to reason about complex spatiotemporal signals remains underexplored. This paper proposes a hierarchical SpatioTemporal reAsoning benchmaRK, STARK, to systematically evaluate LLMs across three levels of reasoning complexity: state estimation (e.g., predicting field variables, localizing and tracking events in space and time), spatiotemporal reasoning over states (e.g., inferring spatial-temporal relationships), and world-knowledge-aware reasoning that integrates contextual and domain knowledge (e.g., intent prediction, landmark-aware navigation). We curate 26 distinct spatiotemporal tasks with diverse sensor modalities, comprising 14,552 challenges where models answer directly or by Python Code Interpreter. Evaluating 3 LRMs and 8 LLMs, we find LLMs achieve limited success in tasks requiring geometric reasoning (e.g., multilateration or triangulation), particularly as complexity increases. Surprisingly, LRMs show robust performance across tasks with various levels of difficulty, often competing or surpassing traditional first-principle-based methods. Our results show that in reasoning tasks requiring world knowledge, the performance gap between LLMs and LRMs narrows, with some LLMs even surpassing LRMs. However, the LRM o3 model continues to achieve leading performance across all evaluated tasks, a result attributed primarily to the larger size of the reasoning models. STARK motivates future innovations in model architectures and reasoning paradigms for intelligent CPS by providing a structured framework to identify limitations in the spatiotemporal reasoning of LLMs and LRMs.

  • 5 authors
·
May 16

End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning

Accurate diagnosis with medical large language models is hindered by knowledge gaps and hallucinations. Retrieval and tool-augmented methods help, but their impact is limited by weak use of external knowledge and poor feedback-reasoning traceability. To address these challenges, We introduce Deep-DxSearch, an agentic RAG system trained end-to-end with reinforcement learning (RL) that enables steer tracebale retrieval-augmented reasoning for medical diagnosis. In Deep-DxSearch, we first construct a large-scale medical retrieval corpus comprising patient records and reliable medical knowledge sources to support retrieval-aware reasoning across diagnostic scenarios. More crutially, we frame the LLM as the core agent and the retrieval corpus as its environment, using tailored rewards on format, retrieval, reasoning structure, and diagnostic accuracy, thereby evolving the agentic RAG policy from large-scale data through RL. Experiments demonstrate that our end-to-end agentic RL training framework consistently outperforms prompt-engineering and training-free RAG approaches across multiple data centers. After training, Deep-DxSearch achieves substantial gains in diagnostic accuracy, surpassing strong diagnostic baselines such as GPT-4o, DeepSeek-R1, and other medical-specific frameworks for both common and rare disease diagnosis under in-distribution and out-of-distribution settings. Moreover, ablation studies on reward design and retrieval corpus components confirm their critical roles, underscoring the uniqueness and effectiveness of our approach compared with traditional implementations. Finally, case studies and interpretability analyses highlight improvements in Deep-DxSearch's diagnostic policy, providing deeper insight into its performance gains and supporting clinicians in delivering more reliable and precise preliminary diagnoses. See https://github.com/MAGIC-AI4Med/Deep-DxSearch.

  • 10 authors
·
Aug 21 2

KG-TRACES: Enhancing Large Language Models with Knowledge Graph-constrained Trajectory Reasoning and Attribution Supervision

Large language models (LLMs) have made remarkable strides in various natural language processing tasks, but their performance on complex reasoning problems remains hindered by a lack of explainability and trustworthiness. This issue, often manifesting as hallucinations or unattributable reasoning processes, limits their applicability in complex reasoning scenarios. To address this, we propose Knowledge Graph-constrained Trajectory Reasoning Attribution and Chain Explanation Supervision (KG-TRACES), a novel framework that enhances the reasoning ability of LLMs through explicit supervision over reasoning paths and processes. KG-TRACES jointly supervises the model to: (1) predict symbolic relation paths, (2) predict full triple-level reasoning paths, and (3) generate attribution-aware reasoning processes grounded in the reasoning paths. At inference phase, the model adapts to both KG-available and KG-unavailable scenarios, retrieving reasoning paths from a KG when possible or predicting plausible reasoning paths with only intrinsic knowledge when not. This design enables the model to reason in an explainable and source-attributable pattern. Through extensive experiments on complex reasoning tasks, we demonstrate that KG-TRACES significantly outperforms existing SOTA: it improves Hits@1 by 1.6% and F1 by 4.7% on WebQSP, and achieves improvements of 4.8% in Hits@1 and 2.1% in F1 on CWQ. Moreover, we show its transferability to specialized domains such as medicine. By visualizing the intermediate steps of reasoning processes, we further show that the explicit supervision introduced by KG-TRACES leads to more stable and goal-directed reasoning processes, aligning closely with correct answers. Code is available at https://github.com/Edaizi/KG-TRACES.

  • 8 authors
·
May 31

Model Context Protocol-based Internet of Experts For Wireless Environment-aware LLM Agents

Large Language Models (LLMs) exhibit strong general-purpose reasoning abilities but lack access to wireless environment information due to the absence of native sensory input and domain-specific priors. Previous attempts to apply LLMs in wireless systems either depend on retraining with network-specific data, which compromises language generalization, or rely on manually scripted interfaces, which hinder scalability. To overcome these limitations, we propose a Model Context Protocol (MCP)-based Internet of Experts (IoX) framework that equips LLMs with wireless environment-aware reasoning capabilities. The framework incorporates a set of lightweight expert models, each trained to solve a specific deterministic task in wireless communications, such as detecting a specific wireless attribute, e.g., line-of-sight propagation, Doppler effects, or fading conditions. Through MCP, the LLM can selectively query and interpret expert outputs at inference time, without modifying its own parameters. This architecture enables modular, extensible, and interpretable reasoning over wireless contexts. Evaluated across multiple mainstream LLMs, the proposed wireless environment-aware LLM agents achieve 40%-50% improvements in classification tasks over LLM-only baselines. More broadly, the MCP-based design offers a viable paradigm for future LLMs to inherit structured wireless network management capabilities.

  • 2 authors
·
May 3

Evidence to Generate (E2G): A Single-agent Two-step Prompting for Context Grounded and Retrieval Augmented Reasoning

While chain-of-thought (CoT) prompting has revolutionized how LLMs perform reasoning tasks, its current methods and variations (e.g, Self-consistency, ReACT, Reflexion, Tree-of-Thoughts (ToT), Cumulative Reasoning (CR)) suffer from limitations like slowness, limited context grounding, hallucination and inconsistent outputs. To overcome these challenges, we introduce Evidence to Generate (E2G), a novel single-agent, two-step prompting framework. Instead of unverified reasoning claims, this innovative approach leverages the power of "evidence for decision making" by first focusing exclusively on the thought sequences (the series of intermediate steps) explicitly mentioned in the context which then serve as extracted evidence, guiding the LLM's output generation process with greater precision and efficiency. This simple yet powerful approach unlocks the true potential of chain-of-thought like prompting, paving the way for faster, more reliable, and more contextually aware reasoning in LLMs. \tool achieves remarkable results robustly across a wide range of knowledge-intensive reasoning and generation tasks, surpassing baseline approaches with state-of-the-art LLMs. For example, (i) on LogiQA benchmark using GPT-4 as backbone model, \tool achieves a new state-of-the Accuracy of 53.8% exceeding CoT by 18%, ToT by 11%, CR by 9% (ii) a variant of E2G with PaLM2 outperforms the variable-shot performance of Gemini Ultra by 0.9 F1 points, reaching an F1 score of 83.3 on a subset of DROP.

  • 1 authors
·
Jan 11, 2024

Cause and Effect: Can Large Language Models Truly Understand Causality?

With the rise of Large Language Models(LLMs), it has become crucial to understand their capabilities and limitations in deciphering and explaining the complex web of causal relationships that language entails. Current methods use either explicit or implicit causal reasoning, yet there is a strong need for a unified approach combining both to tackle a wide array of causal relationships more effectively. This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework to enhance causal reasoning and explainability. The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through LLMs. Our framework goes one step further with a layer of counterfactual explanations to accentuate LLMs understanding of causality. The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning. The counterfactual sentences add explicit knowledge of the not caused by scenarios. By combining these powerful modules, our model aims to provide a deeper understanding of causal relationships, enabling enhanced interpretability. Evaluation of benchmark datasets shows improved performance across all metrics, such as accuracy, precision, recall, and F1 scores. We also introduce CausalNet, a new dataset accompanied by our code, to facilitate further research in this domain.

  • 9 authors
·
Feb 28, 2024

LLaMP: Large Language Model Made Powerful for High-fidelity Materials Knowledge Retrieval and Distillation

Reducing hallucination of Large Language Models (LLMs) is imperative for use in the sciences where reproducibility is crucial. However, LLMs inherently lack long-term memory, making it a nontrivial, ad hoc, and inevitably biased task to fine-tune them on domain-specific literature and data. Here we introduce LLaMP, a multimodal retrieval-augmented generation (RAG) framework of multiple data-aware reasoning-and-acting (ReAct) agents that dynamically interact with computational and experimental data on Materials Project (MP). Without fine-tuning, LLaMP demonstrates an ability to comprehend and integrate various modalities of materials science concepts, fetch relevant data stores on the fly, process higher-order data (such as crystal structures and elastic tensors), and summarize multi-step procedures for solid-state synthesis. We show that LLaMP effectively corrects errors in GPT-3.5's intrinsic knowledge, reducing a 5.21% MAPE on frequently-documented bandgaps and a significant 1103.54% MAPE on formation energies -- errors that GPT-3.5 seems to derive from mixed data sources. Additionally, LLaMP substantially reduces the hallucinated volumetric strain in a diamond cubic silicon structure from 66.3% to 0. The proposed framework offers an intuitive and nearly hallucination-free approach to exploring materials informatics and establishes a pathway for knowledge distillation and fine-tuning other language models. We envision the framework as a valuable component for scientific hypotheses and a foundation for future autonomous laboratories where multiple LLM agents communicate and cooperate with robotics to drive material synthesis and chemical reactions without hard-coded human logic and intervention.

  • 3 authors
·
Jan 30, 2024

SURFACEBENCH: Can Self-Evolving LLMs Find the Equations of 3D Scientific Surfaces?

Equation discovery from data is a core challenge in machine learning for science, requiring the recovery of concise symbolic expressions that govern complex physical and geometric phenomena. Recent approaches with large language models (LLMs) show promise in symbolic regression, but their success often hinges on memorized formulas or overly simplified functional forms. Existing benchmarks exacerbate this limitation: they focus on scalar functions, ignore domain grounding, and rely on brittle string-matching based metrics that fail to capture scientific equivalence. We introduce SurfaceBench, first comprehensive benchmark for symbolic surface discovery. SurfaceBench comprises 183 tasks across 15 categories of symbolic complexity, spanning explicit, implicit, and parametric equation representation forms. Each task includes ground-truth equations, variable semantics, and synthetically sampled three dimensional data. Unlike prior SR datasets, our tasks reflect surface-level structure, resist LLM memorization through novel symbolic compositions, and are grounded in scientific domains such as fluid dynamics, robotics, electromagnetics, and geometry. To evaluate equation discovery quality, we pair symbolic checks with geometry-aware metrics such as Chamfer and Hausdorff distances, capturing both algebraic fidelity and spatial reconstruction accuracy. Our experiments reveal that state-of-the-art frameworks, while occasionally successful on specific families, struggle to generalize across representation types and surface complexities. SurfaceBench thus establishes a challenging and diagnostic testbed that bridges symbolic reasoning with geometric reconstruction, enabling principled benchmarking of progress in compositional generalization, data-driven scientific induction, and geometry-aware reasoning with LLMs. We release the code here: https://github.com/Sanchit-404/surfacebench

  • 4 authors
·
Nov 13

Towards Physically Plausible Video Generation via VLM Planning

Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. To address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics. In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: https://madaoer.github.io/projects/physically_plausible_video_generation.

  • 11 authors
·
Mar 30 3

MedSG-Bench: A Benchmark for Medical Image Sequences Grounding

Visual grounding is essential for precise perception and reasoning in multimodal large language models (MLLMs), especially in medical imaging domains. While existing medical visual grounding benchmarks primarily focus on single-image scenarios, real-world clinical applications often involve sequential images, where accurate lesion localization across different modalities and temporal tracking of disease progression (e.g., pre- vs. post-treatment comparison) require fine-grained cross-image semantic alignment and context-aware reasoning. To remedy the underrepresentation of image sequences in existing medical visual grounding benchmarks, we propose MedSG-Bench, the first benchmark tailored for Medical Image Sequences Grounding. It comprises eight VQA-style tasks, formulated into two paradigms of the grounding tasks, including 1) Image Difference Grounding, which focuses on detecting change regions across images, and 2) Image Consistency Grounding, which emphasizes detection of consistent or shared semantics across sequential images. MedSG-Bench covers 76 public datasets, 10 medical imaging modalities, and a wide spectrum of anatomical structures and diseases, totaling 9,630 question-answer pairs. We benchmark both general-purpose MLLMs (e.g., Qwen2.5-VL) and medical-domain specialized MLLMs (e.g., HuatuoGPT-vision), observing that even the advanced models exhibit substantial limitations in medical sequential grounding tasks. To advance this field, we construct MedSG-188K, a large-scale instruction-tuning dataset tailored for sequential visual grounding, and further develop MedSeq-Grounder, an MLLM designed to facilitate future research on fine-grained understanding across medical sequential images. The benchmark, dataset, and model are available at https://huggingface.co/MedSG-Bench

  • 7 authors
·
May 17

Advancing Surgical VQA with Scene Graph Knowledge

Modern operating room is becoming increasingly complex, requiring innovative intra-operative support systems. While the focus of surgical data science has largely been on video analysis, integrating surgical computer vision with language capabilities is emerging as a necessity. Our work aims to advance Visual Question Answering (VQA) in the surgical context with scene graph knowledge, addressing two main challenges in the current surgical VQA systems: removing question-condition bias in the surgical VQA dataset and incorporating scene-aware reasoning in the surgical VQA model design. First, we propose a Surgical Scene Graph-based dataset, SSG-QA, generated by employing segmentation and detection models on publicly available datasets. We build surgical scene graphs using spatial and action information of instruments and anatomies. These graphs are fed into a question engine, generating diverse QA pairs. Our SSG-QA dataset provides a more complex, diverse, geometrically grounded, unbiased, and surgical action-oriented dataset compared to existing surgical VQA datasets. We then propose SSG-QA-Net, a novel surgical VQA model incorporating a lightweight Scene-embedded Interaction Module (SIM), which integrates geometric scene knowledge in the VQA model design by employing cross-attention between the textual and the scene features. Our comprehensive analysis of the SSG-QA dataset shows that SSG-QA-Net outperforms existing methods across different question types and complexities. We highlight that the primary limitation in the current surgical VQA systems is the lack of scene knowledge to answer complex queries. We present a novel surgical VQA dataset and model and show that results can be significantly improved by incorporating geometric scene features in the VQA model design. The source code and the dataset will be made publicly available at: https://github.com/CAMMA-public/SSG-QA

  • 6 authors
·
Dec 15, 2023

MMR1: Enhancing Multimodal Reasoning with Variance-Aware Sampling and Open Resources

Large multimodal reasoning models have achieved rapid progress, but their advancement is constrained by two major limitations: the absence of open, large-scale, high-quality long chain-of-thought (CoT) data, and the instability of reinforcement learning (RL) algorithms in post-training. Group Relative Policy Optimization (GRPO), the standard framework for RL fine-tuning, is prone to gradient vanishing when reward variance is low, which weakens optimization signals and impairs convergence. This work makes three contributions: (1) We propose Variance-Aware Sampling (VAS), a data selection strategy guided by Variance Promotion Score (VPS) that combines outcome variance and trajectory diversity to promote reward variance and stabilize policy optimization. (2) We release large-scale, carefully curated resources containing ~1.6M long CoT cold-start data and ~15k RL QA pairs, designed to ensure quality, difficulty, and diversity, along with a fully reproducible end-to-end training codebase. (3) We open-source a family of multimodal reasoning models in multiple scales, establishing standardized baselines for the community. Experiments across mathematical reasoning benchmarks demonstrate the effectiveness of both the curated data and the proposed VAS. Comprehensive ablation studies and analyses provide further insight into the contributions of each component. In addition, we theoretically establish that reward variance lower-bounds the expected policy gradient magnitude, with VAS serving as a practical mechanism to realize this guarantee. Our code, data, and checkpoints are available at https://github.com/LengSicong/MMR1.

MMR1 MMR1
·
Sep 25 3

Meta-Awareness Enhances Reasoning Models: Self-Alignment Reinforcement Learning

Recent studies on reasoning models explore the meta-awareness of language models, the ability to know how to think by itself. We argue that large reasoning models lack this meta-awareness property by proving severe misalignment between true rollouts and predicted meta information. We posit that aligning meta-prediction with true rollouts will lead to significant performance gains. To verify this hypothesis, we design a training pipeline that boosts Meta-Awareness via Self-Alignment (MASA), and prove that enhanced meta-awareness directly translates to improved accuracy. Unlike existing meta-cognitive reasoning models, our method does not require external training sources but leverages self-generated signals to train meta-awareness. Moreover, our method enables efficient training by i) filtering out zero-variance prompts that are either trivial or unsolvable and ii) cutting off lengthy rollouts when they are unlikely to lead to correct answers. The results are inspiring: our strategy yields significant improvements in both accuracy and training efficiency on in-domain tasks and shows strong generalization to out-of-domain benchmarks. More specifically, our method can speed up GRPO training by over 1.28x to reach the same performance, and achieve a 19.3% gain in accuracy on AIME25, and a 6.2 % average gain over six mathematics benchmarks. Training with meta-cognitive guidance enhances out-of-domain generalization, giving a 3.87 % boost on GPQA-Diamond and a 2.08 % overall accuracy gain across 13 benchmarks spanning logical, scientific, and coding domains.

kaist-ai KAIST AI
·
Sep 26 4

Aware First, Think Less: Dynamic Boundary Self-Awareness Drives Extreme Reasoning Efficiency in Large Language Models

Recent advancements in large language models (LLMs) have greatly improved their capabilities on complex reasoning tasks through Long Chain-of-Thought (CoT). However, this approach often results in substantial redundancy, impairing computational efficiency and causing significant delays in real-time applications. To improve the efficiency, current methods often rely on human-defined difficulty priors, which do not align with the LLM's self-awared difficulty, leading to inefficiencies. In this paper, we introduce the Dynamic Reasoning-Boundary Self-Awareness Framework (DR. SAF), which enables models to dynamically assess and adjust their reasoning depth in response to problem complexity. DR. SAF integrates three key components: Boundary Self-Awareness Alignment, Adaptive Reward Management, and a Boundary Preservation Mechanism. These components allow models to optimize their reasoning processes, balancing efficiency and accuracy without compromising performance. Our experimental results demonstrate that DR. SAF achieves a 49.27% reduction in total response tokens with minimal loss in accuracy. The framework also delivers a 6.59x gain in token efficiency and a 5x reduction in training time, making it well-suited to resource-limited settings. During extreme training, DR. SAF can even surpass traditional instruction-based models in token efficiency with more than 16% accuracy improvement.

  • 7 authors
·
Aug 15

Improving Medical Reasoning with Curriculum-Aware Reinforcement Learning

Recent advances in reinforcement learning with verifiable, rule-based rewards have greatly enhanced the reasoning capabilities and out-of-distribution generalization of VLMs/LLMs, obviating the need for manually crafted reasoning chains. Despite these promising developments in the general domain, their translation to medical imaging remains limited. Current medical reinforcement fine-tuning (RFT) methods predominantly focus on close-ended VQA, thereby restricting the model's ability to engage in world knowledge retrieval and flexible task adaptation. More critically, these methods fall short of addressing the critical clinical demand for open-ended, reasoning-intensive decision-making. To bridge this gap, we introduce MedCCO, the first multimodal reinforcement learning framework tailored for medical VQA that unifies close-ended and open-ended data within a curriculum-driven RFT paradigm. Specifically, MedCCO is initially fine-tuned on a diverse set of close-ended medical VQA tasks to establish domain-grounded reasoning capabilities, and is then progressively adapted to open-ended tasks to foster deeper knowledge enhancement and clinical interpretability. We validate MedCCO across eight challenging medical VQA benchmarks, spanning both close-ended and open-ended settings. Experimental results show that MedCCO consistently enhances performance and generalization, achieving a 11.4\% accuracy gain across three in-domain tasks, and a 5.7\% improvement on five out-of-domain benchmarks. These findings highlight the promise of curriculum-guided RL in advancing robust, clinically-relevant reasoning in medical multimodal language models.

  • 4 authors
·
May 25

Arbitrage: Efficient Reasoning via Advantage-Aware Speculation

Modern Large Language Models achieve impressive reasoning capabilities with long Chain of Thoughts, but they incur substantial computational cost during inference, and this motivates techniques to improve the performance-cost ratio. Among these techniques, Speculative Decoding accelerates inference by employing a fast but inaccurate draft model to autoregressively propose tokens, which are then verified in parallel by a more capable target model. However, due to unnecessary rejections caused by token mismatches in semantically equivalent steps, traditional token-level Speculative Decoding struggles in reasoning tasks. Although recent works have shifted to step-level semantic verification, which improve efficiency by accepting or rejecting entire reasoning steps, existing step-level methods still regenerate many rejected steps with little improvement, wasting valuable target compute. To address this challenge, we propose Arbitrage, a novel step-level speculative generation framework that routes generation dynamically based on the relative advantage between draft and target models. Instead of applying a fixed acceptance threshold, Arbitrage uses a lightweight router trained to predict when the target model is likely to produce a meaningfully better step. This routing approximates an ideal Arbitrage Oracle that always chooses the higher-quality step, achieving near-optimal efficiency-accuracy trade-offs. Across multiple mathematical reasoning benchmarks, Arbitrage consistently surpasses prior step-level Speculative Decoding baselines, reducing inference latency by up to sim2times at matched accuracy.

  • 11 authors
·
Dec 4

SRPO: Enhancing Multimodal LLM Reasoning via Reflection-Aware Reinforcement Learning

Multimodal large language models (MLLMs) have shown promising capabilities in reasoning tasks, yet still struggle with complex problems requiring explicit self-reflection and self-correction, especially compared to their unimodal text-based counterparts. Existing reflection methods are simplistic and struggle to generate meaningful and instructive feedback, as the reasoning ability and knowledge limits of pre-trained models are largely fixed during initial training. To overcome these challenges, we propose Multimodal Self-Reflection enhanced reasoning with Group Relative Policy Optimization (SRPO), a two-stage reflection-aware reinforcement learning (RL) framework explicitly designed to enhance multimodal LLM reasoning. In the first stage, we construct a high-quality, reflection-focused dataset under the guidance of an advanced MLLM, which generates reflections based on initial responses to help the policy model learn both reasoning and self-reflection. In the second stage, we introduce a novel reward mechanism within the GRPO framework that encourages concise and cognitively meaningful reflection while avoiding redundancy. Extensive experiments across multiple multimodal reasoning benchmarks, including MathVista, MathVision, MathVerse, and MMMU-Pro, using Qwen-2.5-VL-7B and Qwen-2.5-VL-32B demonstrate that SRPO significantly outperforms state-of-the-art models, achieving notable improvements in both reasoning accuracy and reflection quality.

RuleReasoner: Reinforced Rule-based Reasoning via Domain-aware Dynamic Sampling

Rule-based reasoning has been acknowledged as one of the fundamental problems in reasoning, while deviations in rule formats, types, and complexity in real-world applications pose severe challenges. Recent studies have shown that large reasoning models (LRMs) have remarkable reasoning capabilities, and their performance is substantially enhanced by reinforcement learning (RL). However, it remains an open question whether small reasoning models (SRMs) can learn rule-based reasoning effectively with robust generalization across diverse tasks and domains. To address this, we introduce Reinforced Rule-based Reasoning, a.k.a. RuleReasoner, a simple yet effective method to conduct rule-based reasoning via a wide collection of curated tasks and a novel domain-aware dynamic sampling approach. Specifically, RuleReasoner resamples each training batch by updating the sampling weights of different domains based on historical rewards. This facilitates domain augmentation and flexible online learning schedules for RL, obviating the need for pre-hoc human-engineered mix-training recipes used in existing methods. Empirical evaluations on in-distribution (ID) and out-of-distribution (OOD) benchmarks reveal that RuleReasoner outperforms frontier LRMs by a significant margin (Delta4.1% average points on eight ID tasks and Delta10.4% average points on three OOD tasks over OpenAI-o1). Notably, our approach also exhibits higher computational efficiency compared to prior dynamic sampling methods for RL.

AdaCtrl: Towards Adaptive and Controllable Reasoning via Difficulty-Aware Budgeting

Modern large reasoning models demonstrate impressive problem-solving capabilities by employing sophisticated reasoning strategies. However, they often struggle to balance efficiency and effectiveness, frequently generating unnecessarily lengthy reasoning chains for simple problems. In this work, we propose AdaCtrl, a novel framework to support both difficulty-aware adaptive reasoning budget allocation and explicit user control over reasoning depth. AdaCtrl dynamically adjusts its reasoning length based on self-assessed problem difficulty, while also allowing users to manually control the budget to prioritize either efficiency or effectiveness. This is achieved through a two-stage training pipeline: an initial cold-start fine-tuning phase to instill the ability to self-aware difficulty and adjust reasoning budget, followed by a difficulty-aware reinforcement learning (RL) stage that refines the model's adaptive reasoning strategies and calibrates its difficulty assessments based on its evolving capabilities during online training. To enable intuitive user interaction, we design explicit length-triggered tags that function as a natural interface for budget control. Empirical results show that AdaCtrl adapts reasoning length based on estimated difficulty, compared to the standard training baseline that also incorporates fine-tuning and RL, it yields performance improvements and simultaneously reduces response length by 10.06% and 12.14% on the more challenging AIME2024 and AIME2025 datasets, which require elaborate reasoning, and by 62.05% and 91.04% on the MATH500 and GSM8K datasets, where more concise responses are sufficient. Furthermore, AdaCtrl enables precise user control over the reasoning budget, allowing for tailored responses to meet specific needs.

  • 7 authors
·
May 24 2

ARES: Multimodal Adaptive Reasoning via Difficulty-Aware Token-Level Entropy Shaping

Recent advances in multimodal large reasoning models (MLRMs) have substantially improved their ability to solve complex textual and visual tasks. However, these models tend to overthink on simple problems, producing unnecessarily lengthy reasoning traces, while under-exploring on challenging ones, leading to missed solutions. To address this imbalance, we propose ARES, a unified open-source framework for adaptive reasoning that dynamically allocates exploration effort based on task difficulty. Our approach is motivated by two key empirical findings: (i) while single-token entropy is noisy, high window-entropy (HWE) tokens (token-level entropies averaged under a sliding window) can reliably capture reasoning-critical moments; and (ii) reducing HWE usage benefits easy problems, while increasing it is essential for solving hard ones. Building on these insights, ARES introduces a two-stage training pipeline. In the Adaptive Cold-Start stage, we curate multimodal and textual data paired with reasoning traces of length proportional to problem difficulty, equipping the model with initial difficulty awareness. In the second stage, we develop Adaptive Entropy Policy Optimization (AEPO), which uses HWE tokens as exploration triggers to decide when to explore, and a hierarchical entropy reward with dynamic KL control to decide how much to explore. Extensive experiments demonstrate that ARES achieves superior performance and reasoning efficiency across diverse mathematical, logical, and multimodal benchmarks, while closing the gap to leading commercial systems under significantly lower inference costs.

MMBoundary: Advancing MLLM Knowledge Boundary Awareness through Reasoning Step Confidence Calibration

In recent years, multimodal large language models (MLLMs) have made significant progress but continue to face inherent challenges in multimodal reasoning, which requires multi-level (e.g., perception, reasoning) and multi-granular (e.g., multi-step reasoning chain) advanced inferencing. Prior work on estimating model confidence tends to focus on the overall response for training and calibration, but fails to assess confidence in each reasoning step, leading to undesirable hallucination snowballing. In this work, we present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration. To achieve this, we propose to incorporate complementary textual and cross-modal self-rewarding signals to estimate confidence at each step of the MLLM reasoning process. In addition to supervised fine-tuning MLLM on this set of self-rewarded confidence estimation signal for initial confidence expression warm-up, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge and calibrating confidence at each reasoning step, enhancing reasoning chain self-correction. Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics, achieving an average of 7.5% reduction in multimodal confidence calibration errors and up to 8.3% improvement in task performance.

  • 6 authors
·
May 29

A$^2$FM: An Adaptive Agent Foundation Model for Tool-Aware Hybrid Reasoning

Large language models split into two families: reasoning-centric LLMs, which strengthen internal chain-of-thought reasoning but cannot invoke external tools, and agentic LLMs, which learn to interact with environments and leverage tools but often lag in deep reasoning. This divide arises from fundamentally different training objectives, leading to mismatched strengths and inefficiency on simple queries, where both families tend to overthink or over-call tools. In this work, we present Adaptive Agent Foundation Model (A^2FM), a unified framework that follows a route-then-align principle: the model first learns task-aware routing and then aligns mode-specific trajectories under a shared backbone. To address the inefficiency gap, we introduce a third mode-instant-that handles simple queries directly, preventing unnecessary reasoning or tool calls while complementing the agentic and reasoning modes. To jointly enhance accuracy and efficiency, we propose Adaptive Policy Optimization (APO), which enforces adaptive sampling across modes and applies a cost-regularized reward. On the 32B scale, A^2FM achieves 13.4% on BrowseComp, 70.4% on AIME25, and 16.7% on HLE, setting new SOTA among comparable models and performing competitively with frontier LLMs across agentic, reasoning, and general benchmarks. Notably, the adaptive execution achieves a cost of pass of only $0.00487 per correct answer-cutting cost by 45.2% relative to reasoning and 33.5% relative to agentic, thus delivering substantially higher cost efficiency while maintaining comparable accuracy.

OPPOer OPPO
·
Oct 13 3

CodeV: Code with Images for Faithful Visual Reasoning via Tool-Aware Policy Optimization

Agentic vision-language models are increasingly trained to "think with images" by calling image operations. However, we show that high final-answer accuracy often hides unfaithful visual reasoning: models may invoke tools on irrelevant regions or ignore tool outputs entirely, yet still guess the correct answer. In this work, we first propose a faithfulness evaluation protocol that measures whether intermediate visual tool outputs (e.g., crops) actually contain the queried evidence. This reveals that recent visual agents achieve high final-answer accuracy but exhibit low rates of faithful tool-use on visual search benchmarks. We then introduce CodeV, a code-based visual agent trained with Tool-Aware Policy Optimization (TAPO). TAPO is a process-level RL framework that augments GRPO with dense rewards defined directly on visual tool inputs and outputs, rather than on chain-of-thought tokens, making supervision easier to verify and less susceptible to reward hacking. CodeV represents visual tools as executable Python code, and TAPO assigns step-wise rewards based solely on the question and tool output, encouraging both necessary and evidence-consistent tool use. In a two-stage SFT+RL pipeline, CodeV achieves competitive or superior accuracy while substantially increasing faithful tool-use rates on related visual search benchmarks. Beyond visual search, CodeV attains strong performance on a range of multimodal reasoning and math benchmarks, suggesting that explicitly supervising intermediate tool behavior is crucial for building trustworthy, agentic visual reasoning systems.

MiroMind-M1: An Open-Source Advancement in Mathematical Reasoning via Context-Aware Multi-Stage Policy Optimization

Large language models have recently evolved from fluent text generation to advanced reasoning across diverse domains, giving rise to reasoning language models. Among these domains, mathematical reasoning serves as a representative benchmark as it requires precise multi-step logic and abstract reasoning, which can be generalized to other tasks. While closed-source RLMs such as GPT-o3 demonstrate impressive reasoning capabilities, their proprietary nature limits transparency and reproducibility. Although many open-source projects aim to close this gap, most of them lack sufficient openness by omitting critical resources such as datasets and detailed training configurations, which hinders reproducibility. To contribute toward greater transparency in RLM development, we introduce the MiroMind-M1 series, a set of fully open-source RLMs built on the Qwen-2.5 backbone that match or exceed the performance of existing open-source RLMs. Specifically, our models are trained in two stages: SFT on a carefully curated corpus of 719K math-reasoning problems with verified CoT trajectories, followed by RLVR on 62K challenging and verifiable problems. To enhance the robustness and efficiency of the RLVR process, we introduce Context-Aware Multi-Stage Policy Optimization, an algorithm that integrates length-progressive training with an adaptive repetition penalty to encourage context-aware RL training. Our model achieves state-of-the-art or competitive performance and superior token efficiency among Qwen-2.5-based open-source 7B and 32B models on the AIME24, AIME25, and MATH benchmarks. To facilitate reproducibility, we release the complete stack: models (MiroMind-M1-SFT-7B, MiroMind-M1-RL-7B, MiroMind-M1-RL-32B); datasets (MiroMind-M1-SFT-719K, MiroMind-M1-RL-62K); and all training and evaluation configurations. We hope these resources will support further research and foster community advancement.

  • 18 authors
·
Jul 19 2

Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers

We present an approach to modifying Transformer architectures by integrating graph-aware relational reasoning into the attention mechanism, merging concepts from graph neural networks and language modeling. Building on the inherent connection between attention and graph theory, we reformulate the Transformer's attention mechanism as a graph operation and propose Graph-Aware Isomorphic Attention. This method leverages advanced graph modeling strategies, including Graph Isomorphism Networks (GIN) and Principal Neighborhood Aggregation (PNA), to enrich the representation of relational structures. Our approach captures complex dependencies and generalizes across tasks, as evidenced by a reduced generalization gap and improved learning performance. Additionally, we expand the concept of graph-aware attention to introduce Sparse GIN-Attention, a fine-tuning approach that employs sparse GINs. By interpreting attention matrices as sparse adjacency graphs, this technique enhances the adaptability of pre-trained foundational models with minimal computational overhead, endowing them with graph-aware capabilities. Sparse GIN-Attention fine-tuning achieves improved training dynamics and better generalization compared to alternative methods like low-rank adaption (LoRA). We discuss latent graph-like structures within traditional attention mechanisms, offering a new lens through which Transformers can be understood. By evolving Transformers as hierarchical GIN models for relational reasoning. This perspective suggests profound implications for foundational model development, enabling the design of architectures that dynamically adapt to both local and global dependencies. Applications in bioinformatics, materials science, language modeling, and beyond could benefit from this synthesis of relational and sequential data modeling, setting the stage for interpretable and generalizable modeling strategies.

  • 1 authors
·
Jan 4 2

Multi-Step Visual Reasoning with Visual Tokens Scaling and Verification

Multi-modal large language models (MLLMs) have achieved remarkable capabilities by integrating visual perception with language understanding, enabling applications such as image-grounded dialogue, visual question answering, and scientific analysis. However, most MLLMs adopt a static inference paradigm, encoding the entire image into fixed visual tokens upfront, which limits their ability to iteratively refine understanding or adapt to context during inference. This contrasts sharply with human perception, which is dynamic, selective, and feedback-driven. In this work, we introduce a novel framework for inference-time visual token scaling that enables MLLMs to perform iterative, verifier-guided reasoning over visual content. We formulate the problem as a Markov Decision Process, involving a reasoner that proposes visual actions and a verifier, which is trained via multi-step Direct Preference Optimization (DPO), that evaluates these actions and determines when reasoning should terminate. To support this, we present a new dataset, VTS, comprising supervised reasoning trajectories (VTS-SFT) and preference-labeled reasoning comparisons (VTS-DPO). Our method significantly outperforms existing approaches across diverse visual reasoning benchmarks, offering not only improved accuracy but also more interpretable and grounded reasoning processes. These results demonstrate the promise of dynamic inference mechanisms for enabling fine-grained, context-aware visual reasoning in next-generation MLLMs.

  • 10 authors
·
Jun 8

Bridging the Gap in Ophthalmic AI: MM-Retinal-Reason Dataset and OphthaReason Model toward Dynamic Multimodal Reasoning

Multimodal large language models (MLLMs) have recently demonstrated remarkable reasoning abilities with reinforcement learning paradigm. Although several multimodal reasoning models have been explored in the medical domain, most of them focus exclusively on basic reasoning, which refers to shallow inference based on visual feature matching. However, real-world clinical diagnosis extends beyond basic reasoning, demanding reasoning processes that integrate heterogeneous clinical information (such as chief complaints and medical history) with multimodal medical imaging data. To bridge this gap, we introduce MM-Retinal-Reason, the first ophthalmic multimodal dataset with the full spectrum of perception and reasoning. It encompasses both basic reasoning tasks and complex reasoning tasks, aiming to enhance visual-centric fundamental reasoning capabilities and emulate realistic clinical thinking patterns. Building upon MM-Retinal-Reason, we propose OphthaReason, the first ophthalmology-specific multimodal reasoning model with step-by-step reasoning traces. To enable flexible adaptation to both basic and complex reasoning tasks, we specifically design a novel method called Uncertainty-Aware Dynamic Thinking (UADT), which estimates sample-level uncertainty via entropy and dynamically modulates the model's exploration depth using a shaped advantage mechanism. Comprehensive experiments demonstrate that our model achieves state-of-the-art performance on both basic and complex reasoning tasks, outperforming general-purpose MLLMs, medical MLLMs, RL-based medical MLLMs, and ophthalmic MLLMs by at least 24.92\%, 15.00\%, 21.20\%, and 17.66\%. Project Page: https://github.com/lxirich/OphthaReason{link}.

  • 9 authors
·
Aug 22

Robix: A Unified Model for Robot Interaction, Reasoning and Planning

We introduce Robix, a unified model that integrates robot reasoning, task planning, and natural language interaction within a single vision-language architecture. Acting as the high-level cognitive layer in a hierarchical robot system, Robix dynamically generates atomic commands for the low-level controller and verbal responses for human interaction, enabling robots to follow complex instructions, plan long-horizon tasks, and interact naturally with human within an end-to-end framework. Robix further introduces novel capabilities such as proactive dialogue, real-time interruption handling, and context-aware commonsense reasoning during task execution. At its core, Robix leverages chain-of-thought reasoning and adopts a three-stage training strategy: (1) continued pretraining to enhance foundational embodied reasoning abilities including 3D spatial understanding, visual grounding, and task-centric reasoning; (2) supervised finetuning to model human-robot interaction and task planning as a unified reasoning-action sequence; and (3) reinforcement learning to improve reasoning-action consistency and long-horizon task coherence. Extensive experiments demonstrate that Robix outperforms both open-source and commercial baselines (e.g., GPT-4o and Gemini 2.5 Pro) in interactive task execution, demonstrating strong generalization across diverse instruction types (e.g., open-ended, multi-stage, constrained, invalid, and interrupted) and various user-involved tasks such as table bussing, grocery shopping, and dietary filtering.

Eigen-1: Adaptive Multi-Agent Refinement with Monitor-Based RAG for Scientific Reasoning

Large language models (LLMs) have recently shown strong progress on scientific reasoning, yet two major bottlenecks remain. First, explicit retrieval fragments reasoning, imposing a hidden "tool tax" of extra tokens and steps. Second, multi-agent pipelines often dilute strong solutions by averaging across all candidates. We address these challenges with a unified framework that combines implicit retrieval and structured collaboration. At its foundation, a Monitor-based retrieval module operates at the token level, integrating external knowledge with minimal disruption to reasoning. On top of this substrate, Hierarchical Solution Refinement (HSR) iteratively designates each candidate as an anchor to be repaired by its peers, while Quality-Aware Iterative Reasoning (QAIR) adapts refinement to solution quality. On Humanity's Last Exam (HLE) Bio/Chem Gold, our framework achieves 48.3\% accuracy -- the highest reported to date, surpassing the strongest agent baseline by 13.4 points and leading frontier LLMs by up to 18.1 points, while simultaneously reducing token usage by 53.5\% and agent steps by 43.7\%. Results on SuperGPQA and TRQA confirm robustness across domains. Error analysis shows that reasoning failures and knowledge gaps co-occur in over 85\% of cases, while diversity analysis reveals a clear dichotomy: retrieval tasks benefit from solution variety, whereas reasoning tasks favor consensus. Together, these findings demonstrate how implicit augmentation and structured refinement overcome the inefficiencies of explicit tool use and uniform aggregation. Code is available at: https://github.com/tangxiangru/Eigen-1.

  • 16 authors
·
Sep 25

Is PRM Necessary? Problem-Solving RL Implicitly Induces PRM Capability in LLMs

The development of reasoning capabilities represents a critical frontier in large language models (LLMs) research, where reinforcement learning (RL) and process reward models (PRMs) have emerged as predominant methodological frameworks. Contrary to conventional wisdom, empirical evidence from DeepSeek-R1 demonstrates that pure RL training focused on mathematical problem-solving can progressively enhance reasoning abilities without PRM integration, challenging the perceived necessity of process supervision. In this study, we conduct a systematic investigation of the relationship between RL training and PRM capabilities. Our findings demonstrate that problem-solving proficiency and process supervision capabilities represent complementary dimensions of reasoning that co-evolve synergistically during pure RL training. In particular, current PRMs underperform simple baselines like majority voting when applied to state-of-the-art models such as DeepSeek-R1 and QwQ-32B. To address this limitation, we propose Self-PRM, an introspective framework in which models autonomously evaluate and rerank their generated solutions through self-reward mechanisms. Although Self-PRM consistently improves the accuracy of the benchmark (particularly with larger sample sizes), analysis exposes persistent challenges: The approach exhibits low precision (<10\%) on difficult problems, frequently misclassifying flawed solutions as valid. These analyses underscore the need for continued RL scaling to improve reward alignment and introspective accuracy. Overall, our findings suggest that PRM may not be essential for enhancing complex reasoning, as pure RL not only improves problem-solving skills but also inherently fosters robust PRM capabilities. We hope these findings provide actionable insights for building more reliable and self-aware complex reasoning models.

  • 9 authors
·
May 16

Chain-of-Visual-Thought: Teaching VLMs to See and Think Better with Continuous Visual Tokens

Vision-Language Models (VLMs) excel at reasoning in linguistic space but struggle with perceptual understanding that requires dense visual perception, e.g., spatial reasoning and geometric awareness. This limitation stems from the fact that current VLMs have limited mechanisms to capture dense visual information across spatial dimensions. We introduce Chain-of-Visual-Thought (COVT), a framework that enables VLMs to reason not only in words but also through continuous visual tokens-compact latent representations that encode rich perceptual cues. Within a small budget of roughly 20 tokens, COVT distills knowledge from lightweight vision experts, capturing complementary properties such as 2D appearance, 3D geometry, spatial layout, and edge structure. During training, the VLM with COVT autoregressively predicts these visual tokens to reconstruct dense supervision signals (e.g., depth, segmentation, edges, and DINO features). At inference, the model reasons directly in the continuous visual token space, preserving efficiency while optionally decoding dense predictions for interpretability. Evaluated across more than ten diverse perception benchmarks, including CV-Bench, MMVP, RealWorldQA, MMStar, WorldMedQA, and HRBench, integrating COVT into strong VLMs such as Qwen2.5-VL and LLaVA consistently improves performance by 3% to 16% and demonstrates that compact continuous visual thinking enables more precise, grounded, and interpretable multimodal intelligence.

RIS-LAD: A Benchmark and Model for Referring Low-Altitude Drone Image Segmentation

Referring Image Segmentation (RIS), which aims to segment specific objects based on natural language descriptions, plays an essential role in vision-language understanding. Despite its progress in remote sensing applications, RIS in Low-Altitude Drone (LAD) scenarios remains underexplored. Existing datasets and methods are typically designed for high-altitude and static-view imagery. They struggle to handle the unique characteristics of LAD views, such as diverse viewpoints and high object density. To fill this gap, we present RIS-LAD, the first fine-grained RIS benchmark tailored for LAD scenarios. This dataset comprises 13,871 carefully annotated image-text-mask triplets collected from realistic drone footage, with a focus on small, cluttered, and multi-viewpoint scenes. It highlights new challenges absent in previous benchmarks, such as category drift caused by tiny objects and object drift under crowded same-class objects. To tackle these issues, we propose the Semantic-Aware Adaptive Reasoning Network (SAARN). Rather than uniformly injecting all linguistic features, SAARN decomposes and routes semantic information to different stages of the network. Specifically, the Category-Dominated Linguistic Enhancement (CDLE) aligns visual features with object categories during early encoding, while the Adaptive Reasoning Fusion Module (ARFM) dynamically selects semantic cues across scales to improve reasoning in complex scenes. The experimental evaluation reveals that RIS-LAD presents substantial challenges to state-of-the-art RIS algorithms, and also demonstrates the effectiveness of our proposed model in addressing these challenges. The dataset and code will be publicly released soon at: https://github.com/AHideoKuzeA/RIS-LAD/.

  • 6 authors
·
Jul 28

FinTagging: An LLM-ready Benchmark for Extracting and Structuring Financial Information

We introduce FinTagging, the first full-scope, table-aware XBRL benchmark designed to evaluate the structured information extraction and semantic alignment capabilities of large language models (LLMs) in the context of XBRL-based financial reporting. Unlike prior benchmarks that oversimplify XBRL tagging as flat multi-class classification and focus solely on narrative text, FinTagging decomposes the XBRL tagging problem into two subtasks: FinNI for financial entity extraction and FinCL for taxonomy-driven concept alignment. It requires models to jointly extract facts and align them with the full 10k+ US-GAAP taxonomy across both unstructured text and structured tables, enabling realistic, fine-grained evaluation. We assess a diverse set of LLMs under zero-shot settings, systematically analyzing their performance on both subtasks and overall tagging accuracy. Our results reveal that, while LLMs demonstrate strong generalization in information extraction, they struggle with fine-grained concept alignment, particularly in disambiguating closely related taxonomy entries. These findings highlight the limitations of existing LLMs in fully automating XBRL tagging and underscore the need for improved semantic reasoning and schema-aware modeling to meet the demands of accurate financial disclosure. Code is available at our GitHub repository and data is at our Hugging Face repository.

TheFinAI The Fin AI
·
May 26 2

GitTaskBench: A Benchmark for Code Agents Solving Real-World Tasks Through Code Repository Leveraging

Beyond scratch coding, exploiting large-scale code repositories (e.g., GitHub) for practical tasks is vital in real-world software development, yet current benchmarks rarely evaluate code agents in such authentic, workflow-driven scenarios. To bridge this gap, we introduce GitTaskBench, a benchmark designed to systematically assess this capability via 54 realistic tasks across 7 modalities and 7 domains. Each task pairs a relevant repository with an automated, human-curated evaluation harness specifying practical success criteria. Beyond measuring execution and task success, we also propose the alpha-value metric to quantify the economic benefit of agent performance, which integrates task success rates, token cost, and average developer salaries. Experiments across three state-of-the-art agent frameworks with multiple advanced LLMs show that leveraging code repositories for complex task solving remains challenging: even the best-performing system, OpenHands+Claude 3.7, solves only 48.15% of tasks. Error analysis attributes over half of failures to seemingly mundane yet critical steps like environment setup and dependency resolution, highlighting the need for more robust workflow management and increased timeout preparedness. By releasing GitTaskBench, we aim to drive progress and attention toward repository-aware code reasoning, execution, and deployment -- moving agents closer to solving complex, end-to-end real-world tasks. The benchmark and code are open-sourced at https://github.com/QuantaAlpha/GitTaskBench.

  • 18 authors
·
Aug 26 1

The Future of AI: Exploring the Potential of Large Concept Models

The field of Artificial Intelligence (AI) continues to drive transformative innovations, with significant progress in conversational interfaces, autonomous vehicles, and intelligent content creation. Since the launch of ChatGPT in late 2022, the rise of Generative AI has marked a pivotal era, with the term Large Language Models (LLMs) becoming a ubiquitous part of daily life. LLMs have demonstrated exceptional capabilities in tasks such as text summarization, code generation, and creative writing. However, these models are inherently limited by their token-level processing, which restricts their ability to perform abstract reasoning, conceptual understanding, and efficient generation of long-form content. To address these limitations, Meta has introduced Large Concept Models (LCMs), representing a significant shift from traditional token-based frameworks. LCMs use concepts as foundational units of understanding, enabling more sophisticated semantic reasoning and context-aware decision-making. Given the limited academic research on this emerging technology, our study aims to bridge the knowledge gap by collecting, analyzing, and synthesizing existing grey literature to provide a comprehensive understanding of LCMs. Specifically, we (i) identify and describe the features that distinguish LCMs from LLMs, (ii) explore potential applications of LCMs across multiple domains, and (iii) propose future research directions and practical strategies to advance LCM development and adoption.

  • 2 authors
·
Jan 8

DropPos: Pre-Training Vision Transformers by Reconstructing Dropped Positions

As it is empirically observed that Vision Transformers (ViTs) are quite insensitive to the order of input tokens, the need for an appropriate self-supervised pretext task that enhances the location awareness of ViTs is becoming evident. To address this, we present DropPos, a novel pretext task designed to reconstruct Dropped Positions. The formulation of DropPos is simple: we first drop a large random subset of positional embeddings and then the model classifies the actual position for each non-overlapping patch among all possible positions solely based on their visual appearance. To avoid trivial solutions, we increase the difficulty of this task by keeping only a subset of patches visible. Additionally, considering there may be different patches with similar visual appearances, we propose position smoothing and attentive reconstruction strategies to relax this classification problem, since it is not necessary to reconstruct their exact positions in these cases. Empirical evaluations of DropPos show strong capabilities. DropPos outperforms supervised pre-training and achieves competitive results compared with state-of-the-art self-supervised alternatives on a wide range of downstream benchmarks. This suggests that explicitly encouraging spatial reasoning abilities, as DropPos does, indeed contributes to the improved location awareness of ViTs. The code is publicly available at https://github.com/Haochen-Wang409/DropPos.

  • 6 authors
·
Sep 7, 2023

SAM-Aware Graph Prompt Reasoning Network for Cross-Domain Few-Shot Segmentation

The primary challenge of cross-domain few-shot segmentation (CD-FSS) is the domain disparity between the training and inference phases, which can exist in either the input data or the target classes. Previous models struggle to learn feature representations that generalize to various unknown domains from limited training domain samples. In contrast, the large-scale visual model SAM, pre-trained on tens of millions of images from various domains and classes, possesses excellent generalizability. In this work, we propose a SAM-aware graph prompt reasoning network (GPRN) that fully leverages SAM to guide CD-FSS feature representation learning and improve prediction accuracy. Specifically, we propose a SAM-aware prompt initialization module (SPI) to transform the masks generated by SAM into visual prompts enriched with high-level semantic information. Since SAM tends to divide an object into many sub-regions, this may lead to visual prompts representing the same semantic object having inconsistent or fragmented features. We further propose a graph prompt reasoning (GPR) module that constructs a graph among visual prompts to reason about their interrelationships and enable each visual prompt to aggregate information from similar prompts, thus achieving global semantic consistency. Subsequently, each visual prompt embeds its semantic information into the corresponding mask region to assist in feature representation learning. To refine the segmentation mask during testing, we also design a non-parameter adaptive point selection module (APS) to select representative point prompts from query predictions and feed them back to SAM to refine inaccurate segmentation results. Experiments on four standard CD-FSS datasets demonstrate that our method establishes new state-of-the-art results. Code: https://github.com/CVL-hub/GPRN.

  • 5 authors
·
Dec 31, 2024

Perception-Aware Policy Optimization for Multimodal Reasoning

Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be a highly effective strategy for endowing Large Language Models (LLMs) with robust multi-step reasoning abilities. However, its design and optimizations remain tailored to purely textual domains, resulting in suboptimal performance when applied to multimodal reasoning tasks. In particular, we observe that a major source of error in current multimodal reasoning lies in the perception of visual inputs. To address this bottleneck, we propose Perception-Aware Policy Optimization (PAPO), a simple yet effective extension of GRPO that encourages the model to learn to perceive while learning to reason, entirely from internal supervision signals. Notably, PAPO does not rely on additional data curation, external reward models, or proprietary models. Specifically, we introduce the Implicit Perception Loss in the form of a KL divergence term to the GRPO objective, which, despite its simplicity, yields significant overall improvements (4.4%) on diverse multimodal benchmarks. The improvements are more pronounced, approaching 8.0%, on tasks with high vision dependency. We also observe a substantial reduction (30.5%) in perception errors, indicating improved perceptual capabilities with PAPO. We conduct comprehensive analysis of PAPO and identify a unique loss hacking issue, which we rigorously analyze and mitigate through a Double Entropy Loss. Overall, our work introduces a deeper integration of perception-aware supervision into RLVR learning objectives and lays the groundwork for a new RL framework that encourages visually grounded reasoning. Project page: https://mikewangwzhl.github.io/PAPO.

PEAR: Phase Entropy Aware Reward for Efficient Reasoning

Large Reasoning Models (LRMs) have achieved impressive performance on complex reasoning tasks by generating detailed chain-of-thought (CoT) explanations. However, these responses are often excessively long, containing redundant reasoning steps that inflate inference cost and reduce usability. Controlling the length of generated reasoning without sacrificing accuracy remains an open challenge. Through a systematic empirical analysis, we reveal a consistent positive correlation between model entropy and response length at different reasoning stages across diverse LRMs: the thinking phase exhibits higher entropy, reflecting exploratory behavior of longer responses, while the final answer phase shows lower entropy, indicating a more deterministic solution. This observation suggests that entropy at different reasoning stages can serve as a control knob for balancing conciseness and performance. Based on this insight, this paper introduces Phase Entropy Aware Reward (PEAR), a reward mechanism that incorporating phase-dependent entropy into the reward design. Instead of treating all tokens uniformly, PEAR penalize excessive entropy during the thinking phase and allowing moderate exploration at the final answer phase, which encourages models to generate concise reasoning traces that retain sufficient flexibility to solve the task correctly. This enables adaptive control of response length without relying on explicit length targets or rigid truncation rules. Extensive experiments across four benchmarks demonstrate that PEAR consistently reduces response length while sustaining competitive accuracy across model scales. In addition, PEAR demonstrates strong out-of-distribution (OOD) robustness beyond the training distribution. Our code is available at: https://github.com/iNLP-Lab/PEAR.