Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThinking with DistilQwen: A Tale of Four Distilled Reasoning and Reward Model Series
Recently, the demand for small and efficient reasoning models to support real-world applications has driven the development of knowledge distillation techniques that balance reasoning performance and inference speed. In this paper, we further extend the DistilQwen model family, initialized from the Qwen models, by introducing four model series specifically designed to meet industrial requirements. The distilled model collection comprises: (1) slow-thinking models, optimized for reasoning tasks that require high accuracy; (2) two series of adaptive-thinking models, which dynamically adjust reasoning strategies based on input tasks to maximize efficiency across diverse scenarios; and (3) distilled reward models, which enable further reinforcement learning of reasoning models using distilled knowledge. Comprehensive evaluations across multiple benchmarks demonstrate both high inference efficiency and strong reasoning performance for these models, as well as the practical utility of distilled reward models. We further show that these models support industry practitioners by providing scalable training and inference functionalities on the Alibaba Cloud PAI (Platform for Artificial Intelligence) platform.
AtomThink: A Slow Thinking Framework for Multimodal Mathematical Reasoning
In this paper, we address the challenging task of multimodal mathematical reasoning by incorporating the ability of ``slow thinking" into multimodal large language models (MLLMs). Contrary to existing methods that rely on direct or fast thinking, our key idea is to construct long chains of thought (CoT) consisting of atomic actions in a step-by-step manner, guiding MLLMs to perform complex reasoning. To this end, we design a novel AtomThink framework composed of three key modules: (i) a CoT annotation engine that automatically generates high-quality CoT annotations to address the lack of high-quality visual mathematical data; (ii) an atomic step fine-tuning strategy that jointly optimizes an MLLM and a policy reward model (PRM) for step-wise reasoning; and (iii) four different search strategies that can be applied with the PRM to complete reasoning. Additionally, we propose AtomMATH, a large-scale multimodal dataset of long CoTs, and an atomic capability evaluation metric for mathematical tasks. Extensive experimental results show that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving approximately 50\% relative accuracy gains on MathVista and 120\% on MathVerse. To support the advancement of multimodal slow-thinking models, we will make our code and dataset publicly available on https://github.com/Quinn777/AtomThink.
PATS: Process-Level Adaptive Thinking Mode Switching
Current large-language models (LLMs) typically adopt a fixed reasoning strategy, either simple or complex, for all questions, regardless of their difficulty. This neglect of variation in task and reasoning process complexity leads to an imbalance between performance and efficiency. Existing methods attempt to implement training-free fast-slow thinking system switching to handle problems of varying difficulty, but are limited by coarse-grained solution-level strategy adjustments. To address this issue, we propose a novel reasoning paradigm: Process-Level Adaptive Thinking Mode Switching (PATS), which enables LLMs to dynamically adjust their reasoning strategy based on the difficulty of each step, optimizing the balance between accuracy and computational efficiency. Our approach integrates Process Reward Models (PRMs) with Beam Search, incorporating progressive mode switching and bad-step penalty mechanisms. Experiments on diverse mathematical benchmarks demonstrate that our methodology achieves high accuracy while maintaining moderate token usage. This study emphasizes the significance of process-level, difficulty-aware reasoning strategy adaptation, offering valuable insights into efficient inference for LLMs.
DynamicMind: A Tri-Mode Thinking System for Large Language Models
Modern large language models (LLMs) often struggle to dynamically adapt their reasoning depth to varying task complexities, leading to suboptimal performance or inefficient resource utilization. To address this, we introduce DynamicMind, a novel tri-mode thinking system. DynamicMind empowers LLMs to autonomously select between Fast, Normal, and Slow thinking modes for zero-shot question answering (ZSQA) tasks through cognitive-inspired prompt engineering. Our framework's core innovations include: (1) expanding the established dual-process framework of fast and slow thinking into a tri-mode thinking system involving a normal thinking mode to preserve the intrinsic capabilities of LLM; (2) proposing the Thinking Density metric, which aligns computational resource allocation with problem complexity; and (3) developing the Thinking Mode Capacity (TMC) dataset and a lightweight Mind Router to predict the optimal thinking mode. Extensive experiments across diverse mathematical, commonsense, and scientific QA benchmarks demonstrate that DynamicMind achieves superior ZSQA capabilities while establishing an effective trade-off between performance and computational efficiency.
Thinking-Free Policy Initialization Makes Distilled Reasoning Models More Effective and Efficient Reasoners
Reinforcement Learning with Verifiable Reward (RLVR) effectively solves complex tasks but demands extremely long context lengths during training, leading to substantial computational costs. While multi-stage training can partially mitigate this, starting with overly short contexts often causes irreversible performance degradation, ultimately failing to reduce overall training compute significantly. In this paper, we introduce **T**hinking-**F**ree **P**olicy **I**nitialization (**TFPI**), a simple yet effective adaptation to RLVR that bridges long Chain-of-Thought (CoT) distillation and standard RLVR. TFPI employs a simple *ThinkFree* operation, explicitly discarding the thinking content via a direct *</think>* append, to reduce token usage during inference. Training with *ThinkFree*-adapted inputs improves performance and lowers token consumption, even in the original slow-thinking mode. Extensive experiments across various benchmarks have shown that TFPI accelerates RL convergence, achieves a higher performance ceiling, and yields more token-efficient reasoning models without specialized rewards or complex training designs. With TFPI only, we train a 4B model to reach 89.0% accuracy on AIME24 and 65.5% on LiveCodeBench using less than 4K H20 hours.
Learning to Think Fast and Slow for Visual Language Models
When confronted with complex problems, we tend to think slowly; conversely, for simple questions, we think quickly. Such a two-system thinking mechanism allows us to efficiently allocate cognitive resources, enabling quick decision-making for straightforward issues while reserving deeper analytical thinking for more intricate challenges. However, existing reasoning-oriented visual language models (VLMs), whether trained with explicit chain-of-thought annotations or rule-based RL rewards, mainly pursue lengthy, detailed reasoning chains, which often lead to excessive computational costs. In this work, we propose a simple RL approach, which enables VLMs to automatically switch between fast and slow thinking modes depending on task difficulty. The approach consists of two stages: in the first stage, we label data as either requiring fast thinking or slow thinking based on the model output length, which is inspired by the observation that pre-trained VLMs typically produce answers of varying lengths for different types of questions; in the second stage, we train the model using GRPO along with the thinking mode labels to develop dual-mode thinking. Despite its simplicity, our model, named DualMindVLM, significantly outperforms the base model and achieves performance on par with state-of-the-art visual reasoning models, while maintaining exceptionally high token efficiency.
Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems
Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.
HDFlow: Enhancing LLM Complex Problem-Solving with Hybrid Thinking and Dynamic Workflows
Despite recent advancements in large language models (LLMs), their performance on complex reasoning problems requiring multi-step thinking and combining various skills is still limited. To address this, we propose a novel framework HDFlow for complex reasoning with LLMs that combines fast and slow thinking modes in an adaptive manner. Our approach consists of two key components: 1) a new approach for slow, deliberate reasoning called Dynamic Workflow, which automatically decomposes complex problems into more manageable sub-tasks and dynamically designs a workflow to assemble specialized LLM or symbolic reasoning tools to solve sub-tasks; 2) Hybrid Thinking, a general framework that dynamically combines fast and slow thinking based on problem complexity. Finally, we propose an easy-to-scale method for automatically synthesizing a large-scale dataset of 27K challenging reasoning problems for complex reasoning and a hybrid thinking tuning method that trains smaller LLMs on this dataset to internalize the fast/slow hybrid reasoning strategies. Experiments on four reasoning benchmark datasets demonstrate that our slow thinking with dynamic workflows significantly outperforms Chain-of-Thought, and hybrid thinking achieves the highest accuracy while providing an effective balance between computational efficiency and performance. Fine-tuning using our hybrid thinking approach also significantly boosts the complex reasoning capabilities of open-source language models. The results showcase the promise of slow thinking, dynamic workflows, and hybrid thinking in expanding the frontier of complex problem-solving with LLMsCode and data will be released at \url{https://github.com/wenlinyao/HDFlow.}.
Flexible Realignment of Language Models
Realignment becomes necessary when a language model (LM) fails to meet expected performance. We propose a flexible realignment framework that supports quantitative control of alignment degree during training and inference. This framework incorporates Training-time Realignment (TrRa), which efficiently realigns the reference model by leveraging the controllable fusion of logits from both the reference and already aligned models. For example, TrRa reduces token usage by 54.63% on DeepSeek-R1-Distill-Qwen-1.5B without any performance degradation, outperforming DeepScaleR-1.5B's 33.86%. To complement TrRa during inference, we introduce a layer adapter that enables smooth Inference-time Realignment (InRa). This adapter is initialized to perform an identity transformation at the bottom layer and is inserted preceding the original layers. During inference, input embeddings are simultaneously processed by the adapter and the original layer, followed by the remaining layers, and then controllably interpolated at the logit level. We upgraded DeepSeek-R1-Distill-Qwen-7B from a slow-thinking model to one that supports both fast and slow thinking, allowing flexible alignment control even during inference. By encouraging deeper reasoning, it even surpassed its original performance.
AutoVLA: A Vision-Language-Action Model for End-to-End Autonomous Driving with Adaptive Reasoning and Reinforcement Fine-Tuning
Recent advancements in Vision-Language-Action (VLA) models have shown promise for end-to-end autonomous driving by leveraging world knowledge and reasoning capabilities. However, current VLA models often struggle with physically infeasible action outputs, complex model structures, or unnecessarily long reasoning. In this paper, we propose AutoVLA, a novel VLA model that unifies reasoning and action generation within a single autoregressive generation model for end-to-end autonomous driving. AutoVLA performs semantic reasoning and trajectory planning directly from raw visual inputs and language instructions. We tokenize continuous trajectories into discrete, feasible actions, enabling direct integration into the language model. For training, we employ supervised fine-tuning to equip the model with dual thinking modes: fast thinking (trajectory-only) and slow thinking (enhanced with chain-of-thought reasoning). To further enhance planning performance and efficiency, we introduce a reinforcement fine-tuning method based on Group Relative Policy Optimization (GRPO), reducing unnecessary reasoning in straightforward scenarios. Extensive experiments across real-world and simulated datasets and benchmarks, including nuPlan, nuScenes, Waymo, and CARLA, demonstrate the competitive performance of AutoVLA in both open-loop and closed-loop settings. Qualitative results showcase the adaptive reasoning and accurate planning capabilities of AutoVLA in diverse scenarios.
An Empirical Study on Eliciting and Improving R1-like Reasoning Models
In this report, we present the third technical report on the development of slow-thinking models as part of the STILL project. As the technical pathway becomes clearer, scaling RL training has become a central technique for implementing such reasoning models. We systematically experiment with and document the effects of various factors influencing RL training, conducting experiments on both base models and fine-tuned models. Specifically, we demonstrate that our RL training approach consistently improves the Qwen2.5-32B base models, enhancing both response length and test accuracy. Furthermore, we show that even when a model like DeepSeek-R1-Distill-Qwen-1.5B has already achieved a high performance level, it can be further refined through RL training, reaching an accuracy of 39.33% on AIME 2024. Beyond RL training, we also explore the use of tool manipulation, finding that it significantly boosts the reasoning performance of large reasoning models. This approach achieves a remarkable accuracy of 86.67% with greedy search on AIME 2024, underscoring its effectiveness in enhancing model capabilities. We release our resources at the STILL project website: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.
RedStar: Does Scaling Long-CoT Data Unlock Better Slow-Reasoning Systems?
Can scaling transform reasoning? In this work, we explore the untapped potential of scaling Long Chain-of-Thought (Long-CoT) data to 1000k samples, pioneering the development of a slow-thinking model, RedStar. Through extensive experiments with various LLMs and different sizes, we uncover the ingredients for specialization and scale for Long-CoT training. Surprisingly, even smaller models show significant performance gains with limited data, revealing the sample efficiency of Long-CoT and the critical role of sample difficulty in the learning process. Our findings demonstrate that Long-CoT reasoning can be effectively triggered with just a few thousand examples, while larger models achieve unparalleled improvements. We also introduce reinforcement learning (RL)-scale training as a promising direction for advancing slow-thinking systems. RedStar shines across domains: on the MATH-Hard benchmark, RedStar-code-math boosts performance from 66.2\% to 81.6\%, and on the USA Math Olympiad (AIME), it solves 46.7\% of problems using only 21k mixed-code-math datasets. In multimodal tasks like GeoQA and MathVista-GEO, RedStar-Geo achieves competitive results with minimal Long-CoT data, outperforming other slow-thinking systems like QvQ-Preview. Compared to QwQ, RedStar strikes the perfect balance between reasoning and generalizability. Our work highlights that, with careful tuning, scaling Long-CoT can unlock extraordinary reasoning capabilities-even with limited dataset and set a new standard for slow-thinking models across diverse challenges. Our data and models are released at https://huggingface.co/RedStar-Reasoning.
RAGCap-Bench: Benchmarking Capabilities of LLMs in Agentic Retrieval Augmented Generation Systems
Retrieval-Augmented Generation (RAG) mitigates key limitations of Large Language Models (LLMs)-such as factual errors, outdated knowledge, and hallucinations-by dynamically retrieving external information. Recent work extends this paradigm through agentic RAG systems, where LLMs act as agents to iteratively plan, retrieve, and reason over complex queries. However, these systems still struggle with challenging multi-hop questions, and their intermediate reasoning capabilities remain underexplored. To address this, we propose RAGCap-Bench, a capability-oriented benchmark for fine-grained evaluation of intermediate tasks in agentic RAG workflows. We analyze outputs from state-of-the-art systems to identify common tasks and the core capabilities required for their execution, then construct a taxonomy of typical LLM errors to design targeted evaluation questions. Experiments show that "slow-thinking" models with stronger RAGCap performance achieve better end-to-end results, underscoring the benchmark's validity and the importance of enhancing these intermediate capabilities.
KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality
Large Language Models (LLMs), particularly slow-thinking models, often exhibit severe hallucination, outputting incorrect content due to an inability to accurately recognize knowledge boundaries during reasoning. While Reinforcement Learning (RL) can enhance complex reasoning abilities, its outcome-oriented reward mechanism often lacks factual supervision over the thinking process, further exacerbating the hallucination problem. To address the high hallucination in slow-thinking models, we propose Knowledge-enhanced RL, KnowRL. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. This targeted factual input during RL training enables the model to learn and internalize fact-based reasoning strategies. By directly rewarding adherence to facts within the reasoning steps, KnowRL fosters a more reliable thinking process. Experimental results on three hallucination evaluation datasets and two reasoning evaluation datasets demonstrate that KnowRL effectively mitigates hallucinations in slow-thinking models while maintaining their original strong reasoning capabilities. Our code is available at https://github.com/zjunlp/KnowRL.
Hunyuan-MT Technical Report
In this report, we introduce Hunyuan-MT-7B, our first open-source multilingual translation model, which supports bidirectional translation across 33 major languages and places a special emphasis on translation between Mandarin and several ethnic minority languages as well as dialects. Furthermore, to serve and address diverse translation scenarios and enhance model performance at test time, we introduce Hunyuan-MT-Chimera-7B, a translation model inspired by the slow thinking mode. This model integrates multiple outputs generated by the Hunyuan-MT-7B model under varying parameter settings, thereby achieving performance superior to that of conventional slow-thinking models based on Chain-of-Thought (CoT). The development of our models follows a holistic training process specifically engineered for multilingual translation, which begins with general and MT-oriented pre-training to build foundational capabilities, proceeds to Supervised Fine-Tuning (SFT) for task-specific adaptation, and culminates in advanced alignment through Reinforcement Learning (RL) and weak-to-strong RL. Through comprehensive experimentation, we demonstrate that both Hunyuan-MT-7B and Hunyuan-MT-Chimera-7B significantly outperform all translation-specific models of comparable parameter size and most of the SOTA large models, particularly on the task of translation between Mandarin and minority languages as well as dialects. In the WMT2025 shared task (General Machine Translation), our models demonstrate state-of-the-art performance, ranking first in 30 out of 31 language pairs. This result highlights the robustness of our models across a diverse linguistic spectrum, encompassing high-resource languages such as Chinese, English, and Japanese, as well as low-resource languages including Czech, Marathi, Estonian, and Icelandic.
Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-Optimized Captioning
Recent advances in slow-thinking language models (e.g., OpenAI-o1 and DeepSeek-R1) have demonstrated remarkable abilities in complex reasoning tasks by emulating human-like reflective cognition. However, extending such capabilities to multi-modal large language models (MLLMs) remains challenging due to the high cost of retraining vision-language alignments when upgrading the underlying reasoner LLMs. A straightforward solution is to decouple perception from reasoning, i.e., converting visual inputs into language representations (e.g., captions) that are then passed to a powerful text-only reasoner. However, this decoupling introduces a critical challenge: the visual extractor must generate descriptions that are both faithful to the image and informative enough to support accurate downstream reasoning. To address this, we propose Reasoning-Aligned Perceptual Decoupling via Caption Reward Optimization (RACRO) - a reasoning-guided reinforcement learning strategy that aligns the extractor's captioning behavior with the reasoning objective. By closing the perception-reasoning loop via reward-based optimization, RACRO significantly enhances visual grounding and extracts reasoning-optimized representations. Experiments on multi-modal math and science benchmarks show that the proposed RACRO method achieves state-of-the-art average performance while enabling superior scalability and plug-and-play adaptation to more advanced reasoning LLMs without the necessity for costly multi-modal re-alignment.
DocPuzzle: A Process-Aware Benchmark for Evaluating Realistic Long-Context Reasoning Capabilities
We present DocPuzzle, a rigorously constructed benchmark for evaluating long-context reasoning capabilities in large language models (LLMs). This benchmark comprises 100 expert-level QA problems requiring multi-step reasoning over long real-world documents. To ensure the task quality and complexity, we implement a human-AI collaborative annotation-validation pipeline. DocPuzzle introduces an innovative evaluation framework that mitigates guessing bias through checklist-guided process analysis, establishing new standards for assessing reasoning capacities in LLMs. Our evaluation results show that: 1)Advanced slow-thinking reasoning models like o1-preview(69.7%) and DeepSeek-R1(66.3%) significantly outperform best general instruct models like Claude 3.5 Sonnet(57.7%); 2)Distilled reasoning models like DeepSeek-R1-Distill-Qwen-32B(41.3%) falls far behind the teacher model, suggesting challenges to maintain the generalization of reasoning capabilities relying solely on distillation.
AlphaOne: Reasoning Models Thinking Slow and Fast at Test Time
This paper presents AlphaOne (alpha1), a universal framework for modulating reasoning progress in large reasoning models (LRMs) at test time. alpha1 first introduces alpha moment, which represents the scaled thinking phase with a universal parameter alpha. Within this scaled pre-alpha moment phase, it dynamically schedules slow thinking transitions by modeling the insertion of reasoning transition tokens as a Bernoulli stochastic process. After the alpha moment, alpha1 deterministically terminates slow thinking with the end-of-thinking token, thereby fostering fast reasoning and efficient answer generation. This approach unifies and generalizes existing monotonic scaling methods by enabling flexible and dense slow-to-fast reasoning modulation. Extensive empirical studies on various challenging benchmarks across mathematical, coding, and scientific domains demonstrate alpha1's superior reasoning capability and efficiency. Project page: https://alphaone-project.github.io/
STaR: Towards Cognitive Table Reasoning via Slow-Thinking Large Language Models
Table reasoning with the large language models (LLMs) is a fundamental path toward building intelligent systems that can understand and analyze over structured data. While recent progress has shown promising results, they still suffer from two key limitations: (i) the reasoning processes lack the depth and iterative refinement characteristic of human cognition; and (ii) the reasoning processes exhibit instability, which compromises their reliability in downstream applications. In this work, we present STaR (slow-thinking for table reasoning), a new framework achieving cognitive table reasoning, in which LLMs are equipped with slow-thinking capabilities by explicitly modeling step-by-step thinking and uncertainty-aware inference. During training, STaR employs two-stage difficulty-aware reinforcement learning (DRL), progressively learning from simple to complex queries under a composite reward. During inference, STaR performs trajectory-level uncertainty quantification by integrating token-level confidence and answer consistency, enabling selection of more credible reasoning paths. Extensive experiments on benchmarks demonstrate that STaR achieves superior performance and enhanced reasoning stability. Moreover, strong generalization over out-of-domain datasets further demonstrates STaR's potential as a reliable and cognitively inspired solution for table reasoning with LLMs.
Double-Checker: Enhancing Reasoning of Slow-Thinking LLMs via Self-Critical Fine-Tuning
While slow-thinking large language models (LLMs) exhibit reflection-like reasoning, commonly referred to as the "aha moment:, their ability to generate informative critiques and refine prior solutions remains limited. In this paper, we introduce Double-Checker, a principled framework designed to enhance the reasoning capabilities of slow-thinking LLMs by fostering explicit self-critique and iterative refinement of their previous solutions. By fine-tuning on our curated 1,730 self-critical instances, Double-Checker empowers long-CoT LLMs to iteratively critique and refine their outputs during inference until they evaluate their solutions as correct under self-generated critiques. We validate the efficacy of Double-Checker across a comprehensive suite of reasoning benchmarks, demonstrating that iterative self-critique significantly enhances the reasoning capabilities of long-CoT LLMs. Notably, our Double-Checker increases the pass@1 performance on challenging AIME benchmarks from 4.4% to 18.2% compared to the original long-CoT LLMs. These results highlight a promising direction for developing more trustworthy and effective LLMs capable of structured self-critique. Our codes and data are available at https://github.com/XinXU-USTC/DoubleChecker
Fast-Slow Thinking for Large Vision-Language Model Reasoning
Recent advances in large vision-language models (LVLMs) have revealed an overthinking phenomenon, where models generate verbose reasoning across all tasks regardless of questions. To address this issue, we present FAST, a novel Fast-Slow Thinking framework that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. We develop FAST-GRPO with three components: model-based metrics for question characterization, an adaptive thinking reward mechanism, and difficulty-aware KL regularization. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
MedS$^3$: Towards Medical Small Language Models with Self-Evolved Slow Thinking
Medical language models (MLMs) have become pivotal in advancing medical natural language processing. However, prior models that rely on pre-training or supervised fine-tuning often exhibit low data efficiency and limited practicality in real-world clinical applications. While OpenAIs O1 highlights test-time scaling in mathematics, attempts to replicate this approach in medicine typically distill responses from GPT-series models to open-source models, focusing primarily on multiple-choice tasks. This strategy, though straightforward, neglects critical concerns like data privacy and realistic deployment in clinical settings. In this work, we present a deployable, small-scale medical language model, \mone, designed for long-chain reasoning in clinical tasks using a self-evolution paradigm. Starting with a seed dataset of around 8,000 instances spanning five domains and 16 datasets, we prompt a base policy model to perform Monte Carlo Tree Search (MCTS) to construct verifiable reasoning chains. Each reasoning step is assigned an evolution rollout value, allowing verified trajectories to train the policy model and the reward model. During inference, the policy model generates multiple responses, and the reward model selects the one with the highest reward score. Experiments on eleven evaluation datasets demonstrate that \mone outperforms prior open-source models by 2 points, with the addition of the reward model further boosting performance (sim13 points), surpassing GPT-4o-mini. Code and data are available at https://github.com/pixas/MedSSS.
ThinkGuard: Deliberative Slow Thinking Leads to Cautious Guardrails
Ensuring the safety of large language models (LLMs) is critical as they are deployed in real-world applications. Existing guardrails rely on rule-based filtering or single-pass classification, limiting their ability to handle nuanced safety violations. To address this, we propose ThinkGuard, a critique-augmented guardrail model that distills knowledge from high-capacity LLMs by generating structured critiques alongside safety labels. Fine-tuned on critique-augmented data, the captured deliberative thinking ability drastically enhances the guardrail's cautiousness and interpretability. Evaluated on multiple safety benchmarks, ThinkGuard achieves the highest average F1 and AUPRC, outperforming all baselines. Compared to LLaMA Guard 3, ThinkGuard improves accuracy by 16.1% and macro F1 by 27.0%. Moreover, it surpasses label-only fine-tuned models, confirming that structured critiques enhance both classification precision and nuanced safety reasoning while maintaining computational efficiency.
Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces
In human cognition theory, human thinking is governed by two systems: the fast and intuitive System 1 and the slower but more deliberative System 2. Recent studies have shown that incorporating System 2 process into Transformers including large language models (LLMs), significantly enhances their reasoning capabilities. Nevertheless, models that purely resemble System 2 thinking require substantially higher computational costs and are much slower to respond. To address this challenge, we present Dualformer, a single Transformer model that seamlessly integrates both the fast and slow reasoning modes. Dualformer is obtained by training on data with randomized reasoning traces, where different parts of the traces are dropped during training. The dropping strategies are specifically tailored according to the trace structure, analogous to analyzing our thinking process and creating shortcuts with patterns. At inference time, our model can be configured to output only the solutions (fast mode) or both the reasoning chain and the final solution (slow mode), or automatically decide which mode to engage (auto mode). In all cases, Dualformer outperforms the corresponding baseline models in both performance and computational efficiency: (1) in slow mode, Dualformer optimally solves unseen 30 x 30 maze navigation tasks 97.6% of the time, surpassing the Searchformer (trained on data with complete reasoning traces) baseline performance of 93.3%, while only using 45.5% fewer reasoning steps; (2) in fast mode, Dualformer completes those tasks with an 80% optimal rate, significantly outperforming the Solution-Only model (trained on solution-only data), which has an optimal rate of only 30%. For math problems, our techniques have also achieved improved performance with LLM fine-tuning, showing its generalization beyond task-specific models.
Hume: Introducing System-2 Thinking in Visual-Language-Action Model
Humans practice slow thinking before performing actual actions when handling complex tasks in the physical world. This thinking paradigm, recently, has achieved remarkable advancement in boosting Large Language Models (LLMs) to solve complex tasks in digital domains. However, the potential of slow thinking remains largely unexplored for robotic foundation models interacting with the physical world. In this work, we propose Hume: a dual-system Vision-Language-Action (VLA) model with value-guided System-2 thinking and cascaded action denoising, exploring human-like thinking capabilities of Vision-Language-Action models for dexterous robot control. System 2 of Hume implements value-Guided thinking by extending a Vision-Language-Action Model backbone with a novel value-query head to estimate the state-action value of predicted actions. The value-guided thinking is conducted by repeat sampling multiple action candidates and selecting one according to state-action value. System 1 of Hume is a lightweight reactive visuomotor policy that takes System 2 selected action and performs cascaded action denoising for dexterous robot control. At deployment time, System 2 performs value-guided thinking at a low frequency while System 1 asynchronously receives the System 2 selected action candidate and predicts fluid actions in real time. We show that Hume outperforms the existing state-of-the-art Vision-Language-Action models across multiple simulation benchmark and real-robot deployments.
Dyve: Thinking Fast and Slow for Dynamic Process Verification
We present Dyve, a dynamic process verifier that enhances reasoning error detection in large language models by integrating fast and slow thinking, inspired by Kahneman's Systems Theory. Dyve adaptively applies immediate token-level confirmation System 1 for straightforward steps and comprehensive analysis System 2 for complex ones. Leveraging a novel step-wise consensus-filtered process supervision technique, combining Monte Carlo estimation with LLM based evaluation, Dyve curates high-quality supervision signals from noisy data. Experimental results on ProcessBench and the MATH dataset confirm that Dyve significantly outperforms existing process-based verifiers and boosts performance in Best-of-N settings.
Towards Concise and Adaptive Thinking in Large Reasoning Models: A Survey
Large reasoning models (LRMs) like OpenAI o1 and DeepSeek R1 have demonstrated impressive performance on complex reasoning tasks like mathematics and programming with long Chain-of-Thought (CoT) reasoning sequences (slow-thinking), compared with traditional large language models (fast-thinking). However, these reasoning models also face a huge challenge that generating unnecessarily lengthy and redundant reasoning chains even for trivial questions. This phenomenon leads to a significant waste of inference resources, increases the response time for simple queries, and hinders the practical application of LRMs in real-world products. To this end, it is crucial to shorten lengthy reasoning chains and learn adaptive reasoning between fast and slow thinking based on input difficulty. In this survey, we provide a comprehensive overview of recent progress in concise and adaptive thinking for efficient reasoning of LRMs, including methodologies, benchmarks, and challenges for future exploration. We hope this survey can help researchers quickly understand the landscape of this field and inspire novel adaptive thinking ideas to facilitate better usage of LRMs.
Semi-off-Policy Reinforcement Learning for Vision-Language Slow-thinking Reasoning
Enhancing large vision-language models (LVLMs) with visual slow-thinking reasoning is crucial for solving complex multimodal tasks. However, since LVLMs are mainly trained with vision-language alignment, it is difficult to adopt on-policy reinforcement learning (RL) to develop the slow thinking ability because the rollout space is restricted by its initial abilities. Off-policy RL offers a way to go beyond the current policy, but directly distilling trajectories from external models may cause visual hallucinations due to mismatched visual perception abilities across models. To address these issues, this paper proposes SOPHIA, a simple and scalable Semi-Off-Policy RL for vision-language slow-tHInking reAsoning. SOPHIA builds a semi-off-policy behavior model by combining on-policy visual understanding from a trainable LVLM with off-policy slow-thinking reasoning from a language model, assigns outcome-based rewards to reasoning, and propagates visual rewards backward. Then LVLM learns slow-thinking reasoning ability from the obtained reasoning trajectories using propagated rewards via off-policy RL algorithms. Extensive experiments with InternVL2.5 and InternVL3.0 with 8B and 38B sizes show the effectiveness of SOPHIA. Notably, SOPHIA improves InternVL3.0-38B by 8.50% in average, reaching state-of-the-art performance among open-source LVLMs on multiple multimodal reasoning benchmarks, and even outperforms some closed-source models (e.g., GPT-4.1) on the challenging MathVision and OlympiadBench, achieving 49.08% and 49.95% pass@1 accuracy, respectively. Analysis shows SOPHIA outperforms supervised fine-tuning and direct on-policy RL methods, offering a better policy initialization for further on-policy training.
TeleAntiFraud-28k: A Audio-Text Slow-Thinking Dataset for Telecom Fraud Detection
The detection of telecom fraud faces significant challenges due to the lack of high-quality multimodal training data that integrates audio signals with reasoning-oriented textual analysis. To address this gap, we present TeleAntiFraud-28k, the first open-source audio-text slow-thinking dataset specifically designed for automated telecom fraud analysis. Our dataset is constructed through three strategies: (1) Privacy-preserved text-truth sample generation using automatically speech recognition (ASR)-transcribed call recordings (with anonymized original audio), ensuring real-world consistency through text-to-speech (TTS) model regeneration; (2) Semantic enhancement via large language model (LLM)-based self-instruction sampling on authentic ASR outputs to expand scenario coverage; (3) Multi-agent adversarial synthesis that simulates emerging fraud tactics through predefined communication scenarios and fraud typologies. The generated dataset contains 28,511 rigorously processed speech-text pairs, complete with detailed annotations for fraud reasoning. The dataset is divided into three tasks: scenario classification, fraud detection, fraud type classification. Furthermore, we construct TeleAntiFraud-Bench, a standardized evaluation benchmark comprising proportionally sampled instances from the dataset, to facilitate systematic testing of model performance on telecom fraud detection tasks. We also contribute a production-optimized supervised fine-tuning (SFT) model trained on hybrid real/synthetic data, while open-sourcing the data processing framework to enable community-driven dataset expansion. This work establishes a foundational framework for multimodal anti-fraud research while addressing critical challenges in data privacy and scenario diversity. The project will be released at https://github.com/JimmyMa99/TeleAntiFraud.
SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks
We introduce SwiftSage, a novel agent framework inspired by the dual-process theory of human cognition, designed to excel in action planning for complex interactive reasoning tasks. SwiftSage integrates the strengths of behavior cloning and prompting large language models (LLMs) to enhance task completion performance. The framework comprises two primary modules: the Swift module, representing fast and intuitive thinking, and the Sage module, emulating deliberate thought processes. The Swift module is a small encoder-decoder LM fine-tuned on the oracle agent's action trajectories, while the Sage module employs LLMs such as GPT-4 for subgoal planning and grounding. We develop a heuristic method to harmoniously integrate the two modules, resulting in a more efficient and robust problem-solving process. In 30 tasks from the ScienceWorld benchmark, SwiftSage significantly outperforms other methods such as SayCan, ReAct, and Reflexion, demonstrating its effectiveness in solving complex real-world tasks.
CoT-Space: A Theoretical Framework for Internal Slow-Thinking via Reinforcement Learning
Reinforcement Learning (RL) has become a pivotal approach for enhancing the reasoning capabilities of Large Language Models (LLMs). However, a significant theoretical gap persists, as traditional token-level RL frameworks fail to align with the reasoning-level nature of complex, multi-step thought processes like Chain-of-Thought (CoT). To address this challenge, we introduce CoT-Space, a novel theoretical framework that recasts LLM reasoning from a discrete token-prediction task to an optimization process within a continuous, reasoning-level semantic space. By analyzing this process from both a noise perspective and a risk perspective, we demonstrate that the convergence to an optimal CoT length is a natural consequence of the fundamental trade-off between underfitting and overfitting. Furthermore, extensive experiments provide strong empirical validation for our theoretical findings. Our framework not only provides a coherent explanation for empirical phenomena such as overthinking but also offers a solid theoretical foundation to guide the future development of more effective and generalizable reasoning agents.
Language-Conditioned Robotic Manipulation with Fast and Slow Thinking
The language-conditioned robotic manipulation aims to transfer natural language instructions into executable actions, from simple pick-and-place to tasks requiring intent recognition and visual reasoning. Inspired by the dual process theory in cognitive science, which suggests two parallel systems of fast and slow thinking in human decision-making, we introduce Robotics with Fast and Slow Thinking (RFST), a framework that mimics human cognitive architecture to classify tasks and makes decisions on two systems based on instruction types. Our RFST consists of two key components: 1) an instruction discriminator to determine which system should be activated based on the current user instruction, and 2) a slow-thinking system that is comprised of a fine-tuned vision language model aligned with the policy networks, which allows the robot to recognize user intention or perform reasoning tasks. To assess our methodology, we built a dataset featuring real-world trajectories, capturing actions ranging from spontaneous impulses to tasks requiring deliberate contemplation. Our results, both in simulation and real-world scenarios, confirm that our approach adeptly manages intricate tasks that demand intent recognition and reasoning. The project is available at https://jlm-z.github.io/RSFT/
What Happened in LLMs Layers when Trained for Fast vs. Slow Thinking: A Gradient Perspective
What makes a difference in the post-training of LLMs? We investigate the training patterns of different layers in large language models (LLMs), through the lens of gradient, when training with different responses and initial models. We are specifically interested in how fast vs. slow thinking affects the layer-wise gradients, given the recent popularity of training LLMs on reasoning paths such as chain-of-thoughts (CoT) and process rewards. In our study, fast thinking without CoT leads to larger gradients and larger differences of gradients across layers than slow thinking (Detailed CoT), indicating the learning stability brought by the latter. Moreover, pre-trained LLMs are less affected by the instability of fast thinking than instruction-tuned LLMs. Additionally, we study whether the gradient patterns can reflect the correctness of responses when training different LLMs using slow vs. fast thinking paths. The results show that the gradients of slow thinking can distinguish correct and irrelevant reasoning paths. As a comparison, we conduct similar gradient analyses on non-reasoning knowledge learning tasks, on which, however, trivially increasing the response length does not lead to similar behaviors of slow thinking. Our study strengthens fundamental understandings of LLM training and sheds novel insights on its efficiency and stability, which pave the way towards building a generalizable System-2 agent. Our code, data, and gradient statistics can be found in: https://github.com/MingLiiii/Layer_Gradient.
VL-Rethinker: Incentivizing Self-Reflection of Vision-Language Models with Reinforcement Learning
Recently, slow-thinking systems like GPT-o1 and DeepSeek-R1 have demonstrated great potential in solving challenging problems through explicit reflection. They significantly outperform the best fast-thinking models, such as GPT-4o, on various math and science benchmarks. However, their multimodal reasoning capabilities remain on par with fast-thinking models. For instance, GPT-o1's performance on benchmarks like MathVista, MathVerse, and MathVision is similar to fast-thinking models. In this paper, we aim to enhance the slow-thinking capabilities of vision-language models using reinforcement learning (without relying on distillation) to advance the state of the art. First, we adapt the GRPO algorithm with a novel technique called Selective Sample Replay (SSR) to address the vanishing advantages problem. While this approach yields strong performance, the resulting RL-trained models exhibit limited self-reflection or self-verification. To further encourage slow-thinking, we introduce Forced Rethinking, which appends a textual rethinking trigger to the end of initial rollouts in RL training, explicitly enforcing a self-reflection reasoning step. By combining these two techniques, our model, VL-Rethinker, advances state-of-the-art scores on MathVista, MathVerse, and MathVision to achieve 80.3%, 61.8%, and 43.9% respectively. VL-Rethinker also achieves open-source SoTA on multi-disciplinary benchmarks such as MMMU-Pro, EMMA, and MEGA-Bench, narrowing the gap with GPT-o1.
Step Back to Leap Forward: Self-Backtracking for Boosting Reasoning of Language Models
The integration of slow-thinking mechanisms into large language models (LLMs) offers a promising way toward achieving Level 2 AGI Reasoners, as exemplified by systems like OpenAI's o1. However, several significant challenges remain, including inefficient overthinking and an overreliance on auxiliary reward models. We point out that these limitations stem from LLMs' inability to internalize the search process, a key component of effective reasoning. A critical step toward addressing this issue is enabling LLMs to autonomously determine when and where to backtrack, a fundamental operation in traditional search algorithms. To this end, we propose a self-backtracking mechanism that equips LLMs with the ability to backtrack during both training and inference. This mechanism not only enhances reasoning ability but also efficiency by transforming slow-thinking processes into fast-thinking through self-improvement. Empirical evaluations demonstrate that our proposal significantly enhances the reasoning capabilities of LLMs, achieving a performance gain of over 40 percent compared to the optimal-path supervised fine-tuning method. We believe this study introduces a novel and promising pathway for developing more advanced and robust Reasoners.
Reasoning Models Better Express Their Confidence
Despite their strengths, large language models (LLMs) often fail to communicate their confidence accurately, making it difficult to assess when they might be wrong and limiting their reliability. In this work, we demonstrate that reasoning models-LLMs that engage in extended chain-of-thought (CoT) reasoning-exhibit superior performance not only in problem-solving but also in accurately expressing their confidence. Specifically, we benchmark six reasoning models across six datasets and find that they achieve strictly better confidence calibration than their non-reasoning counterparts in 33 out of the 36 settings. Our detailed analysis reveals that these gains in calibration stem from the slow thinking behaviors of reasoning models-such as exploring alternative approaches and backtracking-which enable them to adjust their confidence dynamically throughout their CoT, making it progressively more accurate. In particular, we find that reasoning models become increasingly better calibrated as their CoT unfolds, a trend not observed in non-reasoning models. Moreover, removing slow thinking behaviors from the CoT leads to a significant drop in calibration. Lastly, we show that these gains are not exclusive to reasoning models-non-reasoning models also benefit when guided to perform slow thinking via in-context learning.
Efficient Reasoning Models: A Survey
Reasoning models have demonstrated remarkable progress in solving complex and logic-intensive tasks by generating extended Chain-of-Thoughts (CoTs) prior to arriving at a final answer. Yet, the emergence of this "slow-thinking" paradigm, with numerous tokens generated in sequence, inevitably introduces substantial computational overhead. To this end, it highlights an urgent need for effective acceleration. This survey aims to provide a comprehensive overview of recent advances in efficient reasoning. It categorizes existing works into three key directions: (1) shorter - compressing lengthy CoTs into concise yet effective reasoning chains; (2) smaller - developing compact language models with strong reasoning capabilities through techniques such as knowledge distillation, other model compression techniques, and reinforcement learning; and (3) faster - designing efficient decoding strategies to accelerate inference. A curated collection of papers discussed in this survey is available in our GitHub repository.
AttackSeqBench: Benchmarking Large Language Models' Understanding of Sequential Patterns in Cyber Attacks
The observations documented in Cyber Threat Intelligence (CTI) reports play a critical role in describing adversarial behaviors, providing valuable insights for security practitioners to respond to evolving threats. Recent advancements of Large Language Models (LLMs) have demonstrated significant potential in various cybersecurity applications, including CTI report understanding and attack knowledge graph construction. While previous works have proposed benchmarks that focus on the CTI extraction ability of LLMs, the sequential characteristic of adversarial behaviors within CTI reports remains largely unexplored, which holds considerable significance in developing a comprehensive understanding of how adversaries operate. To address this gap, we introduce AttackSeqBench, a benchmark tailored to systematically evaluate LLMs' capability to understand and reason attack sequences in CTI reports. Our benchmark encompasses three distinct Question Answering (QA) tasks, each task focuses on the varying granularity in adversarial behavior. To alleviate the laborious effort of QA construction, we carefully design an automated dataset construction pipeline to create scalable and well-formulated QA datasets based on real-world CTI reports. To ensure the quality of our dataset, we adopt a hybrid approach of combining human evaluation and systematic evaluation metrics. We conduct extensive experiments and analysis with both fast-thinking and slow-thinking LLMs, while highlighting their strengths and limitations in analyzing the sequential patterns in cyber attacks. The overarching goal of this work is to provide a benchmark that advances LLM-driven CTI report understanding and fosters its application in real-world cybersecurity operations. Our dataset and code are available at https://github.com/Javiery3889/AttackSeqBench .
CodeJudge: Evaluating Code Generation with Large Language Models
Large Language Models (LLMs) have shown promising performance in code generation. However, how to reliably evaluate code generated by LLMs remains an unresolved problem. This paper presents CodeJudge, a code evaluation framework that leverages LLMs to evaluate the semantic correctness of generated code without the need for test cases. We investigate different ways to guide the LLM in performing "slow thinking" to arrive at an in-depth and reliable evaluation. We experimented with four LLMs as evaluators on four code generation datasets and five programming languages. The results show that CodeJudge significantly outperformed existing methods in most settings. Furthermore, compared with a SOTA GPT-3.5-based code evaluation method, CodeJudge achieved better results even when using a much smaller model, Llama-3-8B-Instruct. Our code and datasets are available on GitHub https://github.com/VichyTong/CodeJudge.
Look Again, Think Slowly: Enhancing Visual Reflection in Vision-Language Models
Recent advances in text-only "slow-thinking" reasoning have prompted efforts to transfer this capability to vision-language models (VLMs), for training visual reasoning models (VRMs). owever, such transfer faces critical challenges: Effective "slow thinking" in VRMs requires visual reflection, the ability to check the reasoning process based on visual information. Through quantitative analysis, we observe that current VRMs exhibit limited visual reflection, as their attention to visual information diminishes rapidly with longer generated responses. To address this challenge, we propose a new VRM Reflection-V, which enhances visual reflection based on reasoning data construction for cold-start and reward design for reinforcement learning (RL). Firstly, we construct vision-centered reasoning data by leveraging an agent that interacts between VLMs and reasoning LLMs, enabling cold-start learning of visual reflection patterns. Secondly, a visual attention based reward model is employed during RL to encourage reasoning based on visual information. Therefore, Reflection-V demonstrates significant improvements across multiple visual reasoning benchmarks. Furthermore, Reflection-V maintains a stronger and more consistent reliance on visual information during visual reasoning, indicating effective enhancement in visual reflection capabilities.
xVerify: Efficient Answer Verifier for Reasoning Model Evaluations
With the release of the o1 model by OpenAI, reasoning models adopting slow thinking strategies have gradually emerged. As the responses generated by such models often include complex reasoning, intermediate steps, and self-reflection, existing evaluation methods are often inadequate. They struggle to determine whether the LLM output is truly equivalent to the reference answer, and also have difficulty identifying and extracting the final answer from long, complex responses. To address this issue, we propose xVerify, an efficient answer verifier for reasoning model evaluations. xVerify demonstrates strong capability in equivalence judgment, enabling it to effectively determine whether the answers produced by reasoning models are equivalent to reference answers across various types of objective questions. To train and evaluate xVerify, we construct the VAR dataset by collecting question-answer pairs generated by multiple LLMs across various datasets, leveraging multiple reasoning models and challenging evaluation sets designed specifically for reasoning model assessment. A multi-round annotation process is employed to ensure label accuracy. Based on the VAR dataset, we train multiple xVerify models of different scales. In evaluation experiments conducted on both the test set and generalization set, all xVerify models achieve overall F1 scores and accuracy exceeding 95\%. Notably, the smallest variant, xVerify-0.5B-I, outperforms all evaluation methods except GPT-4o, while xVerify-3B-Ib surpasses GPT-4o in overall performance. These results validate the effectiveness and generalizability of xVerify.
Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models
In recent years, the rapid development of large reasoning models has resulted in the saturation of existing benchmarks for evaluating mathematical reasoning, highlighting the urgent need for more challenging and rigorous evaluation frameworks. To address this gap, we introduce OlymMATH, a novel Olympiad-level mathematical benchmark, designed to rigorously test the complex reasoning capabilities of LLMs. OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions. The problems are systematically organized into two distinct difficulty tiers: (1) AIME-level problems (easy) that establish a baseline for mathematical reasoning assessment, and (2) significantly more challenging problems (hard) designed to push the boundaries of current state-of-the-art models. In our benchmark, these problems span four core mathematical fields, each including a verifiable numerical solution to enable objective, rule-based evaluation. Empirical results underscore the significant challenge presented by OlymMATH, with state-of-the-art models including DeepSeek-R1 and OpenAI's o3-mini demonstrating notably limited accuracy on the hard subset. Furthermore, the benchmark facilitates comprehensive bilingual assessment of mathematical reasoning abilities-a critical dimension that remains largely unaddressed in mainstream mathematical reasoning benchmarks. We release the OlymMATH benchmark at the STILL project: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.
Thinker: Learning to Think Fast and Slow
Recent studies show that the reasoning capabilities of Large Language Models (LLMs) can be improved by applying Reinforcement Learning (RL) to question-answering (QA) tasks in areas such as math and coding. With a long context length, LLMs may learn to perform search, as indicated by the self-correction behavior observed in DeepSeek R1. However, this search behavior is often imprecise and lacks confidence, resulting in long, redundant responses and highlighting deficiencies in intuition and verification. Inspired by the Dual Process Theory in psychology, we introduce a simple modification to the QA task that includes four stages: Fast Thinking, where the LLM must answer within a strict token budget; Verification, where the model evaluates its initial response; Slow Thinking, where it refines the initial response with more deliberation; and Summarization, where it distills the refinement from the previous stage into precise steps. Our proposed task improves average accuracy from 24.9% to 27.9% for Qwen2.5-1.5B, and from 45.9% to 49.8% for DeepSeek-R1-Qwen-1.5B. Notably, for Qwen2.5-1.5B, the Fast Thinking mode alone achieves 26.8% accuracy using fewer than 1000 tokens, demonstrating substantial inference efficiency gains. These findings suggest that intuition and deliberative reasoning are distinct, complementary systems benefiting from targeted training.
What makes Reasoning Models Different? Follow the Reasoning Leader for Efficient Decoding
Large reasoning models (LRMs) achieve strong reasoning performance by emitting long chains of thought. Yet, these verbose traces slow down inference and often drift into unnecessary detail, known as the overthinking phenomenon. To better understand LRMs' behavior, we systematically analyze the token-level misalignment between reasoning and non-reasoning models. While it is expected that their primary difference lies in the stylistic "thinking cues", LRMs uniquely exhibit two pivotal, previously under-explored phenomena: a Global Misalignment Rebound, where their divergence from non-reasoning models persists or even grows as response length increases, and more critically, a Local Misalignment Diminish, where the misalignment concentrates at the "thinking cues" each sentence starts with but rapidly declines in the remaining of the sentence. Motivated by the Local Misalignment Diminish, we propose FoReaL-Decoding, a collaborative fast-slow thinking decoding method for cost-quality trade-off. In FoReaL-Decoding, a Leading model leads the first few tokens for each sentence, and then a weaker draft model completes the following tokens to the end of each sentence. FoReaL-Decoding adopts a stochastic gate to smoothly interpolate between the small and the large model. On four popular math-reasoning benchmarks (AIME24, GPQA-Diamond, MATH500, AMC23), FoReaL-Decoding reduces theoretical FLOPs by 30 to 50% and trims CoT length by up to 40%, while preserving 86 to 100% of model performance. These results establish FoReaL-Decoding as a simple, plug-and-play route to controllable cost-quality trade-offs in reasoning-centric tasks.
Exploring the Compositional Deficiency of Large Language Models in Mathematical Reasoning
Human cognition exhibits systematic compositionality, the algebraic ability to generate infinite novel combinations from finite learned components, which is the key to understanding and reasoning about complex logic. In this work, we investigate the compositionality of large language models (LLMs) in mathematical reasoning. Specifically, we construct a new dataset MathTrap by introducing carefully designed logical traps into the problem descriptions of MATH and GSM8K. Since problems with logical flaws are quite rare in the real world, these represent "unseen" cases to LLMs. Solving these requires the models to systematically compose (1) the mathematical knowledge involved in the original problems with (2) knowledge related to the introduced traps. Our experiments show that while LLMs possess both components of requisite knowledge, they do not spontaneously combine them to handle these novel cases. We explore several methods to mitigate this deficiency, such as natural language prompts, few-shot demonstrations, and fine-tuning. Additionally, we test the recently released OpenAI o1 model and find that human-like `slow thinking' helps improve the compositionality of LLMs. Overall, systematic compositionality remains an open challenge for large language models.
CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning
Research on LLM technologies is rapidly emerging, with most of them employing a 'fast thinking' approach to inference. Most LLMs generate the final result based solely on a single query and LLM's reasoning capabilities. However, with the advent of OpenAI-o1, 'slow thinking' techniques have garnered increasing attention because its process is closer to the human thought process. Inspired by the human ability to constantly associate and replenish knowledge during thinking, we developed the novel Chain-of-Associated-Thoughts (CoAT) framework, which introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'. By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time. This allows the framework to not only revisit and refine earlier inferences but also adaptively incorporate evolving information, ensuring that the final output is both accurate and comprehensive. To validate the effectiveness of our framework, we conducted extensive experiments across a range of generative and reasoning tasks. These experiments demonstrated that our framework outperforms conventional inference processes on accuracy, coherence, and diversity. The framework's ability to iteratively expand its search space while retaining contextually relevant information results.
Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to perform complex reasoning tasks, transitioning from fast and intuitive thinking (System 1) to slow and deep reasoning (System 2). While System 2 reasoning improves task accuracy, it often incurs substantial computational costs due to its slow thinking nature and inefficient or unnecessary reasoning behaviors. In contrast, System 1 reasoning is computationally efficient but leads to suboptimal performance. Consequently, it is critical to balance the trade-off between performance (benefits) and computational costs (budgets), giving rise to the concept of reasoning economy. In this survey, we provide a comprehensive analysis of reasoning economy in both the post-training and test-time inference stages of LLMs, encompassing i) the cause of reasoning inefficiency, ii) behavior analysis of different reasoning patterns, and iii) potential solutions to achieve reasoning economy. By offering actionable insights and highlighting open challenges, we aim to shed light on strategies for improving the reasoning economy of LLMs, thereby serving as a valuable resource for advancing research in this evolving area. We also provide a public repository to continually track developments in this fast-evolving field.
Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning
Humans can perceive and reason about spatial relationships from sequential visual observations, such as egocentric video streams. However, how pretrained models acquire such abilities, especially high-level reasoning, remains unclear. This paper introduces Embodied-R, a collaborative framework combining large-scale Vision-Language Models (VLMs) for perception and small-scale Language Models (LMs) for reasoning. Using Reinforcement Learning (RL) with a novel reward system considering think-answer logical consistency, the model achieves slow-thinking capabilities with limited computational resources. After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models (OpenAI-o1, Gemini-2.5-pro) on both in-distribution and out-of-distribution embodied spatial reasoning tasks. Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration. We further explore research questions including response length, training on VLM, strategies for reward design, and differences in model generalization after SFT (Supervised Fine-Tuning) and RL training.
Can Atomic Step Decomposition Enhance the Self-structured Reasoning of Multimodal Large Models?
In this paper, we address the challenging task of multimodal mathematical reasoning by incorporating the ability of "slow thinking" into multimodal large language models (MLLMs). Our core idea is that different levels of reasoning abilities can be combined dynamically to tackle questions with different complexity. To this end, we propose a paradigm of Self-structured Chain of Thought (SCoT), which is composed of minimal semantic atomic steps. Different from existing methods that rely on structured templates or free-form paradigms, our method can not only generate cognitive CoT structures for various complex tasks but also mitigates the phenomenon of overthinking. To introduce structured reasoning capabilities into visual understanding models, we further design a novel AtomThink framework with four key modules, including (i) a data engine to generate high-quality multimodal reasoning paths; (ii) a supervised fine-tuning process with serialized inference data; (iii) a policy-guided multi-turn inference method; and (iv) an atomic capability metric to evaluate the single step utilization rate. We conduct extensive experiments to show that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving more than 10\% average accuracy gains on MathVista and MathVerse. Compared to state-of-the-art structured CoT approaches, our method not only achieves higher accuracy but also improves data utilization by 5 times and boosts inference efficiency by 85.3\%. Our code is now public available in https://github.com/Quinn777/AtomThink.
Virgo: A Preliminary Exploration on Reproducing o1-like MLLM
Recently, slow-thinking reasoning systems, built upon large language models (LLMs), have garnered widespread attention by scaling the thinking time during inference. There is also growing interest in adapting this capability to multimodal large language models (MLLMs). Given that MLLMs handle more complex data semantics across different modalities, it is intuitively more challenging to implement multimodal slow-thinking systems. To address this issue, in this paper, we explore a straightforward approach by fine-tuning a capable MLLM with a small amount of textual long-form thought data, resulting in a multimodal slow-thinking system, Virgo (Visual reasoning with long thought). We find that these long-form reasoning processes, expressed in natural language, can be effectively transferred to MLLMs. Moreover, it seems that such textual reasoning data can be even more effective than visual reasoning data in eliciting the slow-thinking capacities of MLLMs. While this work is preliminary, it demonstrates that slow-thinking capacities are fundamentally associated with the language model component, which can be transferred across modalities or domains. This finding can be leveraged to guide the development of more powerful slow-thinking reasoning systems. We release our resources at https://github.com/RUCAIBox/Virgo.
Skip a Layer or Loop it? Test-Time Depth Adaptation of Pretrained LLMs
Can a pretrained neural network adapt its architecture to different inputs without any finetuning? Do we need all layers for simple tasks, and are they adequate for challenging tasks? We found that the layers of a pretrained large language model (LLM) can be manipulated as separate modules to build a better and even shallower model customized for each test sample. In particular, each layer from the pretrained model can be skipped/pruned or repeated multiple times as recurrent neural networks (RNN), and stacked with others in arbitrary orders, yielding a chain-of-layers (CoLa) per sample. This compositional space greatly expands the scope of existing works on looped/recurrent pretrained modules, layer pruning, or early-exit networks. We develop a Monte Carlo Tree Search (MCTS) protocol to explore and identify the optimal CoLa for each sample from math and commonsense reasoning benchmarks. Compared to a static model of a fixed depth, CoLa allows shortcut paths (fast thinking), recurrence of the same layer(s) (slow thinking), and combining both, offering more flexible, dynamic architectures for different inputs. We conduct an extensive analysis of the MCTS-optimized CoLa, which leads to two key findings: (1) For >75% of samples with correct predictions by the original LLM, we can find shorter CoLa, suggesting a large space for improving inference efficiency; (2) For >60% of samples with originally incorrect predictions, we can identify CoLa achieving correct predictions, suggesting a large space of performance enhancement. Our results highlight the shortcomings of using a fixed architecture of pre-trained LLMs for inference on different samples and pave the way to unlock the generalization power of test-time depth adaptation.
ProxyThinker: Test-Time Guidance through Small Visual Reasoners
Recent advancements in reinforcement learning with verifiable rewards have pushed the boundaries of the visual reasoning capabilities in large vision-language models (LVLMs). However, training LVLMs with reinforcement fine-tuning (RFT) is computationally expensive, posing a significant challenge to scaling model size. In this work, we propose ProxyThinker, an inference-time technique that enables large models to inherit the visual reasoning capabilities from small, slow-thinking visual reasoners without any training. By subtracting the output distributions of base models from those of RFT reasoners, ProxyThinker modifies the decoding dynamics and successfully elicits the slow-thinking reasoning demonstrated by the emerged sophisticated behaviors such as self-verification and self-correction. ProxyThinker consistently boosts performance on challenging visual benchmarks on spatial, mathematical, and multi-disciplinary reasoning, enabling untuned base models to compete with the performance of their full-scale RFT counterparts. Furthermore, our implementation efficiently coordinates multiple language models with parallelism techniques and achieves up to 38 times faster inference compared to previous decoding-time methods, paving the way for the practical deployment of ProxyThinker. Code is available at https://github.com/MrZilinXiao/ProxyThinker.
MM-Verify: Enhancing Multimodal Reasoning with Chain-of-Thought Verification
According to the Test-Time Scaling, the integration of External Slow-Thinking with the Verify mechanism has been demonstrated to enhance multi-round reasoning in large language models (LLMs). However, in the multimodal (MM) domain, there is still a lack of a strong MM-Verifier. In this paper, we introduce MM-Verifier and MM-Reasoner to enhance multimodal reasoning through longer inference and more robust verification. First, we propose a two-step MM verification data synthesis method, which combines a simulation-based tree search with verification and uses rejection sampling to generate high-quality Chain-of-Thought (COT) data. This data is then used to fine-tune the verification model, MM-Verifier. Additionally, we present a more efficient method for synthesizing MMCOT data, bridging the gap between text-based and multimodal reasoning. The synthesized data is used to fine-tune MM-Reasoner. Our MM-Verifier outperforms all larger models on the MathCheck, MathVista, and MathVerse benchmarks. Moreover, MM-Reasoner demonstrates strong effectiveness and scalability, with performance improving as data size increases. Finally, our approach achieves strong performance when combining MM-Reasoner and MM-Verifier, reaching an accuracy of 65.3 on MathVista, surpassing GPT-4o (63.8) with 12 rollouts.
$C^3$-Bench: The Things Real Disturbing LLM based Agent in Multi-Tasking
Agents based on large language models leverage tools to modify environments, revolutionizing how AI interacts with the physical world. Unlike traditional NLP tasks that rely solely on historical dialogue for responses, these agents must consider more complex factors, such as inter-tool relationships, environmental feedback and previous decisions, when making choices. Current research typically evaluates agents via multi-turn dialogues. However, it overlooks the influence of these critical factors on agent behavior. To bridge this gap, we present an open-source and high-quality benchmark C^3-Bench. This benchmark integrates attack concepts and applies univariate analysis to pinpoint key elements affecting agent robustness. In concrete, we design three challenges: navigate complex tool relationships, handle critical hidden information and manage dynamic decision paths. Complementing these challenges, we introduce fine-grained metrics, innovative data collection algorithms and reproducible evaluation methods. Extensive experiments are conducted on 49 mainstream agents, encompassing general fast-thinking, slow-thinking and domain-specific models. We observe that agents have significant shortcomings in handling tool dependencies, long context information dependencies and frequent policy-type switching. In essence, C^3-Bench aims to expose model vulnerabilities through these challenges and drive research into the interpretability of agent performance. The benchmark is publicly available at https://github.com/TencentHunyuan/C3-Benchmark.
Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners
Recent advancements have demonstrated that the performance of large language models (LLMs) can be significantly enhanced by scaling computational resources at test time. A common strategy involves generating multiple Chain-of-Thought (CoT) trajectories and aggregating their outputs through various selection mechanisms. This raises a fundamental question: can models with lower complexity leverage their superior generation throughput to outperform similarly sized Transformers for a fixed computational budget? To address this question and overcome the lack of strong subquadratic reasoners, we distill pure and hybrid Mamba models from pretrained Transformers. Trained on only 8 billion tokens, our distilled models show strong performance and scaling on mathematical reasoning datasets while being much faster at inference for large batches and long sequences. Despite the zero-shot performance hit due to distillation, both pure and hybrid Mamba models can scale their coverage and accuracy performance past their Transformer teacher models under fixed time budgets, opening a new direction for scaling inference compute.
Query-Level Uncertainty in Large Language Models
It is important for Large Language Models to be aware of the boundary of their knowledge, the mechanism of identifying known and unknown queries. This type of awareness can help models perform adaptive inference, such as invoking RAG, engaging in slow and deep thinking, or adopting the abstention mechanism, which is beneficial to the development of efficient and trustworthy AI. In this work, we propose a method to detect knowledge boundaries via Query-Level Uncertainty, which aims to determine if the model is able to address a given query without generating any tokens. To this end, we introduce a novel and training-free method called Internal Confidence, which leverages self-evaluations across layers and tokens. Empirical results on both factual QA and mathematical reasoning tasks demonstrate that our internal confidence can outperform several baselines. Furthermore, we showcase that our proposed method can be used for efficient RAG and model cascading, which is able to reduce inference costs while maintaining performance.
Adaptive Dual Reasoner: Large Reasoning Models Can Think Efficiently by Hybrid Reasoning
Although Long Reasoning Models (LRMs) have achieved superior performance on various reasoning scenarios, they often suffer from increased computational costs and inference latency caused by overthinking. To address these limitations, we propose Adaptive Dual Reasoner, which supports two reasoning modes: fast thinking and slow thinking. ADR dynamically alternates between these modes based on the contextual complexity during reasoning. ADR is trained in two stages: (1) A cold-start stage using supervised fine-tuning (SFT) to equip the model with the ability to integrate both fast and slow reasoning modes, in which we construct a hybrid reasoning dataset through a dedicated pipeline to provide large-scale supervision. (2) A reinforcement learning stage for optimizing reasoning effort, where we introduce Entropy-guided Hybrid Policy Optimization EHPO, an RL training framework employing an entropy-guided dynamic rollout strategy for branching at high-entropy units and a difficulty-aware penalty to balance fast and slow reasoning. Across challenging mathematical reasoning benchmarks, ADR achieves an effective balance between reasoning performance and efficiency among state-of-the-art approaches. Specifically, ADR yields a performance gain of up to 6.1%, while reducing the reasoning output length by 49.5% to 59.3%.
Thinking Fast and Slow in Large Language Models
Large language models (LLMs) are currently at the forefront of intertwining AI systems with human communication and everyday life. Therefore, it is of great importance to evaluate their emerging abilities. In this study, we show that LLMs like GPT-3 exhibit behavior that strikingly resembles human-like intuition - and the cognitive errors that come with it. However, LLMs with higher cognitive capabilities, in particular ChatGPT and GPT-4, learned to avoid succumbing to these errors and perform in a hyperrational manner. For our experiments, we probe LLMs with the Cognitive Reflection Test (CRT) as well as semantic illusions that were originally designed to investigate intuitive decision-making in humans. Our study demonstrates that investigating LLMs with methods from psychology has the potential to reveal otherwise unknown emergent traits.
Agents Thinking Fast and Slow: A Talker-Reasoner Architecture
Large language models have enabled agents of all kinds to interact with users through natural conversation. Consequently, agents now have two jobs: conversing and planning/reasoning. Their conversational responses must be informed by all available information, and their actions must help to achieve goals. This dichotomy between conversing with the user and doing multi-step reasoning and planning can be seen as analogous to the human systems of "thinking fast and slow" as introduced by Kahneman. Our approach is comprised of a "Talker" agent (System 1) that is fast and intuitive, and tasked with synthesizing the conversational response; and a "Reasoner" agent (System 2) that is slower, more deliberative, and more logical, and is tasked with multi-step reasoning and planning, calling tools, performing actions in the world, and thereby producing the new agent state. We describe the new Talker-Reasoner architecture and discuss its advantages, including modularity and decreased latency. We ground the discussion in the context of a sleep coaching agent, in order to demonstrate real-world relevance.
Skip-Thinking: Chunk-wise Chain-of-Thought Distillation Enable Smaller Language Models to Reason Better and Faster
Chain-of-thought (CoT) distillation allows a large language model (LLM) to guide a small language model (SLM) in reasoning tasks. Existing methods train the SLM to learn the long rationale in one iteration, resulting in two issues: 1) Long rationales lead to a large token-level batch size during training, making gradients of core reasoning tokens (i.e., the token will directly affect the correctness of subsequent reasoning) over-smoothed as they contribute a tiny fraction of the rationale. As a result, the SLM converges to sharp minima where it fails to grasp the reasoning logic. 2) The response is slow, as the SLM must generate a long rationale before reaching the answer. Therefore, we propose chunk-wise training (CWT), which uses a heuristic search to divide the rationale into internal semantically coherent chunks and focuses SLM on learning from only one chunk per iteration. In this way, CWT naturally isolates non-reasoning chunks that do not involve the core reasoning token (e.g., summary and transitional chunks) from the SLM learning for reasoning chunks, making the fraction of the core reasoning token increase in the corresponding iteration. Based on CWT, skip-thinking training (STT) is proposed. STT makes the SLM automatically skip non-reasoning medium chunks to reach the answer, improving reasoning speed while maintaining accuracy. We validate our approach on a variety of SLMs and multiple reasoning tasks.
Fast or Slow? Integrating Fast Intuition and Deliberate Thinking for Enhancing Visual Question Answering
Multimodal large language models (MLLMs) still struggle with complex reasoning tasks in Visual Question Answering (VQA). While current methods have advanced by incorporating visual prompts, our study uncovers critical limitations: these approaches indiscriminately annotate all detected objects for every visual question, generating excessive visual markers that degrade task performance. This issue stems primarily from a lack of focus on key visual elements, raising two important questions: Are all objects equally important, and do all questions require visual prompts? Motivated by Dual Process Theory, which distinguishes between instinctive and deliberate cognitive modes in human reasoning, we propose FOCUS, a plug-and-play approach that dynamically adapts to the complexity of questions, combining fast intuitive judgments with deliberate analytical reasoning to enhance the vision-language reasoning capability of the MLLM. For straightforward questions, FOCUS supports efficient zero-shot reasoning. For more complex tasks, it employs the conceptualizing before observation strategy to highlight critical elements. Extensive experiments on four benchmarks, ScienceQA, TextQA, VizWiz, and MME, demonstrate that FOCUS consistently improves the performance of both open-source and black-box MLLMs, achieving significant gains across all datasets. Ablation studies further validate the importance of combining diverse cognitive strategies with refined visual information for superior performance. Code will be released.
FASIONAD++ : Integrating High-Level Instruction and Information Bottleneck in FAt-Slow fusION Systems for Enhanced Safety in Autonomous Driving with Adaptive Feedback
Ensuring safe, comfortable, and efficient planning is crucial for autonomous driving systems. While end-to-end models trained on large datasets perform well in standard driving scenarios, they struggle with complex low-frequency events. Recent Large Language Models (LLMs) and Vision Language Models (VLMs) advancements offer enhanced reasoning but suffer from computational inefficiency. Inspired by the dual-process cognitive model "Thinking, Fast and Slow", we propose FASIONAD -- a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module. The fast system leverages end-to-end learning to achieve real-time trajectory generation in common scenarios, while the slow system activates through uncertainty estimation to perform contextual analysis and complex scenario resolution. Our architecture introduces three key innovations: (1) A dynamic switching mechanism enabling slow system intervention based on real-time uncertainty assessment; (2) An information bottleneck with high-level plan feedback that optimizes the slow system's guidance capability; (3) A bidirectional knowledge exchange where visual prompts enhance the slow system's reasoning while its feedback refines the fast planner's decision-making. To strengthen VLM reasoning, we develop a question-answering mechanism coupled with reward-instruct training strategy. In open-loop experiments, FASIONAD achieves a 6.7% reduction in average L2 trajectory error and 28.1% lower collision rate.
Think Twice, Click Once: Enhancing GUI Grounding via Fast and Slow Systems
Humans can flexibly switch between different modes of thinking based on task complexity: from rapid intuitive judgments to in-depth analytical understanding. However, current Graphical User Interface (GUI) grounding systems which locate interface elements based on natural language instructions rely solely on immediate prediction without reasoning, struggling to understand complex interface layouts with nested structures and hierarchical relationships, limiting their effectiveness on complex interfaces. Inspired by human dual-system cognition, we present Focus, a novel GUI grounding framework that combines fast prediction with systematic analysis. The framework dynamically switches between rapid and deliberate processing through an adaptive system switching based on task complexity, optimizing both efficiency and accuracy. Focus decomposes grounding into progressive stages: interface summarization, visual focused analysis, and precise coordinate prediction. This structured decomposition enables systematic understanding of both interface layouts and visual relationships. Extensive experiments show that Focus achieves state-of-the-art performance using only 300K of the training data with a 2B parameter model compared to existing approaches. Focus demonstrates superior performance particularly in complex GUI scenarios, achieving 77.4% average accuracy on ScreenSpot and 13.3% on the more challenging ScreenSpot-Pro. Our analysis reveals the effectiveness of this dual-system approach while demonstrating its potential for improving complex GUI interaction scenarios.
Beyond Hallucinations: The Illusion of Understanding in Large Language Models
Large language models (LLMs) are becoming deeply embedded in human communication and decision-making, yet they inherit the ambiguity, bias, and lack of direct access to truth inherent in language itself. While their outputs are fluent, emotionally resonant, and coherent, they are generated through statistical prediction rather than grounded reasoning. This creates the risk of hallucination, responses that sound convincing but lack factual validity. Building on Geoffrey Hinton's observation that AI mirrors human intuition rather than reasoning, this paper argues that LLMs operationalize System 1 cognition at scale: fast, associative, and persuasive, but without reflection or falsification. To address this, we introduce the Rose-Frame, a three-dimensional framework for diagnosing cognitive and epistemic drift in human-AI interaction. The three axes are: (i) Map vs. Territory, which distinguishes representations of reality (epistemology) from reality itself (ontology); (ii) Intuition vs. Reason, drawing on dual-process theory to separate fast, emotional judgments from slow, reflective thinking; and (iii) Conflict vs. Confirmation, which examines whether ideas are critically tested through disagreement or simply reinforced through mutual validation. Each dimension captures a distinct failure mode, and their combination amplifies misalignment. Rose-Frame does not attempt to fix LLMs with more data or rules. Instead, it offers a reflective tool that makes both the model's limitations and the user's assumptions visible, enabling more transparent and critically aware AI deployment. It reframes alignment as cognitive governance: intuition, whether human or artificial, must remain governed by human reason. Only by embedding reflective, falsifiable oversight can we align machine fluency with human understanding.
Planning Like Human: A Dual-process Framework for Dialogue Planning
In proactive dialogue, the challenge lies not just in generating responses but in steering conversations toward predetermined goals, a task where Large Language Models (LLMs) typically struggle due to their reactive nature. Traditional approaches to enhance dialogue planning in LLMs, ranging from elaborate prompt engineering to the integration of policy networks, either face efficiency issues or deliver suboptimal performance. Inspired by the dualprocess theory in psychology, which identifies two distinct modes of thinking - intuitive (fast) and analytical (slow), we propose the Dual-Process Dialogue Planning (DPDP) framework. DPDP embodies this theory through two complementary planning systems: an instinctive policy model for familiar contexts and a deliberative Monte Carlo Tree Search (MCTS) mechanism for complex, novel scenarios. This dual strategy is further coupled with a novel two-stage training regimen: offline Reinforcement Learning for robust initial policy model formation followed by MCTS-enhanced on-the-fly learning, which ensures a dynamic balance between efficiency and strategic depth. Our empirical evaluations across diverse dialogue tasks affirm DPDP's superiority in achieving both high-quality dialogues and operational efficiency, outpacing existing methods.
