- AI-driven Dispensing of Coral Reseeding Devices for Broad-scale Restoration of the Great Barrier Reef Coral reefs are on the brink of collapse, with climate change, ocean acidification, and pollution leading to a projected 70-90% loss of coral species within the next decade. Restoration efforts are crucial, but their success hinges on introducing automation to upscale efforts. We present automated deployment of coral re-seeding devices powered by artificial intelligence, computer vision, and robotics. Specifically, we perform automated substrate classification, enabling detection of areas of the seafloor suitable for coral growth, thus significantly reducing reliance on human experts and increasing the range and efficiency of restoration. Real-world testing of the algorithms on the Great Barrier Reef leads to deployment accuracy of 77.8%, sub-image patch classification of 89.1%, and real-time model inference at 5.5 frames per second. Further, we present and publicly contribute a large collection of annotated substrate image data to foster future research in this area. 3 authors · Aug 31, 2025
- Substrate Prediction for RiPP Biosynthetic Enzymes via Masked Language Modeling and Transfer Learning Ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic enzymes often exhibit promiscuous substrate preferences that cannot be reduced to simple rules. Large language models are promising tools for predicting such peptide fitness landscapes. However, state-of-the-art protein language models are trained on relatively few peptide sequences. A previous study comprehensively profiled the peptide substrate preferences of LazBF (a two-component serine dehydratase) and LazDEF (a three-component azole synthetase) from the lactazole biosynthetic pathway. We demonstrated that masked language modeling of LazBF substrate preferences produced language model embeddings that improved downstream classification models of both LazBF and LazDEF substrates. Similarly, masked language modeling of LazDEF substrate preferences produced embeddings that improved the performance of classification models of both LazBF and LazDEF substrates. Our results suggest that the models learned functional forms that are transferable between distinct enzymatic transformations that act within the same biosynthetic pathway. Our transfer learning method improved performance and data efficiency in data-scarce scenarios. We then fine-tuned models on each data set and showed that the fine-tuned models provided interpretable insight that we anticipate will facilitate the design of substrate libraries that are compatible with desired RiPP biosynthetic pathways. 4 authors · Feb 23, 2024
- An open-source robust machine learning platform for real-time detection and classification of 2D material flakes The most widely used method for obtaining high-quality two-dimensional materials is through mechanical exfoliation of bulk crystals. Manual identification of suitable flakes from the resulting random distribution of crystal thicknesses and sizes on a substrate is a time-consuming, tedious task. Here, we present a platform for fully automated scanning, detection, and classification of two-dimensional materials, the source code of which we make openly available. Our platform is designed to be accurate, reliable, fast, and versatile in integrating new materials, making it suitable for everyday laboratory work. The implementation allows fully automated scanning and analysis of wafers with an average inference time of 100 ms for images of 2.3 Mpixels. The developed detection algorithm is based on a combination of the flakes' optical contrast toward the substrate and their geometric shape. We demonstrate that it is able to detect the majority of exfoliated flakes of various materials, with an average recall (AR50) between 67% and 89%. We also show that the algorithm can be trained with as few as five flakes of a given material, which we demonstrate for the examples of few-layer graphene, WSe_2, MoSe_2, CrI_3, 1T-TaS_2 and hexagonal BN. Our platform has been tested over a two-year period, during which more than 10^6 images of multiple different materials were acquired by over 30 individual researchers. 11 authors · Jun 26, 2023