Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVisual Story-Writing: Writing by Manipulating Visual Representations of Stories
We define "visual story-writing" as using visual representations of story elements to support writing and revising narrative texts. To demonstrate this approach, we developed a text editor that automatically visualizes a graph of entity interactions, movement between locations, and a timeline of story events. Interacting with these visualizations results in suggested text edits: for example, connecting two characters in the graph creates an interaction between them, moving an entity updates their described location, and rearranging events on the timeline reorganizes the narrative sequence. Through two user studies on narrative text editing and writing, we found that visuals supported participants in planning high-level revisions, tracking story elements, and exploring story variations in ways that encourage creativity. Broadly, our work lays the foundation for writing support, not just through words, but also visuals.
TiVy: Time Series Visual Summary for Scalable Visualization
Visualizing multiple time series presents fundamental tradeoffs between scalability and visual clarity. Time series capture the behavior of many large-scale real-world processes, from stock market trends to urban activities. Users often gain insights by visualizing them as line charts, juxtaposing or superposing multiple time series to compare them and identify trends and patterns. However, existing representations struggle with scalability: when covering long time spans, leading to visual clutter from too many small multiples or overlapping lines. We propose TiVy, a new algorithm that summarizes time series using sequential patterns. It transforms the series into a set of symbolic sequences based on subsequence visual similarity using Dynamic Time Warping (DTW), then constructs a disjoint grouping of similar subsequences based on the frequent sequential patterns. The grouping result, a visual summary of time series, provides uncluttered superposition with fewer small multiples. Unlike common clustering techniques, TiVy extracts similar subsequences (of varying lengths) aligned in time. We also present an interactive time series visualization that renders large-scale time series in real-time. Our experimental evaluation shows that our algorithm (1) extracts clear and accurate patterns when visualizing time series data, (2) achieves a significant speed-up (1000X) compared to a straightforward DTW clustering. We also demonstrate the efficiency of our approach to explore hidden structures in massive time series data in two usage scenarios.
Generic Approach to Visualization of Time Series Data
Time series is a collection of data instances that are ordered according to a time stamp. Stock prices, temperature, etc are examples of time series data in real life. Time series data are used for forecasting sales, predicting trends. Visualization is the process of visually representing data or the relationship between features of a data either in a two-dimensional plot or a three-dimensional plot. Visualizing the time series data constitutes an important part of the process for working with a time series dataset. Visualizing the data not only helps in the modelling process but it can also be used to identify trends and features that cause those trends. In this work, we take a real-life time series dataset and analyse how the target feature relates to other features of the dataset through visualization. From the work that has been carried out, we present an effective method of visualization for time series data which will be much useful for machine learning modelling with such datasets.
Formulation Comparison for Timeline Construction using LLMs
Constructing a timeline requires identifying the chronological order of events in an article. In prior timeline construction datasets, temporal orders are typically annotated by either event-to-time anchoring or event-to-event pairwise ordering, both of which suffer from missing temporal information. To mitigate the issue, we develop a new evaluation dataset, TimeSET, consisting of single-document timelines with document-level order annotation. TimeSET features saliency-based event selection and partial ordering, which enable a practical annotation workload. Aiming to build better automatic timeline construction systems, we propose a novel evaluation framework to compare multiple task formulations with TimeSET by prompting open LLMs, i.e., Llama 2 and Flan-T5. Considering that identifying temporal orders of events is a core subtask in timeline construction, we further benchmark open LLMs on existing event temporal ordering datasets to gain a robust understanding of their capabilities. Our experiments show that (1) NLI formulation with Flan-T5 demonstrates a strong performance among others, while (2) timeline construction and event temporal ordering are still challenging tasks for few-shot LLMs. Our code and data are available at https://github.com/kimihiroh/timeset.
InfoVids: Reimagining the Viewer Experience with Alternative Visualization-Presenter Relationships
Traditional data presentations typically separate the presenter and visualization into two separate spaces--the 3D world and a 2D screen--enforcing visualization-centric stories. To create a more human-centric viewing experience, we establish a more equitable relationship between the visualization and the presenter through our InfoVids. These infographics-inspired informational videos are crafted to redefine relationships between the presenter and visualizations. As we design InfoVids, we explore how the use of layout, form, and interactions affects the viewer experience. We compare InfoVids against their baseline 2D `slides' equivalents across 9 metrics with 30 participants and provide practical, long-term insights from an autobiographical perspective. Our mixed methods analyses reveal that this paradigm reduced viewer attention splitting, shifted the focus from the visualization to the presenter, and led to more interactive, natural, and engaging full-body data performances for viewers. Ultimately, InfoVids helped viewers re-imagine traditional dynamics between the presenter and visualizations.
Just What You Desire: Constrained Timeline Summarization with Self-Reflection for Enhanced Relevance
Given news articles about an entity, such as a public figure or organization, timeline summarization (TLS) involves generating a timeline that summarizes the key events about the entity. However, the TLS task is too underspecified, since what is of interest to each reader may vary, and hence there is not a single ideal or optimal timeline. In this paper, we introduce a novel task, called Constrained Timeline Summarization (CTLS), where a timeline is generated in which all events in the timeline meet some constraint. An example of a constrained timeline concerns the legal battles of Tiger Woods, where only events related to his legal problems are selected to appear in the timeline. We collected a new human-verified dataset of constrained timelines involving 47 entities and 5 constraints per entity. We propose an approach that employs a large language model (LLM) to summarize news articles according to a specified constraint and cluster them to identify key events to include in a constrained timeline. In addition, we propose a novel self-reflection method during summary generation, demonstrating that this approach successfully leads to improved performance.
ViStoryBench: Comprehensive Benchmark Suite for Story Visualization
Story visualization, which aims to generate a sequence of visually coherent images aligning with a given narrative and reference images, has seen significant progress with recent advancements in generative models. To further enhance the performance of story visualization frameworks in real-world scenarios, we introduce a comprehensive evaluation benchmark, ViStoryBench. We collect a diverse dataset encompassing various story types and artistic styles, ensuring models are evaluated across multiple dimensions such as different plots (e.g., comedy, horror) and visual aesthetics (e.g., anime, 3D renderings). ViStoryBench is carefully curated to balance narrative structures and visual elements, featuring stories with single and multiple protagonists to test models' ability to maintain character consistency. Additionally, it includes complex plots and intricate world-building to challenge models in generating accurate visuals. To ensure comprehensive comparisons, our benchmark incorporates a wide range of evaluation metrics assessing critical aspects. This structured and multifaceted framework enables researchers to thoroughly identify both the strengths and weaknesses of different models, fostering targeted improvements.
Unfolding the Headline: Iterative Self-Questioning for News Retrieval and Timeline Summarization
In the fast-changing realm of information, the capacity to construct coherent timelines from extensive event-related content has become increasingly significant and challenging. The complexity arises in aggregating related documents to build a meaningful event graph around a central topic. This paper proposes CHRONOS - Causal Headline Retrieval for Open-domain News Timeline SummarizatiOn via Iterative Self-Questioning, which offers a fresh perspective on the integration of Large Language Models (LLMs) to tackle the task of Timeline Summarization (TLS). By iteratively reflecting on how events are linked and posing new questions regarding a specific news topic to gather information online or from an offline knowledge base, LLMs produce and refresh chronological summaries based on documents retrieved in each round. Furthermore, we curate Open-TLS, a novel dataset of timelines on recent news topics authored by professional journalists to evaluate open-domain TLS where information overload makes it impossible to find comprehensive relevant documents from the web. Our experiments indicate that CHRONOS is not only adept at open-domain timeline summarization, but it also rivals the performance of existing state-of-the-art systems designed for closed-domain applications, where a related news corpus is provided for summarization.
LIDA: A Tool for Automatic Generation of Grammar-Agnostic Visualizations and Infographics using Large Language Models
Systems that support users in the automatic creation of visualizations must address several subtasks - understand the semantics of data, enumerate relevant visualization goals and generate visualization specifications. In this work, we pose visualization generation as a multi-stage generation problem and argue that well-orchestrated pipelines based on large language models (LLMs) such as ChatGPT/GPT-4 and image generation models (IGMs) are suitable to addressing these tasks. We present LIDA, a novel tool for generating grammar-agnostic visualizations and infographics. LIDA comprises of 4 modules - A SUMMARIZER that converts data into a rich but compact natural language summary, a GOAL EXPLORER that enumerates visualization goals given the data, a VISGENERATOR that generates, refines, executes and filters visualization code and an INFOGRAPHER module that yields data-faithful stylized graphics using IGMs. LIDA provides a python api, and a hybrid user interface (direct manipulation and multilingual natural language) for interactive chart, infographics and data story generation. Learn more about the project here - https://microsoft.github.io/lida/
Multimodal DeepResearcher: Generating Text-Chart Interleaved Reports From Scratch with Agentic Framework
Visualizations play a crucial part in effective communication of concepts and information. Recent advances in reasoning and retrieval augmented generation have enabled Large Language Models (LLMs) to perform deep research and generate comprehensive reports. Despite its progress, existing deep research frameworks primarily focus on generating text-only content, leaving the automated generation of interleaved texts and visualizations underexplored. This novel task poses key challenges in designing informative visualizations and effectively integrating them with text reports. To address these challenges, we propose Formal Description of Visualization (FDV), a structured textual representation of charts that enables LLMs to learn from and generate diverse, high-quality visualizations. Building on this representation, we introduce Multimodal DeepResearcher, an agentic framework that decomposes the task into four stages: (1) researching, (2) exemplar report textualization, (3) planning, and (4) multimodal report generation. For the evaluation of generated multimodal reports, we develop MultimodalReportBench, which contains 100 diverse topics served as inputs along with 5 dedicated metrics. Extensive experiments across models and evaluation methods demonstrate the effectiveness of Multimodal DeepResearcher. Notably, utilizing the same Claude 3.7 Sonnet model, Multimodal DeepResearcher achieves an 82\% overall win rate over the baseline method.
Neural Scene Chronology
In this work, we aim to reconstruct a time-varying 3D model, capable of rendering photo-realistic renderings with independent control of viewpoint, illumination, and time, from Internet photos of large-scale landmarks. The core challenges are twofold. First, different types of temporal changes, such as illumination and changes to the underlying scene itself (such as replacing one graffiti artwork with another) are entangled together in the imagery. Second, scene-level temporal changes are often discrete and sporadic over time, rather than continuous. To tackle these problems, we propose a new scene representation equipped with a novel temporal step function encoding method that can model discrete scene-level content changes as piece-wise constant functions over time. Specifically, we represent the scene as a space-time radiance field with a per-image illumination embedding, where temporally-varying scene changes are encoded using a set of learned step functions. To facilitate our task of chronology reconstruction from Internet imagery, we also collect a new dataset of four scenes that exhibit various changes over time. We demonstrate that our method exhibits state-of-the-art view synthesis results on this dataset, while achieving independent control of viewpoint, time, and illumination.
Temporal Graph Analysis with TGX
Real-world networks, with their evolving relations, are best captured as temporal graphs. However, existing software libraries are largely designed for static graphs where the dynamic nature of temporal graphs is ignored. Bridging this gap, we introduce TGX, a Python package specially designed for analysis of temporal networks that encompasses an automated pipeline for data loading, data processing, and analysis of evolving graphs. TGX provides access to eleven built-in datasets and eight external Temporal Graph Benchmark (TGB) datasets as well as any novel datasets in the .csv format. Beyond data loading, TGX facilitates data processing functionalities such as discretization of temporal graphs and node subsampling to accelerate working with larger datasets. For comprehensive investigation, TGX offers network analysis by providing a diverse set of measures, including average node degree and the evolving number of nodes and edges per timestamp. Additionally, the package consolidates meaningful visualization plots indicating the evolution of temporal patterns, such as Temporal Edge Appearance (TEA) and Temporal Edge Trafficc (TET) plots. The TGX package is a robust tool for examining the features of temporal graphs and can be used in various areas like studying social networks, citation networks, and tracking user interactions. We plan to continuously support and update TGX based on community feedback. TGX is publicly available on: https://github.com/ComplexData-MILA/TGX.
HAIChart: Human and AI Paired Visualization System
The growing importance of data visualization in business intelligence and data science emphasizes the need for tools that can efficiently generate meaningful visualizations from large datasets. Existing tools fall into two main categories: human-powered tools (e.g., Tableau and PowerBI), which require intensive expert involvement, and AI-powered automated tools (e.g., Draco and Table2Charts), which often fall short of guessing specific user needs. In this paper, we aim to achieve the best of both worlds. Our key idea is to initially auto-generate a set of high-quality visualizations to minimize manual effort, then refine this process iteratively with user feedback to more closely align with their needs. To this end, we present HAIChart, a reinforcement learning-based framework designed to iteratively recommend good visualizations for a given dataset by incorporating user feedback. Specifically, we propose a Monte Carlo Graph Search-based visualization generation algorithm paired with a composite reward function to efficiently explore the visualization space and automatically generate good visualizations. We devise a visualization hints mechanism to actively incorporate user feedback, thus progressively refining the visualization generation module. We further prove that the top-k visualization hints selection problem is NP-hard and design an efficient algorithm. We conduct both quantitative evaluations and user studies, showing that HAIChart significantly outperforms state-of-the-art human-powered tools (21% better at Recall and 1.8 times faster) and AI-powered automatic tools (25.1% and 14.9% better in terms of Hit@3 and R10@30, respectively).
Background Summarization of Event Timelines
Generating concise summaries of news events is a challenging natural language processing task. While journalists often curate timelines to highlight key sub-events, newcomers to a news event face challenges in catching up on its historical context. In this paper, we address this need by introducing the task of background news summarization, which complements each timeline update with a background summary of relevant preceding events. We construct a dataset by merging existing timeline datasets and asking human annotators to write a background summary for each timestep of each news event. We establish strong baseline performance using state-of-the-art summarization systems and propose a query-focused variant to generate background summaries. To evaluate background summary quality, we present a question-answering-based evaluation metric, Background Utility Score (BUS), which measures the percentage of questions about a current event timestep that a background summary answers. Our experiments show the effectiveness of instruction fine-tuned systems such as Flan-T5, in addition to strong zero-shot performance using GPT-3.5.
Generating Pedagogically Meaningful Visuals for Math Word Problems: A New Benchmark and Analysis of Text-to-Image Models
Visuals are valuable tools for teaching math word problems (MWPs), helping young learners interpret textual descriptions into mathematical expressions before solving them. However, creating such visuals is labor-intensive and there is a lack of automated methods to support this process. In this paper, we present Math2Visual, an automatic framework for generating pedagogically meaningful visuals from MWP text descriptions. Math2Visual leverages a pre-defined visual language and a design space grounded in interviews with math teachers, to illustrate the core mathematical relationships in MWPs. Using Math2Visual, we construct an annotated dataset of 1,903 visuals and evaluate Text-to-Image (TTI) models for their ability to generate visuals that align with our design. We further fine-tune several TTI models with our dataset, demonstrating improvements in educational visual generation. Our work establishes a new benchmark for automated generation of pedagogically meaningful visuals and offers insights into key challenges in producing multimodal educational content, such as the misrepresentation of mathematical relationships and the omission of essential visual elements.
ContextualStory: Consistent Visual Storytelling with Spatially-Enhanced and Storyline Context
Visual storytelling involves generating a sequence of coherent frames from a textual storyline while maintaining consistency in characters and scenes. Existing autoregressive methods, which rely on previous frame-sentence pairs, struggle with high memory usage, slow generation speeds, and limited context integration. To address these issues, we propose ContextualStory, a novel framework designed to generate coherent story frames and extend frames for visual storytelling. ContextualStory utilizes Spatially-Enhanced Temporal Attention to capture spatial and temporal dependencies, handling significant character movements effectively. Additionally, we introduce a Storyline Contextualizer to enrich context in storyline embedding, and a StoryFlow Adapter to measure scene changes between frames for guiding the model. Extensive experiments on PororoSV and FlintstonesSV datasets demonstrate that ContextualStory significantly outperforms existing SOTA methods in both story visualization and continuation. Code is available at https://github.com/sixiaozheng/ContextualStory.
Manimator: Transforming Research Papers into Visual Explanations
Understanding complex scientific and mathematical concepts, particularly those presented in dense research papers, poses a significant challenge for learners. Dynamic visualizations can greatly enhance comprehension, but creating them manually is time-consuming and requires specialized knowledge and skills. We introduce manimator, an open-source system that leverages Large Language Models to transform research papers and natural language prompts into explanatory animations using the Manim engine. Manimator employs a pipeline where an LLM interprets the input text or research paper PDF to generate a structured scene description outlining key concepts, mathematical formulas, and visual elements and another LLM translates this description into executable Manim Python code. We discuss its potential as an educational tool for rapidly creating engaging visual explanations for complex STEM topics, democratizing the creation of high-quality educational content.
MTGER: Multi-view Temporal Graph Enhanced Temporal Reasoning over Time-Involved Document
The facts and time in the document are intricately intertwined, making temporal reasoning over documents challenging. Previous work models time implicitly, making it difficult to handle such complex relationships. To address this issue, we propose MTGER, a novel Multi-view Temporal Graph Enhanced Temporal Reasoning framework for temporal reasoning over time-involved documents. Concretely, MTGER explicitly models the temporal relationships among facts by multi-view temporal graphs. On the one hand, the heterogeneous temporal graphs explicitly model the temporal and discourse relationships among facts; on the other hand, the multi-view mechanism captures both time-focused and fact-focused information, allowing the two views to complement each other through adaptive fusion. To further improve the implicit reasoning capability of the model, we design a self-supervised time-comparing objective. Extensive experimental results demonstrate the effectiveness of our method on the TimeQA and SituatedQA datasets. Furthermore, MTGER gives more consistent answers under question perturbations.
Multi-Track Timeline Control for Text-Driven 3D Human Motion Generation
Recent advances in generative modeling have led to promising progress on synthesizing 3D human motion from text, with methods that can generate character animations from short prompts and specified durations. However, using a single text prompt as input lacks the fine-grained control needed by animators, such as composing multiple actions and defining precise durations for parts of the motion. To address this, we introduce the new problem of timeline control for text-driven motion synthesis, which provides an intuitive, yet fine-grained, input interface for users. Instead of a single prompt, users can specify a multi-track timeline of multiple prompts organized in temporal intervals that may overlap. This enables specifying the exact timings of each action and composing multiple actions in sequence or at overlapping intervals. To generate composite animations from a multi-track timeline, we propose a new test-time denoising method. This method can be integrated with any pre-trained motion diffusion model to synthesize realistic motions that accurately reflect the timeline. At every step of denoising, our method processes each timeline interval (text prompt) individually, subsequently aggregating the predictions with consideration for the specific body parts engaged in each action. Experimental comparisons and ablations validate that our method produces realistic motions that respect the semantics and timing of given text prompts. Our code and models are publicly available at https://mathis.petrovich.fr/stmc.
Story Visualization by Online Text Augmentation with Context Memory
Story visualization (SV) is a challenging text-to-image generation task for the difficulty of not only rendering visual details from the text descriptions but also encoding a long-term context across multiple sentences. While prior efforts mostly focus on generating a semantically relevant image for each sentence, encoding a context spread across the given paragraph to generate contextually convincing images (e.g., with a correct character or with a proper background of the scene) remains a challenge. To this end, we propose a novel memory architecture for the Bi-directional Transformer framework with an online text augmentation that generates multiple pseudo-descriptions as supplementary supervision during training for better generalization to the language variation at inference. In extensive experiments on the two popular SV benchmarks, i.e., the Pororo-SV and Flintstones-SV, the proposed method significantly outperforms the state of the arts in various metrics including FID, character F1, frame accuracy, BLEU-2/3, and R-precision with similar or less computational complexity.
Rethinking Prompt Design for Inference-time Scaling in Text-to-Visual Generation
Achieving precise alignment between user intent and generated visuals remains a central challenge in text-to-visual generation, as a single attempt often fails to produce the desired output. To handle this, prior approaches mainly scale the visual generation process (e.g., increasing sampling steps or seeds), but this quickly leads to a quality plateau. This limitation arises because the prompt, crucial for guiding generation, is kept fixed. To address this, we propose Prompt Redesign for Inference-time Scaling, coined PRIS, a framework that adaptively revises the prompt during inference in response to the scaled visual generations. The core idea of PRIS is to review the generated visuals, identify recurring failure patterns across visuals, and redesign the prompt accordingly before regenerating the visuals with the revised prompt. To provide precise alignment feedback for prompt revision, we introduce a new verifier, element-level factual correction, which evaluates the alignment between prompt attributes and generated visuals at a fine-grained level, achieving more accurate and interpretable assessments than holistic measures. Extensive experiments on both text-to-image and text-to-video benchmarks demonstrate the effectiveness of our approach, including a 15% gain on VBench 2.0. These results highlight that jointly scaling prompts and visuals is key to fully leveraging scaling laws at inference-time. Visualizations are available at the website: https://subin-kim-cv.github.io/PRIS.
ChartGalaxy: A Dataset for Infographic Chart Understanding and Generation
Infographic charts are a powerful medium for communicating abstract data by combining visual elements (e.g., charts, images) with textual information. However, their visual and structural richness poses challenges for large vision-language models (LVLMs), which are typically trained on plain charts. To bridge this gap, we introduce ChartGalaxy, a million-scale dataset designed to advance the understanding and generation of infographic charts. The dataset is constructed through an inductive process that identifies 75 chart types, 330 chart variations, and 68 layout templates from real infographic charts and uses them to create synthetic ones programmatically. We showcase the utility of this dataset through: 1) improving infographic chart understanding via fine-tuning, 2) benchmarking code generation for infographic charts, and 3) enabling example-based infographic chart generation. By capturing the visual and structural complexity of real design, ChartGalaxy provides a useful resource for enhancing multimodal reasoning and generation in LVLMs.
Narrative-of-Thought: Improving Temporal Reasoning of Large Language Models via Recounted Narratives
Reasoning about time and temporal relations is an integral aspect of human cognition, essential for perceiving the world and navigating our experiences. Though large language models (LLMs) have demonstrated impressive performance in many reasoning tasks, temporal reasoning remains challenging due to its intrinsic complexity. In this work, we first study an essential task of temporal reasoning -- temporal graph generation, to unveil LLMs' inherent, global reasoning capabilities. We show that this task presents great challenges even for the most powerful LLMs, such as GPT-3.5/4. We also notice a significant performance gap by small models (<10B) that lag behind LLMs by 50%. Next, we study how to close this gap with a budget constraint, e.g., not using model finetuning. We propose a new prompting technique tailored for temporal reasoning, Narrative-of-Thought (NoT), that first converts the events set to a Python class, then prompts a small model to generate a temporally grounded narrative, guiding the final generation of a temporal graph. Extensive experiments showcase the efficacy of NoT in improving various metrics. Notably, NoT attains the highest F1 on the Schema-11 evaluation set, while securing an overall F1 on par with GPT-3.5. NoT also achieves the best structural similarity across the board, even compared with GPT-3.5/4. Our code is available at https://github.com/launchnlp/NoT.
Temporal-Visual Semantic Alignment: A Unified Architecture for Transferring Spatial Priors from Vision Models to Zero-Shot Temporal Tasks
Large Multimodal Models (LMMs) have achieved remarkable progress in aligning and generating content across text and image modalities. However, the potential of using non-visual, continuous sequential, as a conditioning signal for high-fidelity image generation remains largely unexplored. Furthermore, existing methods that convert series into "pseudo-images" for temporal forecasting fail to establish semantic-level alignment. In this paper, we propose TimeArtist, a temporal-visual conversion framework that pioneers semantic-level alignment between time series fluctuations and visual concepts. It pioneers a "warmup-align" paradigm: first, a dual-autoencoder and shared quantizer are self-supervised trained on large-scale datasets to learn modality-shared representations. Then, the encoders and quantizer are frozen, and a projection is introduced to align temporal and visual samples at the representation level. TimeArtist establishes a versatile cross-modal framework, enabling high-quality, diverse image generation directly from time series, while capturing temporal fluctuation patterns to render images as styles transfer. Extensive experiments show that TimeArtist achieves satisfactory performance in image generation metrics, while also attaining superior results in zero-shot temporal tasks. Our work establishes a new paradigm for cross-modal generation, bridging the gap between temporal dynamics and visual semantics.
VisText: A Benchmark for Semantically Rich Chart Captioning
Captions that describe or explain charts help improve recall and comprehension of the depicted data and provide a more accessible medium for people with visual disabilities. However, current approaches for automatically generating such captions struggle to articulate the perceptual or cognitive features that are the hallmark of charts (e.g., complex trends and patterns). In response, we introduce VisText: a dataset of 12,441 pairs of charts and captions that describe the charts' construction, report key statistics, and identify perceptual and cognitive phenomena. In VisText, a chart is available as three representations: a rasterized image, a backing data table, and a scene graph -- a hierarchical representation of a chart's visual elements akin to a web page's Document Object Model (DOM). To evaluate the impact of VisText, we fine-tune state-of-the-art language models on our chart captioning task and apply prefix-tuning to produce captions that vary the semantic content they convey. Our models generate coherent, semantically rich captions and perform on par with state-of-the-art chart captioning models across machine translation and text generation metrics. Through qualitative analysis, we identify six broad categories of errors that our models make that can inform future work.
LegalViz: Legal Text Visualization by Text To Diagram Generation
Legal documents including judgments and court orders require highly sophisticated legal knowledge for understanding. To disclose expert knowledge for non-experts, we explore the problem of visualizing legal texts with easy-to-understand diagrams and propose a novel dataset of LegalViz with 23 languages and 7,010 cases of legal document and visualization pairs, using the DOT graph description language of Graphviz. LegalViz provides a simple diagram from a complicated legal corpus identifying legal entities, transactions, legal sources, and statements at a glance, that are essential in each judgment. In addition, we provide new evaluation metrics for the legal diagram visualization by considering graph structures, textual similarities, and legal contents. We conducted empirical studies on few-shot and finetuning large language models for generating legal diagrams and evaluated them with these metrics, including legal content-based evaluation within 23 languages. Models trained with LegalViz outperform existing models including GPTs, confirming the effectiveness of our dataset.
How do Observable Users Decompose D3 Code? A Qualitative Study
Many toolkit developers seek to streamline the visualization programming process through structured support such as prescribed templates and example galleries. However, few projects examine how users organize their own visualization programs and how their coding choices may deviate from the intents of toolkit developers, impacting visualization prototyping and design. Further, is it possible to infer users' reasoning indirectly through their code, even when users copy code from other sources? We explore this question through a qualitative analysis of 715 D3 programs on Observable. We identify three levels of program organization based on how users decompose their code into smaller blocks: Program-, Chart-, and Component-Level code decomposition, with a strong preference for Component-Level reasoning. In a series of interviews, we corroborate that these levels reflect how Observable users reason about visualization programs. We compare common user-made components with those theorized in the Grammar of Graphics to assess overlap in user and toolkit developer reasoning. We find that, while the Grammar of Graphics covers basic visualizations well, it falls short in describing complex visualization types, especially those with animation, interaction, and parameterization components. Our findings highlight how user practices differ from formal grammars and reinforce ongoing efforts to rethink visualization toolkit support, including augmenting learning tools and AI assistants to better reflect real-world coding strategies.
Mind the Gap Between Conversations for Improved Long-Term Dialogue Generation
Knowing how to end and resume conversations over time is a natural part of communication, allowing for discussions to span weeks, months, or years. The duration of gaps between conversations dictates which topics are relevant and which questions to ask, and dialogue systems which do not explicitly model time may generate responses that are unnatural. In this work we explore the idea of making dialogue models aware of time, and present GapChat, a multi-session dialogue dataset in which the time between each session varies. While the dataset is constructed in real-time, progress on events in speakers' lives is simulated in order to create realistic dialogues occurring across a long timespan. We expose time information to the model and compare different representations of time and event progress. In human evaluation we show that time-aware models perform better in metrics that judge the relevance of the chosen topics and the information gained from the conversation.
CHART-6: Human-Centered Evaluation of Data Visualization Understanding in Vision-Language Models
Data visualizations are powerful tools for communicating patterns in quantitative data. Yet understanding any data visualization is no small feat -- succeeding requires jointly making sense of visual, numerical, and linguistic inputs arranged in a conventionalized format one has previously learned to parse. Recently developed vision-language models are, in principle, promising candidates for developing computational models of these cognitive operations. However, it is currently unclear to what degree these models emulate human behavior on tasks that involve reasoning about data visualizations. This gap reflects limitations in prior work that has evaluated data visualization understanding in artificial systems using measures that differ from those typically used to assess these abilities in humans. Here we evaluated eight vision-language models on six data visualization literacy assessments designed for humans and compared model responses to those of human participants. We found that these models performed worse than human participants on average, and this performance gap persisted even when using relatively lenient criteria to assess model performance. Moreover, while relative performance across items was somewhat correlated between models and humans, all models produced patterns of errors that were reliably distinct from those produced by human participants. Taken together, these findings suggest significant opportunities for further development of artificial systems that might serve as useful models of how humans reason about data visualizations. All code and data needed to reproduce these results are available at: https://osf.io/e25mu/?view_only=399daff5a14d4b16b09473cf19043f18.
VisPath: Automated Visualization Code Synthesis via Multi-Path Reasoning and Feedback-Driven Optimization
Unprecedented breakthroughs in Large Language Models (LLMs) has amplified its penetration into application of automated visualization code generation. Few-shot prompting and query expansion techniques have notably enhanced data visualization performance, however, still fail to overcome ambiguity and complexity of natural language queries - imposing an inherent burden for manual human intervention. To mitigate such limitations, we propose a holistic framework VisPath : A Multi-Path Reasoning and Feedback-Driven Optimization Framework for Visualization Code Generation, which systematically enhances code quality through structured reasoning and refinement. VisPath is a multi-stage framework, specially designed to handle underspecified queries. To generate a robust final visualization code, it first utilizes initial query to generate diverse reformulated queries via Chain-of-Thought (CoT) prompting, each representing a distinct reasoning path. Refined queries are used to produce candidate visualization scripts, consequently executed to generate multiple images. Comprehensively assessing correctness and quality of outputs, VisPath generates feedback for each image, which are then fed to aggregation module to generate optimal result. Extensive experiments on benchmarks including MatPlotBench and the Qwen-Agent Code Interpreter Benchmark show that VisPath significantly outperforms state-of-the-art (SOTA) methods, increased up to average 17%, offering a more reliable solution for AI-driven visualization code generation.
Inflation with Diffusion: Efficient Temporal Adaptation for Text-to-Video Super-Resolution
We propose an efficient diffusion-based text-to-video super-resolution (SR) tuning approach that leverages the readily learned capacity of pixel level image diffusion model to capture spatial information for video generation. To accomplish this goal, we design an efficient architecture by inflating the weightings of the text-to-image SR model into our video generation framework. Additionally, we incorporate a temporal adapter to ensure temporal coherence across video frames. We investigate different tuning approaches based on our inflated architecture and report trade-offs between computational costs and super-resolution quality. Empirical evaluation, both quantitative and qualitative, on the Shutterstock video dataset, demonstrates that our approach is able to perform text-to-video SR generation with good visual quality and temporal consistency. To evaluate temporal coherence, we also present visualizations in video format in https://drive.google.com/drive/folders/1YVc-KMSJqOrEUdQWVaI-Yfu8Vsfu_1aO?usp=sharing .
Audit & Repair: An Agentic Framework for Consistent Story Visualization in Text-to-Image Diffusion Models
Story visualization has become a popular task where visual scenes are generated to depict a narrative across multiple panels. A central challenge in this setting is maintaining visual consistency, particularly in how characters and objects persist and evolve throughout the story. Despite recent advances in diffusion models, current approaches often fail to preserve key character attributes, leading to incoherent narratives. In this work, we propose a collaborative multi-agent framework that autonomously identifies, corrects, and refines inconsistencies across multi-panel story visualizations. The agents operate in an iterative loop, enabling fine-grained, panel-level updates without re-generating entire sequences. Our framework is model-agnostic and flexibly integrates with a variety of diffusion models, including rectified flow transformers such as Flux and latent diffusion models such as Stable Diffusion. Quantitative and qualitative experiments show that our method outperforms prior approaches in terms of multi-panel consistency.
Data Formulator 2: Iteratively Creating Rich Visualizations with AI
To create rich visualizations, data analysts often need to iterate back and forth among data processing and chart specification to achieve their goals. To achieve this, analysts need not only proficiency in data transformation and visualization tools but also efforts to manage the branching history consisting of many different versions of data and charts. Recent LLM-powered AI systems have greatly improved visualization authoring experiences, for example by mitigating manual data transformation barriers via LLMs' code generation ability. However, these systems do not work well for iterative visualization authoring, because they often require analysts to provide, in a single turn, a text-only prompt that fully describes the complex visualization task to be performed, which is unrealistic to both users and models in many cases. In this paper, we present Data Formulator 2, an LLM-powered visualization system to address these challenges. With Data Formulator 2, users describe their visualization intent with blended UI and natural language inputs, and data transformation are delegated to AI. To support iteration, Data Formulator 2 lets users navigate their iteration history and reuse previous designs towards new ones so that they don't need to start from scratch every time. In a user study with eight participants, we observed that Data Formulator 2 allows participants to develop their own iteration strategies to complete challenging data exploration sessions.
A Review on Large Language Models for Visual Analytics
This paper provides a comprehensive review of the integration of Large Language Models (LLMs) with visual analytics, addressing their foundational concepts, capabilities, and wide-ranging applications. It begins by outlining the theoretical underpinnings of visual analytics and the transformative potential of LLMs, specifically focusing on their roles in natural language understanding, natural language generation, dialogue systems, and text-to-media transformations. The review further investigates how the synergy between LLMs and visual analytics enhances data interpretation, visualization techniques, and interactive exploration capabilities. Key tools and platforms including LIDA, Chat2VIS, Julius AI, and Zoho Analytics, along with specialized multimodal models such as ChartLlama and CharXIV, are critically evaluated. The paper discusses their functionalities, strengths, and limitations in supporting data exploration, visualization enhancement, automated reporting, and insight extraction. The taxonomy of LLM tasks, ranging from natural language understanding (NLU), natural language generation (NLG), to dialogue systems and text-to-media transformations, is systematically explored. This review provides a SWOT analysis of integrating Large Language Models (LLMs) with visual analytics, highlighting strengths like accessibility and flexibility, weaknesses such as computational demands and biases, opportunities in multimodal integration and user collaboration, and threats including privacy concerns and skill degradation. It emphasizes addressing ethical considerations and methodological improvements for effective integration.
AutoStory: Generating Diverse Storytelling Images with Minimal Human Effort
Story visualization aims to generate a series of images that match the story described in texts, and it requires the generated images to satisfy high quality, alignment with the text description, and consistency in character identities. Given the complexity of story visualization, existing methods drastically simplify the problem by considering only a few specific characters and scenarios, or requiring the users to provide per-image control conditions such as sketches. However, these simplifications render these methods incompetent for real applications. To this end, we propose an automated story visualization system that can effectively generate diverse, high-quality, and consistent sets of story images, with minimal human interactions. Specifically, we utilize the comprehension and planning capabilities of large language models for layout planning, and then leverage large-scale text-to-image models to generate sophisticated story images based on the layout. We empirically find that sparse control conditions, such as bounding boxes, are suitable for layout planning, while dense control conditions, e.g., sketches and keypoints, are suitable for generating high-quality image content. To obtain the best of both worlds, we devise a dense condition generation module to transform simple bounding box layouts into sketch or keypoint control conditions for final image generation, which not only improves the image quality but also allows easy and intuitive user interactions. In addition, we propose a simple yet effective method to generate multi-view consistent character images, eliminating the reliance on human labor to collect or draw character images.
ShowTable: Unlocking Creative Table Visualization with Collaborative Reflection and Refinement
While existing generation and unified models excel at general image generation, they struggle with tasks requiring deep reasoning, planning, and precise data-to-visual mapping abilities beyond general scenarios. To push beyond the existing limitations, we introduce a new and challenging task: creative table visualization, requiring the model to generate an infographic that faithfully and aesthetically visualizes the data from a given table. To address this challenge, we propose ShowTable, a pipeline that synergizes MLLMs with diffusion models via a progressive self-correcting process. The MLLM acts as the central orchestrator for reasoning the visual plan and judging visual errors to provide refined instructions, the diffusion execute the commands from MLLM, achieving high-fidelity results. To support this task and our pipeline, we introduce three automated data construction pipelines for training different modules. Furthermore, we introduce TableVisBench, a new benchmark with 800 challenging instances across 5 evaluation dimensions, to assess performance on this task. Experiments demonstrate that our pipeline, instantiated with different models, significantly outperforms baselines, highlighting its effective multi-modal reasoning, generation, and error correction capabilities.
Visual Storytelling with Question-Answer Plans
Visual storytelling aims to generate compelling narratives from image sequences. Existing models often focus on enhancing the representation of the image sequence, e.g., with external knowledge sources or advanced graph structures. Despite recent progress, the stories are often repetitive, illogical, and lacking in detail. To mitigate these issues, we present a novel framework which integrates visual representations with pretrained language models and planning. Our model translates the image sequence into a visual prefix, a sequence of continuous embeddings which language models can interpret. It also leverages a sequence of question-answer pairs as a blueprint plan for selecting salient visual concepts and determining how they should be assembled into a narrative. Automatic and human evaluation on the VIST benchmark (Huang et al., 2016) demonstrates that blueprint-based models generate stories that are more coherent, interesting, and natural compared to competitive baselines and state-of-the-art systems.
Story-Adapter: A Training-free Iterative Framework for Long Story Visualization
Story visualization, the task of generating coherent images based on a narrative, has seen significant advancements with the emergence of text-to-image models, particularly diffusion models. However, maintaining semantic consistency, generating high-quality fine-grained interactions, and ensuring computational feasibility remain challenging, especially in long story visualization (i.e., up to 100 frames). In this work, we propose a training-free and computationally efficient framework, termed Story-Adapter, to enhance the generative capability of long stories. Specifically, we propose an iterative paradigm to refine each generated image, leveraging both the text prompt and all generated images from the previous iteration. Central to our framework is a training-free global reference cross-attention module, which aggregates all generated images from the previous iteration to preserve semantic consistency across the entire story, while minimizing computational costs with global embeddings. This iterative process progressively optimizes image generation by repeatedly incorporating text constraints, resulting in more precise and fine-grained interactions. Extensive experiments validate the superiority of Story-Adapter in improving both semantic consistency and generative capability for fine-grained interactions, particularly in long story scenarios. The project page and associated code can be accessed via https://jwmao1.github.io/storyadapter .
Dialogue Director: Bridging the Gap in Dialogue Visualization for Multimodal Storytelling
Recent advances in AI-driven storytelling have enhanced video generation and story visualization. However, translating dialogue-centric scripts into coherent storyboards remains a significant challenge due to limited script detail, inadequate physical context understanding, and the complexity of integrating cinematic principles. To address these challenges, we propose Dialogue Visualization, a novel task that transforms dialogue scripts into dynamic, multi-view storyboards. We introduce Dialogue Director, a training-free multimodal framework comprising a Script Director, Cinematographer, and Storyboard Maker. This framework leverages large multimodal models and diffusion-based architectures, employing techniques such as Chain-of-Thought reasoning, Retrieval-Augmented Generation, and multi-view synthesis to improve script understanding, physical context comprehension, and cinematic knowledge integration. Experimental results demonstrate that Dialogue Director outperforms state-of-the-art methods in script interpretation, physical world understanding, and cinematic principle application, significantly advancing the quality and controllability of dialogue-based story visualization.
ScaleViz: Scaling Visualization Recommendation Models on Large Data
Automated visualization recommendations (vis-rec) help users to derive crucial insights from new datasets. Typically, such automated vis-rec models first calculate a large number of statistics from the datasets and then use machine-learning models to score or classify multiple visualizations choices to recommend the most effective ones, as per the statistics. However, state-of-the art models rely on very large number of expensive statistics and therefore using such models on large datasets become infeasible due to prohibitively large computational time, limiting the effectiveness of such techniques to most real world complex and large datasets. In this paper, we propose a novel reinforcement-learning (RL) based framework that takes a given vis-rec model and a time-budget from the user and identifies the best set of input statistics that would be most effective while generating the visual insights within a given time budget, using the given model. Using two state-of-the-art vis-rec models applied on three large real-world datasets, we show the effectiveness of our technique in significantly reducing time-to visualize with very small amount of introduced error. Our approach is about 10X times faster compared to the baseline approaches that introduce similar amounts of error.
TaleCrafter: Interactive Story Visualization with Multiple Characters
Accurate Story visualization requires several necessary elements, such as identity consistency across frames, the alignment between plain text and visual content, and a reasonable layout of objects in images. Most previous works endeavor to meet these requirements by fitting a text-to-image (T2I) model on a set of videos in the same style and with the same characters, e.g., the FlintstonesSV dataset. However, the learned T2I models typically struggle to adapt to new characters, scenes, and styles, and often lack the flexibility to revise the layout of the synthesized images. This paper proposes a system for generic interactive story visualization, capable of handling multiple novel characters and supporting the editing of layout and local structure. It is developed by leveraging the prior knowledge of large language and T2I models, trained on massive corpora. The system comprises four interconnected components: story-to-prompt generation (S2P), text-to-layout generation (T2L), controllable text-to-image generation (C-T2I), and image-to-video animation (I2V). First, the S2P module converts concise story information into detailed prompts required for subsequent stages. Next, T2L generates diverse and reasonable layouts based on the prompts, offering users the ability to adjust and refine the layout to their preference. The core component, C-T2I, enables the creation of images guided by layouts, sketches, and actor-specific identifiers to maintain consistency and detail across visualizations. Finally, I2V enriches the visualization process by animating the generated images. Extensive experiments and a user study are conducted to validate the effectiveness and flexibility of interactive editing of the proposed system.
From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making. Automatic chart understanding has witnessed significant advancements with the rise of large foundation models in recent years. Foundation models, such as large language models, have revolutionized various natural language processing tasks and are increasingly being applied to chart understanding tasks. This survey paper provides a comprehensive overview of the recent developments, challenges, and future directions in chart understanding within the context of these foundation models. We review fundamental building blocks crucial for studying chart understanding tasks. Additionally, we explore various tasks and their evaluation metrics and sources of both charts and textual inputs. Various modeling strategies are then examined, encompassing both classification-based and generation-based approaches, along with tool augmentation techniques that enhance chart understanding performance. Furthermore, we discuss the state-of-the-art performance of each task and discuss how we can improve the performance. Challenges and future directions are addressed, highlighting the importance of several topics, such as domain-specific charts, lack of efforts in developing evaluation metrics, and agent-oriented settings. This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis, providing valuable insights and directions for future research in chart understanding leveraging large foundation models. The studies mentioned in this paper, along with emerging new research, will be continually updated at: https://github.com/khuangaf/Awesome-Chart-Understanding.
DreamingComics: A Story Visualization Pipeline via Subject and Layout Customized Generation using Video Models
Current story visualization methods tend to position subjects solely by text and face challenges in maintaining artistic consistency. To address these limitations, we introduce DreamingComics, a layout-aware story visualization framework. We build upon a pretrained video diffusion-transformer (DiT) model, leveraging its spatiotemporal priors to enhance identity and style consistency. For layout-based position control, we propose RegionalRoPE, a region-aware positional encoding scheme that re-indexes embeddings based on the target layout. Additionally, we introduce a masked condition loss to further constrain each subject's visual features to their designated region. To infer layouts from natural language scripts, we integrate an LLM-based layout generator trained to produce comic-style layouts, enabling flexible and controllable layout conditioning. We present a comprehensive evaluation of our approach, showing a 29.2% increase in character consistency and a 36.2% increase in style similarity compared to previous methods, while displaying high spatial accuracy. Our project page is available at https://yj7082126.github.io/dreamingcomics/
ViSTA: Visual Storytelling using Multi-modal Adapters for Text-to-Image Diffusion Models
Text-to-image diffusion models have achieved remarkable success, yet generating coherent image sequences for visual storytelling remains challenging. A key challenge is effectively leveraging all previous text-image pairs, referred to as history text-image pairs, which provide contextual information for maintaining consistency across frames. Existing auto-regressive methods condition on all past image-text pairs but require extensive training, while training-free subject-specific approaches ensure consistency but lack adaptability to narrative prompts. To address these limitations, we propose a multi-modal history adapter for text-to-image diffusion models, ViSTA. It consists of (1) a multi-modal history fusion module to extract relevant history features and (2) a history adapter to condition the generation on the extracted relevant features. We also introduce a salient history selection strategy during inference, where the most salient history text-image pair is selected, improving the quality of the conditioning. Furthermore, we propose to employ a Visual Question Answering-based metric TIFA to assess text-image alignment in visual storytelling, providing a more targeted and interpretable assessment of generated images. Evaluated on the StorySalon and FlintStonesSV dataset, our proposed ViSTA model is not only consistent across different frames, but also well-aligned with the narrative text descriptions.
VolSegGS: Segmentation and Tracking in Dynamic Volumetric Scenes via Deformable 3D Gaussians
Visualization of large-scale time-dependent simulation data is crucial for domain scientists to analyze complex phenomena, but it demands significant I/O bandwidth, storage, and computational resources. To enable effective visualization on local, low-end machines, recent advances in view synthesis techniques, such as neural radiance fields, utilize neural networks to generate novel visualizations for volumetric scenes. However, these methods focus on reconstruction quality rather than facilitating interactive visualization exploration, such as feature extraction and tracking. We introduce VolSegGS, a novel Gaussian splatting framework that supports interactive segmentation and tracking in dynamic volumetric scenes for exploratory visualization and analysis. Our approach utilizes deformable 3D Gaussians to represent a dynamic volumetric scene, allowing for real-time novel view synthesis. For accurate segmentation, we leverage the view-independent colors of Gaussians for coarse-level segmentation and refine the results with an affinity field network for fine-level segmentation. Additionally, by embedding segmentation results within the Gaussians, we ensure that their deformation enables continuous tracking of segmented regions over time. We demonstrate the effectiveness of VolSegGS with several time-varying datasets and compare our solutions against state-of-the-art methods. With the ability to interact with a dynamic scene in real time and provide flexible segmentation and tracking capabilities, VolSegGS offers a powerful solution under low computational demands. This framework unlocks exciting new possibilities for time-varying volumetric data analysis and visualization.
What time is it? Temporal Analysis of Novels
Recognizing the flow of time in a story is a crucial aspect of understanding it. Prior work related to time has primarily focused on identifying temporal expressions or relative sequencing of events, but here we propose computationally annotating each line of a book with wall clock times, even in the absence of explicit time-descriptive phrases. To do so, we construct a data set of hourly time phrases from 52,183 fictional books. We then construct a time-of-day classification model that achieves an average error of 2.27 hours. Furthermore, we show that by analyzing a book in whole using dynamic programming of breakpoints, we can roughly partition a book into segments that each correspond to a particular time-of-day. This approach improves upon baselines by over two hours. Finally, we apply our model to a corpus of literature categorized by different periods in history, to show interesting trends of hourly activity throughout the past. Among several observations we find that the fraction of events taking place past 10 P.M jumps past 1880 - coincident with the advent of the electric light bulb and city lights.
TimeChara: Evaluating Point-in-Time Character Hallucination of Role-Playing Large Language Models
While Large Language Models (LLMs) can serve as agents to simulate human behaviors (i.e., role-playing agents), we emphasize the importance of point-in-time role-playing. This situates characters at specific moments in the narrative progression for three main reasons: (i) enhancing users' narrative immersion, (ii) avoiding spoilers, and (iii) fostering engagement in fandom role-playing. To accurately represent characters at specific time points, agents must avoid character hallucination, where they display knowledge that contradicts their characters' identities and historical timelines. We introduce TimeChara, a new benchmark designed to evaluate point-in-time character hallucination in role-playing LLMs. Comprising 10,895 instances generated through an automated pipeline, this benchmark reveals significant hallucination issues in current state-of-the-art LLMs (e.g., GPT-4o). To counter this challenge, we propose Narrative-Experts, a method that decomposes the reasoning steps and utilizes narrative experts to reduce point-in-time character hallucinations effectively. Still, our findings with TimeChara highlight the ongoing challenges of point-in-time character hallucination, calling for further study.
RAG Meets Temporal Graphs: Time-Sensitive Modeling and Retrieval for Evolving Knowledge
Knowledge is inherently time-sensitive and continuously evolves over time. Although current Retrieval-Augmented Generation (RAG) systems enrich LLMs with external knowledge, they largely ignore this temporal nature. This raises two challenges for RAG. First, current RAG methods lack effective time-aware representations. Same facts of different time are difficult to distinguish with vector embeddings or conventional knowledge graphs. Second, most RAG evaluations assume a static corpus, leaving a blind spot regarding update costs and retrieval stability as knowledge evolves. To make RAG time-aware, we propose Temporal GraphRAG (TG-RAG), which models external corpora as a bi-level temporal graph consisting of a temporal knowledge graph with timestamped relations and a hierarchical time graph. Multi-granularity temporal summaries are generated for each time node to capture both key events and broader trends at that time. The design supports incremental updates by extracting new temporal facts from the incoming corpus and merging them into the existing graph. The temporal graph explicitly represents identical facts at different times as distinct edges to avoid ambiguity, and the time hierarchy graph allows only generating reports for new leaf time nodes and their ancestors, ensuring effective and efficient updates. During inference, TG-RAG dynamically retrieves a subgraph within the temporal and semantic scope of the query, enabling precise evidence gathering. Moreover, we introduce ECT-QA, a time-sensitive question-answering dataset featuring both specific and abstract queries, along with a comprehensive evaluation protocol designed to assess incremental update capabilities of RAG systems. Extensive experiments show that TG-RAG significantly outperforms existing baselines, demonstrating the effectiveness of our method in handling temporal knowledge and incremental updates.
Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion
Diffusion-based generative models' impressive ability to create convincing images has captured global attention. However, their complex internal structures and operations often make them difficult for non-experts to understand. We present Diffusion Explainer, the first interactive visualization tool that explains how Stable Diffusion transforms text prompts into images. Diffusion Explainer tightly integrates a visual overview of Stable Diffusion's complex components with detailed explanations of their underlying operations, enabling users to fluidly transition between multiple levels of abstraction through animations and interactive elements. By comparing the evolutions of image representations guided by two related text prompts over refinement timesteps, users can discover the impact of prompts on image generation. Diffusion Explainer runs locally in users' web browsers without the need for installation or specialized hardware, broadening the public's education access to modern AI techniques. Our open-sourced tool is available at: https://poloclub.github.io/diffusion-explainer/.
Visualizing Large-scale and High-dimensional Data
We study the problem of visualizing large-scale and high-dimensional data in a low-dimensional (typically 2D or 3D) space. Much success has been reported recently by techniques that first compute a similarity structure of the data points and then project them into a low-dimensional space with the structure preserved. These two steps suffer from considerable computational costs, preventing the state-of-the-art methods such as the t-SNE from scaling to large-scale and high-dimensional data (e.g., millions of data points and hundreds of dimensions). We propose the LargeVis, a technique that first constructs an accurately approximated K-nearest neighbor graph from the data and then layouts the graph in the low-dimensional space. Comparing to t-SNE, LargeVis significantly reduces the computational cost of the graph construction step and employs a principled probabilistic model for the visualization step, the objective of which can be effectively optimized through asynchronous stochastic gradient descent with a linear time complexity. The whole procedure thus easily scales to millions of high-dimensional data points. Experimental results on real-world data sets demonstrate that the LargeVis outperforms the state-of-the-art methods in both efficiency and effectiveness. The hyper-parameters of LargeVis are also much more stable over different data sets.
ChartThinker: A Contextual Chain-of-Thought Approach to Optimized Chart Summarization
Data visualization serves as a critical means for presenting data and mining its valuable insights. The task of chart summarization, through natural language processing techniques, facilitates in-depth data analysis of charts. However, there still are notable deficiencies in terms of visual-language matching and reasoning ability for existing approaches. To address these limitations, this study constructs a large-scale dataset of comprehensive chart-caption pairs and fine-tuning instructions on each chart. Thanks to the broad coverage of various topics and visual styles within this dataset, better matching degree can be achieved from the view of training data. Moreover, we propose an innovative chart summarization method, ChartThinker, which synthesizes deep analysis based on chains of thought and strategies of context retrieval, aiming to improve the logical coherence and accuracy of the generated summaries. Built upon the curated datasets, our trained model consistently exhibits superior performance in chart summarization tasks, surpassing 8 state-of-the-art models over 7 evaluation metrics. Our dataset and codes are publicly accessible.
Text2Vis: A Challenging and Diverse Benchmark for Generating Multimodal Visualizations from Text
Automated data visualization plays a crucial role in simplifying data interpretation, enhancing decision-making, and improving efficiency. While large language models (LLMs) have shown promise in generating visualizations from natural language, the absence of comprehensive benchmarks limits the rigorous evaluation of their capabilities. We introduce Text2Vis, a benchmark designed to assess text-to-visualization models, covering 20+ chart types and diverse data science queries, including trend analysis, correlation, outlier detection, and predictive analytics. It comprises 1,985 samples, each with a data table, natural language query, short answer, visualization code, and annotated charts. The queries involve complex reasoning, conversational turns, and dynamic data retrieval. We benchmark 11 open-source and closed-source models, revealing significant performance gaps, highlighting key challenges, and offering insights for future advancements. To close this gap, we propose the first cross-modal actor-critic agentic framework that jointly refines the textual answer and visualization code, increasing GPT-4o`s pass rate from 26% to 42% over the direct approach and improving chart quality. We also introduce an automated LLM-based evaluation framework that enables scalable assessment across thousands of samples without human annotation, measuring answer correctness, code execution success, visualization readability, and chart accuracy. We release Text2Vis at https://github.com/vis-nlp/Text2Vis.
A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at https://github.com/facebookresearch/SlowFast
Are LLMs ready to help non-expert users to make charts of official statistics data?
In this time when biased information, deep fakes, and propaganda proliferate, the accessibility of reliable data sources is more important than ever. National statistical institutes provide curated data that contain quantitative information on a wide range of topics. However, that information is typically spread across many tables and the plain numbers may be arduous to process. Hence, this open data may be practically inaccessible. We ask the question "Are current Generative AI models capable of facilitating the identification of the right data and the fully-automatic creation of charts to provide information in visual form, corresponding to user queries?". We present a structured evaluation of recent large language models' (LLMs) capabilities to generate charts from complex data in response to user queries. Working with diverse public data from Statistics Netherlands, we assessed multiple LLMs on their ability to identify relevant data tables, perform necessary manipulations, and generate appropriate visualizations autonomously. We propose a new evaluation framework spanning three dimensions: data retrieval & pre-processing, code quality, and visual representation. Results indicate that locating and processing the correct data represents the most significant challenge. Additionally, LLMs rarely implement visualization best practices without explicit guidance. When supplemented with information about effective chart design, models showed marked improvement in representation scores. Furthermore, an agentic approach with iterative self-evaluation led to excellent performance across all evaluation dimensions. These findings suggest that LLMs' effectiveness for automated chart generation can be enhanced through appropriate scaffolding and feedback mechanisms, and that systems can already reach the necessary accuracy across the three evaluation dimensions.
VisAgent: Narrative-Preserving Story Visualization Framework
Story visualization is the transformation of narrative elements into image sequences. While existing research has primarily focused on visual contextual coherence, the deeper narrative essence of stories often remains overlooked. This limitation hinders the practical application of these approaches, as generated images frequently fail to capture the intended meaning and nuances of the narrative fully. To address these challenges, we propose VisAgent, a training-free multi-agent framework designed to comprehend and visualize pivotal scenes within a given story. By considering story distillation, semantic consistency, and contextual coherence, VisAgent employs an agentic workflow. In this workflow, multiple specialized agents collaborate to: (i) refine layered prompts based on the narrative structure and (ii) seamlessly integrate generated elements, including refined prompts, scene elements, and subject placement, into the final image. The empirically validated effectiveness confirms the framework's suitability for practical story visualization applications.
Envision: Benchmarking Unified Understanding & Generation for Causal World Process Insights
Current multimodal models aim to transcend the limitations of single-modality representations by unifying understanding and generation, often using text-to-image (T2I) tasks to calibrate semantic consistency. However, their reliance on static, single-image generation in training and evaluation leads to overfitting to static pattern matching and semantic fusion, while fundamentally hindering their ability to model dynamic processes that unfold over time. To address these constraints, we propose Envision-a causal event progression benchmark for chained text-to-multi-image generation. Grounded in world knowledge and structured by spatiotemporal causality, it reorganizes existing evaluation dimensions and includes 1,000 four-stage prompts spanning six scientific and humanities domains. To transition evaluation from single images to sequential frames and assess whether models truly internalize world knowledge while adhering to causal-temporal constraints, we introduce Envision-Score, a holistic metric integrating multi-dimensional consistency, physicality, and aesthetics. Comprehensive evaluation of 15 models (10 specialized T2I models, 5 unified models) uncovers: specialized T2I models demonstrate proficiency in aesthetic rendering yet lack intrinsic world knowledge. Unified multimodal models bridge this gap, consistently outperforming specialized counterparts in causal narrative coherence. However, even these unified architectures remain subordinate to closed-source models and struggle to overcome the core challenge of spatiotemporal consistency. This demonstrates that a focus on causally-isolated single images impedes multi-frame reasoning and generation, promoting static pattern matching over dynamic world modeling-ultimately limiting world knowledge internalization, generation.
Multiverse of Greatness: Generating Story Branches with LLMs
This paper presents Dynamic Context Prompting/Programming (DCP/P), a novel framework for interacting with LLMs to generate graph-based content with a dynamic context window history. While there is an existing study utilizing LLMs to generate a visual novel game, the previous study involved a manual process of output extraction and did not provide flexibility in generating a longer, coherent story. We evaluate DCP/P against our baseline, which does not provide context history to an LLM and only relies on the initial story data. Through objective evaluation, we show that simply providing the LLM with a summary leads to a subpar story compared to additionally providing the LLM with the proper context of the story. We also provide an extensive qualitative analysis and discussion. We qualitatively examine the quality of the objectively best-performing generated game from each approach. In addition, we examine biases in word choices and word sentiment of the generated content. We find a consistent observation with previous studies that LLMs are biased towards certain words, even with a different LLM family. Finally, we provide a comprehensive discussion on opportunities for future studies.
HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces
Temporal knowledge graphs represent temporal facts (s,p,o,tau) relating a subject s and an object o via a relation label p at time tau, where tau could be a time point or time interval. Temporal knowledge graphs may exhibit static temporal patterns at distinct points in time and dynamic temporal patterns between different timestamps. In order to learn a rich set of static and dynamic temporal patterns and apply them for inference, several embedding approaches have been suggested in the literature. However, as most of them resort to single underlying embedding spaces, their capability to model all kinds of temporal patterns was severely limited by having to adhere to the geometric property of their one embedding space. We lift this limitation by an embedding approach that maps temporal facts into a product space of several heterogeneous geometric subspaces with distinct geometric properties, i.e.\ Complex, Dual, and Split-complex spaces. In addition, we propose a temporal-geometric attention mechanism to integrate information from different geometric subspaces conveniently according to the captured relational and temporal information. Experimental results on standard temporal benchmark datasets favorably evaluate our approach against state-of-the-art models.
LLM-Assisted Visual Analytics: Opportunities and Challenges
We explore the integration of large language models (LLMs) into visual analytics (VA) systems to transform their capabilities through intuitive natural language interactions. We survey current research directions in this emerging field, examining how LLMs are integrated into data management, language interaction, visualisation generation, and language generation processes. We highlight the new possibilities that LLMs bring to VA, especially how they can change VA processes beyond the usual use cases. We especially highlight building new visualisation-language models, allowing access of a breadth of domain knowledge, multimodal interaction, and opportunities with guidance. Finally, we carefully consider the prominent challenges of using current LLMs in VA tasks. Our discussions in this paper aim to guide future researchers working on LLM-assisted VA systems and help them navigate common obstacles when developing these systems.
Multimodal Pretraining for Dense Video Captioning
Learning specific hands-on skills such as cooking, car maintenance, and home repairs increasingly happens via instructional videos. The user experience with such videos is known to be improved by meta-information such as time-stamped annotations for the main steps involved. Generating such annotations automatically is challenging, and we describe here two relevant contributions. First, we construct and release a new dense video captioning dataset, Video Timeline Tags (ViTT), featuring a variety of instructional videos together with time-stamped annotations. Second, we explore several multimodal sequence-to-sequence pretraining strategies that leverage large unsupervised datasets of videos and caption-like texts. We pretrain and subsequently finetune dense video captioning models using both YouCook2 and ViTT. We show that such models generalize well and are robust over a wide variety of instructional videos.
Prompt4Vis: Prompting Large Language Models with Example Mining and Schema Filtering for Tabular Data Visualization
Data visualization (DV) systems are increasingly recognized for their profound capability to uncover insights from vast datasets, gaining attention across both industry and academia. Crafting data queries is an essential process within certain declarative visualization languages (DVLs, e.g., Vega-Lite, EChart.). The evolution of natural language processing (NLP) technologies has streamlined the use of natural language interfaces to visualize tabular data, offering a more accessible and intuitive user experience. However, current methods for converting natural language questions into data visualization queries, such as Seq2Vis, ncNet, and RGVisNet, despite utilizing complex neural network architectures, still fall short of expectations and have great room for improvement. Large language models (LLMs) such as ChatGPT and GPT-4, have established new benchmarks in a variety of NLP tasks, fundamentally altering the landscape of the field. Inspired by these advancements, we introduce a novel framework, Prompt4Vis, leveraging LLMs and in-context learning to enhance the performance of generating data visualization from natural language. Prompt4Vis comprises two key components: (1) a multi-objective example mining module, designed to find out the truly effective examples that strengthen the LLM's in-context learning capabilities for text-to-vis; (2) a schema filtering module, which is proposed to simplify the schema of the database. Extensive experiments through 5-fold cross-validation on the NVBench dataset demonstrate the superiority of Prompt4Vis, which notably surpasses the state-of-the-art (SOTA) RGVisNet by approximately 35.9% and 71.3% on dev and test sets, respectively. To the best of our knowledge, Prompt4Vis is the first work that introduces in-context learning into the text-to-vis for generating data visualization queries.
Learning to Reason Over Time: Timeline Self-Reflection for Improved Temporal Reasoning in Language Models
Large Language Models (LLMs) have emerged as powerful tools for generating coherent text, understanding context, and performing reasoning tasks. However, they struggle with temporal reasoning, which requires processing time-related information such as event sequencing, durations, and inter-temporal relationships. These capabilities are critical for applications including question answering, scheduling, and historical analysis. In this paper, we introduce TISER, a novel framework that enhances the temporal reasoning abilities of LLMs through a multi-stage process that combines timeline construction with iterative self-reflection. Our approach leverages test-time scaling to extend the length of reasoning traces, enabling models to capture complex temporal dependencies more effectively. This strategy not only boosts reasoning accuracy but also improves the traceability of the inference process. Experimental results demonstrate state-of-the-art performance across multiple benchmarks, including out-of-distribution test sets, and reveal that TISER enables smaller open-source models to surpass larger closed-weight models on challenging temporal reasoning tasks.
StoryGPT-V: Large Language Models as Consistent Story Visualizers
Recent generative models have demonstrated impressive capabilities in generating realistic and visually pleasing images grounded on textual prompts. Nevertheless, a significant challenge remains in applying these models for the more intricate task of story visualization. Since it requires resolving pronouns (he, she, they) in the frame descriptions, i.e., anaphora resolution, and ensuring consistent characters and background synthesis across frames. Yet, the emerging Large Language Model (LLM) showcases robust reasoning abilities to navigate through ambiguous references and process extensive sequences. Therefore, we introduce StoryGPT-V, which leverages the merits of the latent diffusion (LDM) and LLM to produce images with consistent and high-quality characters grounded on given story descriptions. First, we train a character-aware LDM, which takes character-augmented semantic embedding as input and includes the supervision of the cross-attention map using character segmentation masks, aiming to enhance character generation accuracy and faithfulness. In the second stage, we enable an alignment between the output of LLM and the character-augmented embedding residing in the input space of the first-stage model. This harnesses the reasoning ability of LLM to address ambiguous references and the comprehension capability to memorize the context. We conduct comprehensive experiments on two visual story visualization benchmarks. Our model reports superior quantitative results and consistently generates accurate characters of remarkable quality with low memory consumption. Our code will be made publicly available.
Lost in Time: Clock and Calendar Understanding Challenges in Multimodal LLMs
Understanding time from visual representations is a fundamental cognitive skill, yet it remains a challenge for multimodal large language models (MLLMs). In this work, we investigate the capabilities of MLLMs in interpreting time and date through analogue clocks and yearly calendars. To facilitate this, we curated a structured dataset comprising two subsets: 1) ClockQA, which comprises various types of clock styles-standard, black-dial, no-second-hand, Roman numeral, and arrow-hand clocks-paired with time related questions; and 2) CalendarQA, which consists of yearly calendar images with questions ranging from commonly known dates (e.g., Christmas, New Year's Day) to computationally derived ones (e.g., the 100th or 153rd day of the year). We aim to analyse how MLLMs can perform visual recognition, numerical reasoning, and temporal inference when presented with time-related visual data. Our evaluations show that despite recent advancements, reliably understanding time remains a significant challenge for MLLMs.
It's High Time: A Survey of Temporal Information Retrieval and Question Answering
Time plays a critical role in how information is generated, retrieved, and interpreted. In this survey, we provide a comprehensive overview of Temporal Information Retrieval and Temporal Question Answering, two research areas aimed at handling and understanding time-sensitive information. As the amount of time-stamped content from sources like news articles, web archives, and knowledge bases increases, systems must address challenges such as detecting temporal intent, normalizing time expressions, ordering events, and reasoning over evolving or ambiguous facts. These challenges are critical across many dynamic and time-sensitive domains, from news and encyclopedias to science, history, and social media. We review both traditional approaches and modern neural methods, including those that use transformer models and Large Language Models (LLMs). We also review recent advances in temporal language modeling, multi-hop reasoning, and retrieval-augmented generation (RAG), alongside benchmark datasets and evaluation strategies that test temporal robustness, recency awareness, and generalization.
Evaluating the Semantic Profiling Abilities of LLMs for Natural Language Utterances in Data Visualization
Automatically generating data visualizations in response to human utterances on datasets necessitates a deep semantic understanding of the data utterance, including implicit and explicit references to data attributes, visualization tasks, and necessary data preparation steps. Natural Language Interfaces (NLIs) for data visualization have explored ways to infer such information, yet challenges persist due to inherent uncertainty in human speech. Recent advances in Large Language Models (LLMs) provide an avenue to address these challenges, but their ability to extract the relevant semantic information remains unexplored. In this study, we evaluate four publicly available LLMs (GPT-4, Gemini-Pro, Llama3, and Mixtral), investigating their ability to comprehend utterances even in the presence of uncertainty and identify the relevant data context and visual tasks. Our findings reveal that LLMs are sensitive to uncertainties in utterances. Despite this sensitivity, they are able to extract the relevant data context. However, LLMs struggle with inferring visualization tasks. Based on these results, we highlight future research directions on using LLMs for visualization generation.
Time Series Analysis for Education: Methods, Applications, and Future Directions
Recent advancements in the collection and analysis of sequential educational data have brought time series analysis to a pivotal position in educational research, highlighting its essential role in facilitating data-driven decision-making. However, there is a lack of comprehensive summaries that consolidate these advancements. To the best of our knowledge, this paper is the first to provide a comprehensive review of time series analysis techniques specifically within the educational context. We begin by exploring the landscape of educational data analytics, categorizing various data sources and types relevant to education. We then review four prominent time series methods-forecasting, classification, clustering, and anomaly detection-illustrating their specific application points in educational settings. Subsequently, we present a range of educational scenarios and applications, focusing on how these methods are employed to address diverse educational tasks, which highlights the practical integration of multiple time series methods to solve complex educational problems. Finally, we conclude with a discussion on future directions, including personalized learning analytics, multimodal data fusion, and the role of large language models (LLMs) in educational time series. The contributions of this paper include a detailed taxonomy of educational data, a synthesis of time series techniques with specific educational applications, and a forward-looking perspective on emerging trends and future research opportunities in educational analysis. The related papers and resources are available and regularly updated at the project page.
Self-Exploring Language Models for Explainable Link Forecasting on Temporal Graphs via Reinforcement Learning
Forecasting future links is a central task in temporal graph (TG) reasoning, requiring models to leverage historical interactions to predict upcoming ones. Traditional neural approaches, such as temporal graph neural networks, achieve strong performance but lack explainability and cannot be applied to unseen graphs without retraining. Recent studies have begun to explore using large language models (LLMs) for graph reasoning, but most of them are constrained to static graphs or small synthetic TGs and lack the evaluation of the quality of reasoning traces generated by LLMs. In this work, we present Reasoning-Enhanced Learning for Temporal Graphs (ReaL-TG), a reinforcement learning framework that fine-tunes LLMs to perform explainable link forecasting on real-world TGs. ReaL-TG uses outcome-based reward to encourage models to self-explore reasoning strategies from graph structure and to produce explanations that directly justify their predictions. To enable evaluation on LLM-generated reasoning traces, we propose a new evaluation protocol combining ranking metrics with an LLM-as-a-Judge system that assesses both the quality of reasoning and the impact of hallucinations. Experiments with ReaL-TG-4B, obtained by fine-tuning Qwen3-4B under our framework, show that it outperforms much larger frontier LLMs, including GPT-5 mini, on ranking metrics, while producing high-quality explanations confirmed by both the LLM judge and human evaluation.
VRBench: A Benchmark for Multi-Step Reasoning in Long Narrative Videos
We present VRBench, the first long narrative video benchmark crafted for evaluating large models' multi-step reasoning capabilities, addressing limitations in existing evaluations that overlook temporal reasoning and procedural validity. It comprises 1,010 long videos (with an average duration of 1.6 hours), along with 9,468 human-labeled multi-step question-answering pairs and 30,292 reasoning steps with timestamps. These videos are curated via a multi-stage filtering process including expert inter-rater reviewing to prioritize plot coherence. We develop a human-AI collaborative framework that generates coherent reasoning chains, each requiring multiple temporally grounded steps, spanning seven types (e.g., event attribution, implicit inference). VRBench designs a multi-phase evaluation pipeline that assesses models at both the outcome and process levels. Apart from the MCQs for the final results, we propose a progress-level LLM-guided scoring metric to evaluate the quality of the reasoning chain from multiple dimensions comprehensively. Through extensive evaluations of 12 LLMs and 16 VLMs on VRBench, we undertake a thorough analysis and provide valuable insights that advance the field of multi-step reasoning.
TimeGraphs: Graph-based Temporal Reasoning
Many real-world systems exhibit temporal, dynamic behaviors, which are captured as time series of complex agent interactions. To perform temporal reasoning, current methods primarily encode temporal dynamics through simple sequence-based models. However, in general these models fail to efficiently capture the full spectrum of rich dynamics in the input, since the dynamics is not uniformly distributed. In particular, relevant information might be harder to extract and computing power is wasted for processing all individual timesteps, even if they contain no significant changes or no new information. Here we propose TimeGraphs, a novel approach that characterizes dynamic interactions as a hierarchical temporal graph, diverging from traditional sequential representations. Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales. Adopting a self-supervised method, TimeGraphs constructs a multi-level event hierarchy from a temporal input, which is then used to efficiently reason about the unevenly distributed dynamics. This construction process is scalable and incremental to accommodate streaming data. We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset. The results demonstrate both robustness and efficiency of TimeGraphs on a range of temporal reasoning tasks. Our approach obtains state-of-the-art performance and leads to a performance increase of up to 12.2% on event prediction and recognition tasks over current approaches. Our experiments further demonstrate a wide array of capabilities including zero-shot generalization, robustness in case of data sparsity, and adaptability to streaming data flow.
LTGS: Long-Term Gaussian Scene Chronology From Sparse View Updates
Recent advances in novel-view synthesis can create the photo-realistic visualization of real-world environments from conventional camera captures. However, acquiring everyday environments from casual captures faces challenges due to frequent scene changes, which require dense observations both spatially and temporally. We propose long-term Gaussian scene chronology from sparse-view updates, coined LTGS, an efficient scene representation that can embrace everyday changes from highly under-constrained casual captures. Given an incomplete and unstructured Gaussian splatting representation obtained from an initial set of input images, we robustly model the long-term chronology of the scene despite abrupt movements and subtle environmental variations. We construct objects as template Gaussians, which serve as structural, reusable priors for shared object tracks. Then, the object templates undergo a further refinement pipeline that modulates the priors to adapt to temporally varying environments based on few-shot observations. Once trained, our framework is generalizable across multiple time steps through simple transformations, significantly enhancing the scalability for a temporal evolution of 3D environments. As existing datasets do not explicitly represent the long-term real-world changes with a sparse capture setup, we collect real-world datasets to evaluate the practicality of our pipeline. Experiments demonstrate that our framework achieves superior reconstruction quality compared to other baselines while enabling fast and light-weight updates.
Bridging Past and Future: End-to-End Autonomous Driving with Historical Prediction and Planning
End-to-end autonomous driving unifies tasks in a differentiable framework, enabling planning-oriented optimization and attracting growing attention. Current methods aggregate historical information either through dense historical bird's-eye-view (BEV) features or by querying a sparse memory bank, following paradigms inherited from detection. However, we argue that these paradigms either omit historical information in motion planning or fail to align with its multi-step nature, which requires predicting or planning multiple future time steps. In line with the philosophy of future is a continuation of past, we propose BridgeAD, which reformulates motion and planning queries as multi-step queries to differentiate the queries for each future time step. This design enables the effective use of historical prediction and planning by applying them to the appropriate parts of the end-to-end system based on the time steps, which improves both perception and motion planning. Specifically, historical queries for the current frame are combined with perception, while queries for future frames are integrated with motion planning. In this way, we bridge the gap between past and future by aggregating historical insights at every time step, enhancing the overall coherence and accuracy of the end-to-end autonomous driving pipeline. Extensive experiments on the nuScenes dataset in both open-loop and closed-loop settings demonstrate that BridgeAD achieves state-of-the-art performance.
Benchmark Datasets for Lead-Lag Forecasting on Social Platforms
Social and collaborative platforms emit multivariate time-series traces in which early interactions-such as views, likes, or downloads-are followed, sometimes months or years later, by higher impact like citations, sales, or reviews. We formalize this setting as Lead-Lag Forecasting (LLF): given an early usage channel (the lead), predict a correlated but temporally shifted outcome channel (the lag). Despite the ubiquity of such patterns, LLF has not been treated as a unified forecasting problem within the time-series community, largely due to the absence of standardized datasets. To anchor research in LLF, here we present two high-volume benchmark datasets-arXiv (accesses -> citations of 2.3M papers) and GitHub (pushes/stars -> forks of 3M repositories)-and outline additional domains with analogous lead-lag dynamics, including Wikipedia (page views -> edits), Spotify (streams -> concert attendance), e-commerce (click-throughs -> purchases), and LinkedIn profile (views -> messages). Our datasets provide ideal testbeds for lead-lag forecasting, by capturing long-horizon dynamics across years, spanning the full spectrum of outcomes, and avoiding survivorship bias in sampling. We documented all technical details of data curation and cleaning, verified the presence of lead-lag dynamics through statistical and classification tests, and benchmarked parametric and non-parametric baselines for regression. Our study establishes LLF as a novel forecasting paradigm and lays an empirical foundation for its systematic exploration in social and usage data. Our data portal with downloads and documentation is available at https://lead-lag-forecasting.github.io/.
GraphiMind: LLM-centric Interface for Information Graphics Design
Information graphics are pivotal in effective information dissemination and storytelling. However, creating such graphics is extremely challenging for non-professionals, since the design process requires multifaceted skills and comprehensive knowledge. Thus, despite the many available authoring tools, a significant gap remains in enabling non-experts to produce compelling information graphics seamlessly, especially from scratch. Recent breakthroughs show that Large Language Models (LLMs), especially when tool-augmented, can autonomously engage with external tools, making them promising candidates for enabling innovative graphic design applications. In this work, we propose a LLM-centric interface with the agent GraphiMind for automatic generation, recommendation, and composition of information graphics design resources, based on user intent expressed through natural language. Our GraphiMind integrates a Textual Conversational Interface, powered by tool-augmented LLM, with a traditional Graphical Manipulation Interface, streamlining the entire design process from raw resource curation to composition and refinement. Extensive evaluations highlight our tool's proficiency in simplifying the design process, opening avenues for its use by non-professional users. Moreover, we spotlight the potential of LLMs in reshaping the domain of information graphics design, offering a blend of automation, versatility, and user-centric interactivity.
DiagrammerGPT: Generating Open-Domain, Open-Platform Diagrams via LLM Planning
Text-to-image (T2I) generation has seen significant growth over the past few years. Despite this, there has been little work on generating diagrams with T2I models. A diagram is a symbolic/schematic representation that explains information using structurally rich and spatially complex visualizations (e.g., a dense combination of related objects, text labels, directional arrows, connection lines, etc.). Existing state-of-the-art T2I models often fail at diagram generation because they lack fine-grained object layout control when many objects are densely connected via complex relations such as arrows/lines and also often fail to render comprehensible text labels. To address this gap, we present DiagrammerGPT, a novel two-stage text-to-diagram generation framework that leverages the layout guidance capabilities of LLMs (e.g., GPT-4) to generate more accurate open-domain, open-platform diagrams. In the first stage, we use LLMs to generate and iteratively refine 'diagram plans' (in a planner-auditor feedback loop) which describe all the entities (objects and text labels), their relationships (arrows or lines), and their bounding box layouts. In the second stage, we use a diagram generator, DiagramGLIGEN, and a text label rendering module to generate diagrams following the diagram plans. To benchmark the text-to-diagram generation task, we introduce AI2D-Caption, a densely annotated diagram dataset built on top of the AI2D dataset. We show quantitatively and qualitatively that our DiagrammerGPT framework produces more accurate diagrams, outperforming existing T2I models. We also provide comprehensive analysis including open-domain diagram generation, vector graphic diagram generation in different platforms, human-in-the-loop diagram plan editing, and multimodal planner/auditor LLMs (e.g., GPT-4Vision). We hope our work can inspire further research on diagram generation via T2I models and LLMs.
Multimodal Language Models for Domain-Specific Procedural Video Summarization
Videos serve as a powerful medium to convey ideas, tell stories, and provide detailed instructions, especially through long-format tutorials. Such tutorials are valuable for learning new skills at one's own pace, yet they can be overwhelming due to their length and dense content. Viewers often seek specific information, like precise measurements or step-by-step execution details, making it essential to extract and summarize key segments efficiently. An intelligent, time-sensitive video assistant capable of summarizing and detecting highlights in long videos is highly sought after. Recent advancements in Multimodal Large Language Models offer promising solutions to develop such an assistant. Our research explores the use of multimodal models to enhance video summarization and step-by-step instruction generation within specific domains. These models need to understand temporal events and relationships among actions across video frames. Our approach focuses on fine-tuning TimeChat to improve its performance in specific domains: cooking and medical procedures. By training the model on domain-specific datasets like Tasty for cooking and MedVidQA for medical procedures, we aim to enhance its ability to generate concise, accurate summaries of instructional videos. We curate and restructure these datasets to create high-quality video-centric instruction data. Our findings indicate that when finetuned on domain-specific procedural data, TimeChat can significantly improve the extraction and summarization of key instructional steps in long-format videos. This research demonstrates the potential of specialized multimodal models to assist with practical tasks by providing personalized, step-by-step guidance tailored to the unique aspects of each domain.
A Survey on Future Frame Synthesis: Bridging Deterministic and Generative Approaches
Future Frame Synthesis (FFS), the task of generating subsequent video frames from context, represents a core challenge in machine intelligence and a cornerstone for developing predictive world models. This survey provides a comprehensive analysis of the FFS landscape, charting its critical evolution from deterministic algorithms focused on pixel-level accuracy to modern generative paradigms that prioritize semantic coherence and dynamic plausibility. We introduce a novel taxonomy organized by algorithmic stochasticity, which not only categorizes existing methods but also reveals the fundamental drivers--advances in architectures, datasets, and computational scale--behind this paradigm shift. Critically, our analysis identifies a bifurcation in the field's trajectory: one path toward efficient, real-time prediction, and another toward large-scale, generative world simulation. By pinpointing key challenges and proposing concrete research questions for both frontiers, this survey serves as an essential guide for researchers aiming to advance the frontiers of visual dynamic modeling.
ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting
The success of large pretrained models in natural language processing (NLP) and computer vision (CV) has opened new avenues for constructing foundation models for time series forecasting (TSF). Traditional TSF foundation models rely heavily on numerical data fitting. In contrast, the human brain is inherently skilled at processing visual information, prefer predicting future trends by observing visualized sequences. From a biomimetic perspective, utilizing models to directly process numerical sequences might not be the most effective route to achieving Artificial General Intelligence (AGI). This paper proposes ViTime, a novel Visual Intelligence-based foundation model for TSF. ViTime overcomes the limitations of numerical time series data fitting by utilizing visual data processing paradigms and employs a innovative data synthesis method during training, called Real Time Series (RealTS). Experiments on a diverse set of previously unseen forecasting datasets demonstrate that ViTime achieves state-of-the-art zero-shot performance, even surpassing the best individually trained supervised models in some situations. These findings suggest that visual intelligence can significantly enhance time series analysis and forecasting, paving the way for more advanced and versatile models in the field. The code for our framework is accessible at https://github.com/IkeYang/ViTime.
SuperNOVA: Design Strategies and Opportunities for Interactive Visualization in Computational Notebooks
Computational notebooks such as Jupyter Notebook have become data scientists' de facto programming environments. Many visualization researchers and practitioners have developed interactive visualization tools that support notebooks. However, little is known about the appropriate design of visual analytics (VA) tools in notebooks. To bridge this critical research gap, we investigate the design strategies in this space by analyzing 159 notebook VA tools and their users' feedback. Our analysis encompasses 62 systems from academic papers and 103 systems sourced from a pool of 55k notebooks containing interactive visualizations that we obtain via scraping 8.6 million notebooks on GitHub. We also examine findings from 15 user studies and user feedback in 379 GitHub issues. Through this work, we identify unique design opportunities and considerations for future notebook VA tools, such as using and manipulating multimodal data in notebooks as well as balancing the degree of visualization-notebook integration. Finally, we develop SuperNOVA, an open-source interactive tool to help researchers explore existing notebook VA tools and search for related work.
Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting
Recent advancements in time series forecasting have explored augmenting models with text or vision modalities to improve accuracy. While text provides contextual understanding, it often lacks fine-grained temporal details. Conversely, vision captures intricate temporal patterns but lacks semantic context, limiting the complementary potential of these modalities. To address this, we propose \method, a novel multimodal framework that leverages pre-trained Vision-Language Models (VLMs) to bridge temporal, visual, and textual modalities for enhanced forecasting. Our framework comprises three key components: (1) a Retrieval-Augmented Learner, which extracts enriched temporal features through memory bank interactions; (2) a Vision-Augmented Learner, which encodes time series as informative images; and (3) a Text-Augmented Learner, which generates contextual textual descriptions. These components collaborate with frozen pre-trained VLMs to produce multimodal embeddings, which are then fused with temporal features for final prediction. Extensive experiments demonstrate that Time-VLM achieves superior performance, particularly in few-shot and zero-shot scenarios, thereby establishing a new direction for multimodal time series forecasting. Code is available at https://github.com/CityMind-Lab/ICML25-TimeVLM.
ChroKnowledge: Unveiling Chronological Knowledge of Language Models in Multiple Domains
Large language models (LLMs) have significantly impacted many aspects of our lives. However, assessing and ensuring their chronological knowledge remains challenging. Existing approaches fall short in addressing the accumulative nature of knowledge, often relying on a single time stamp. To overcome this, we introduce ChroKnowBench, a benchmark dataset designed to evaluate chronologically accumulated knowledge across three key aspects: multiple domains, time dependency, temporal state. Our benchmark distinguishes between knowledge that evolves (e.g., scientific discoveries, amended laws) and knowledge that remain constant (e.g., mathematical truths, commonsense facts). Building on this benchmark, we present ChroKnowledge (Chronological Categorization of Knowledge), a novel sampling-based framework for evaluating and updating LLMs' non-parametric chronological knowledge. Our evaluation shows: (1) The ability of eliciting temporal knowledge varies depending on the data format that model was trained on. (2) LLMs partially recall knowledge or show a cut-off at temporal boundaries rather than recalling all aspects of knowledge correctly. Thus, we apply our ChroKnowPrompt, an in-depth prompting to elicit chronological knowledge by traversing step-by-step through the surrounding time spans. We observe that our framework successfully updates the overall knowledge across the entire timeline in both the biomedical domain (+11.9%) and the general domain (+2.8%), demonstrating its effectiveness in refining temporal knowledge. This non-parametric approach also enables knowledge updates not only in open-source models but also in proprietary LLMs, ensuring comprehensive applicability across model types. We perform a comprehensive analysis based on temporal characteristics of ChroKnowPrompt and validate the potential of various models to elicit intrinsic temporal knowledge through our method.
AVIS: Autonomous Visual Information Seeking with Large Language Models
In this paper, we propose an autonomous information seeking visual question answering framework, AVIS. Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools and to investigate their outputs, thereby acquiring the indispensable knowledge needed to provide answers to the posed questions. Responding to visual questions that necessitate external knowledge, such as "What event is commemorated by the building depicted in this image?", is a complex task. This task presents a combinatorial search space that demands a sequence of actions, including invoking APIs, analyzing their responses, and making informed decisions. We conduct a user study to collect a variety of instances of human decision-making when faced with this task. This data is then used to design a system comprised of three components: an LLM-powered planner that dynamically determines which tool to use next, an LLM-powered reasoner that analyzes and extracts key information from the tool outputs, and a working memory component that retains the acquired information throughout the process. The collected user behavior serves as a guide for our system in two key ways. First, we create a transition graph by analyzing the sequence of decisions made by users. This graph delineates distinct states and confines the set of actions available at each state. Second, we use examples of user decision-making to provide our LLM-powered planner and reasoner with relevant contextual instances, enhancing their capacity to make informed decisions. We show that AVIS achieves state-of-the-art results on knowledge-intensive visual question answering benchmarks such as Infoseek and OK-VQA.
Time-R1: Towards Comprehensive Temporal Reasoning in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities but lack robust temporal intelligence, struggling to integrate reasoning about the past with predictions and plausible generations of the future. Meanwhile, existing methods typically target isolated temporal skills, such as question answering about past events or basic forecasting, and exhibit poor generalization, particularly when dealing with events beyond their knowledge cutoff or requiring creative foresight. To address these limitations, we introduce Time-R1, the first framework to endow a moderate-sized (3B-parameter) LLM with comprehensive temporal abilities: understanding, prediction, and creative generation. Our approach features a novel three-stage development path; the first two constitute a reinforcement learning (RL) curriculum driven by a meticulously designed dynamic rule-based reward system. This framework progressively builds (1) foundational temporal understanding and logical event-time mappings from historical data, (2) future event prediction skills for events beyond its knowledge cutoff, and finally (3) enables remarkable generalization to creative future scenario generation without any fine-tuning. Strikingly, experiments demonstrate that Time-R1 outperforms models over 200 times larger, including the state-of-the-art 671B DeepSeek-R1, on highly challenging future event prediction and creative scenario generation benchmarks. This work provides strong evidence that thoughtfully engineered, progressive RL fine-tuning allows smaller, efficient models to achieve superior temporal performance, offering a practical and scalable path towards truly time-aware AI. To foster further research, we also release Time-Bench, a large-scale multi-task temporal reasoning dataset derived from 10 years of news data, and our series of Time-R1 checkpoints.
Narrative Media Framing in Political Discourse
Narrative frames are a powerful way of conceptualizing and communicating complex, controversial ideas, however automated frame analysis to date has mostly overlooked this framing device. In this paper, we connect elements of narrativity with fundamental aspects of framing, and present a framework which formalizes and operationalizes such aspects. We annotate and release a data set of news articles in the climate change domain, analyze the dominance of narrative frame components across political leanings, and test LLMs in their ability to predict narrative frames and their components. Finally, we apply our framework in an unsupervised way to elicit components of narrative framing in a second domain, the COVID-19 crisis, where our predictions are congruent with prior theoretical work showing the generalizability of our approach.
SpaceTimePilot: Generative Rendering of Dynamic Scenes Across Space and Time
We present SpaceTimePilot, a video diffusion model that disentangles space and time for controllable generative rendering. Given a monocular video, SpaceTimePilot can independently alter the camera viewpoint and the motion sequence within the generative process, re-rendering the scene for continuous and arbitrary exploration across space and time. To achieve this, we introduce an effective animation time-embedding mechanism in the diffusion process, allowing explicit control of the output video's motion sequence with respect to that of the source video. As no datasets provide paired videos of the same dynamic scene with continuous temporal variations, we propose a simple yet effective temporal-warping training scheme that repurposes existing multi-view datasets to mimic temporal differences. This strategy effectively supervises the model to learn temporal control and achieve robust space-time disentanglement. To further enhance the precision of dual control, we introduce two additional components: an improved camera-conditioning mechanism that allows altering the camera from the first frame, and CamxTime, the first synthetic space-and-time full-coverage rendering dataset that provides fully free space-time video trajectories within a scene. Joint training on the temporal-warping scheme and the CamxTime dataset yields more precise temporal control. We evaluate SpaceTimePilot on both real-world and synthetic data, demonstrating clear space-time disentanglement and strong results compared to prior work. Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot
VisJudge-Bench: Aesthetics and Quality Assessment of Visualizations
Visualization, a domain-specific yet widely used form of imagery, is an effective way to turn complex datasets into intuitive insights, and its value depends on whether data are faithfully represented, clearly communicated, and aesthetically designed. However, evaluating visualization quality is challenging: unlike natural images, it requires simultaneous judgment across data encoding accuracy, information expressiveness, and visual aesthetics. Although multimodal large language models (MLLMs) have shown promising performance in aesthetic assessment of natural images, no systematic benchmark exists for measuring their capabilities in evaluating visualizations. To address this, we propose VisJudge-Bench, the first comprehensive benchmark for evaluating MLLMs' performance in assessing visualization aesthetics and quality. It contains 3,090 expert-annotated samples from real-world scenarios, covering single visualizations, multiple visualizations, and dashboards across 32 chart types. Systematic testing on this benchmark reveals that even the most advanced MLLMs (such as GPT-5) still exhibit significant gaps compared to human experts in judgment, with a Mean Absolute Error (MAE) of 0.551 and a correlation with human ratings of only 0.429. To address this issue, we propose VisJudge, a model specifically designed for visualization aesthetics and quality assessment. Experimental results demonstrate that VisJudge significantly narrows the gap with human judgment, reducing the MAE to 0.442 (a 19.8% reduction) and increasing the consistency with human experts to 0.681 (a 58.7% improvement) compared to GPT-5. The benchmark is available at https://github.com/HKUSTDial/VisJudgeBench.
Time is Encoded in the Weights of Finetuned Language Models
We present time vectors, a simple tool to customize language models to new time periods. Time vectors are created by finetuning a language model on data from a single time (e.g., a year or month), and then subtracting the weights of the original pretrained model. This vector specifies a direction in weight space that, as our experiments show, improves performance on text from that time period. Time vectors specialized to adjacent time periods appear to be positioned closer together in a manifold. Using this structure, we interpolate between time vectors to induce new models that perform better on intervening and future time periods, without any additional training. We demonstrate the consistency of our findings across different tasks, domains, model sizes, and time scales. Our results suggest that time is encoded in the weight space of finetuned models.
PAL-UI: Planning with Active Look-back for Vision-Based GUI Agents
Graphical User Interface (GUI) agents powered by Multimodal Large Language Models (MLLMs) promise human-like interaction with software applications, yet long-horizon tasks remain challenging due to memory limitations. Existing approaches either truncate history or rely on simple textual summaries, which risk losing critical information when past visual details become necessary for future decisions. In this paper, we propose PAL-UI (Planning with Active Look-back), a novel framework that enables GUI agents to adaptively retrieve past observations when required. PAL-UI combines a dual-level summarization agent, capturing both observation-level cues and action-level outcomes, with a dedicated retrieval tool that allows the agent to recall specific historical screenshots during planning. We curate a step-level instruction dataset of 8.6K samples from mobile GUI navigation trajectories and train PAL-UI-3B and PAL-UI-7B models based on Qwen2.5-VL. Extensive experiments demonstrate that PAL-UI significantly outperforms baseline models and prior methods in mobile GUI navigation tasks, even under data-efficient settings. Moreover, PAL-UI exhibits strong cross-domain generalization, achieving notable improvements in web navigation without additional training. Our work highlights the potential of active memory retrieval for long-horizon planning capabilities of vision-based GUI agents.
WizMap: Scalable Interactive Visualization for Exploring Large Machine Learning Embeddings
Machine learning models often learn latent embedding representations that capture the domain semantics of their training data. These embedding representations are valuable for interpreting trained models, building new models, and analyzing new datasets. However, interpreting and using embeddings can be challenging due to their opaqueness, high dimensionality, and the large size of modern datasets. To tackle these challenges, we present WizMap, an interactive visualization tool to help researchers and practitioners easily explore large embeddings. With a novel multi-resolution embedding summarization method and a familiar map-like interaction design, WizMap enables users to navigate and interpret embedding spaces with ease. Leveraging modern web technologies such as WebGL and Web Workers, WizMap scales to millions of embedding points directly in users' web browsers and computational notebooks without the need for dedicated backend servers. WizMap is open-source and available at the following public demo link: https://poloclub.github.io/wizmap.
A Survey of Reasoning and Agentic Systems in Time Series with Large Language Models
Time series reasoning treats time as a first-class axis and incorporates intermediate evidence directly into the answer. This survey defines the problem and organizes the literature by reasoning topology with three families: direct reasoning in one step, linear chain reasoning with explicit intermediates, and branch-structured reasoning that explores, revises, and aggregates. The topology is crossed with the main objectives of the field, including traditional time series analysis, explanation and understanding, causal inference and decision making, and time series generation, while a compact tag set spans these axes and captures decomposition and verification, ensembling, tool use, knowledge access, multimodality, agent loops, and LLM alignment regimes. Methods and systems are reviewed across domains, showing what each topology enables and where it breaks down in faithfulness or robustness, along with curated datasets, benchmarks, and resources that support study and deployment (https://github.com/blacksnail789521/Time-Series-Reasoning-Survey). Evaluation practices that keep evidence visible and temporally aligned are highlighted, and guidance is distilled on matching topology to uncertainty, grounding with observable artifacts, planning for shift and streaming, and treating cost and latency as design budgets. We emphasize that reasoning structures must balance capacity for grounding and self-correction against computational cost and reproducibility, while future progress will likely depend on benchmarks that tie reasoning quality to utility and on closed-loop testbeds that trade off cost and risk under shift-aware, streaming, and long-horizon settings. Taken together, these directions mark a shift from narrow accuracy toward reliability at scale, enabling systems that not only analyze but also understand, explain, and act on dynamic worlds with traceable evidence and credible outcomes.
Narrative Studio: Visual narrative exploration using LLMs and Monte Carlo Tree Search
Interactive storytelling benefits from planning and exploring multiple 'what if' scenarios. Modern LLMs are useful tools for ideation and exploration, but current chat-based user interfaces restrict users to a single linear flow. To address this limitation, we propose Narrative Studio -- a novel in-browser narrative exploration environment featuring a tree-like interface that allows branching exploration from user-defined points in a story. Each branch is extended via iterative LLM inference guided by system and user-defined prompts. Additionally, we employ Monte Carlo Tree Search (MCTS) to automatically expand promising narrative paths based on user-specified criteria, enabling more diverse and robust story development. We also allow users to enhance narrative coherence by grounding the generated text in an entity graph that represents the actors and environment of the story.
Multimodal Self-Instruct: Synthetic Abstract Image and Visual Reasoning Instruction Using Language Model
Although most current large multimodal models (LMMs) can already understand photos of natural scenes and portraits, their understanding of abstract images, e.g., charts, maps, or layouts, and visual reasoning capabilities remains quite rudimentary. They often struggle with simple daily tasks, such as reading time from a clock, understanding a flowchart, or planning a route using a road map. In light of this, we design a multi-modal self-instruct, utilizing large language models and their code capabilities to synthesize massive abstract images and visual reasoning instructions across daily scenarios. Our strategy effortlessly creates a multimodal benchmark with 11,193 instructions for eight visual scenarios: charts, tables, simulated maps, dashboards, flowcharts, relation graphs, floor plans, and visual puzzles. This benchmark, constructed with simple lines and geometric elements, exposes the shortcomings of most advanced LMMs like Claude-3.5-Sonnet and GPT-4o in abstract image understanding, spatial relations reasoning, and visual element induction. Besides, to verify the quality of our synthetic data, we fine-tune an LMM using 62,476 synthetic chart, table and road map instructions. The results demonstrate improved chart understanding and map navigation performance, and also demonstrate potential benefits for other visual reasoning tasks. Our code is available at: https://github.com/zwq2018/Multi-modal-Self-instruct.
Exploring Temporally-Aware Features for Point Tracking
Point tracking in videos is a fundamental task with applications in robotics, video editing, and more. While many vision tasks benefit from pre-trained feature backbones to improve generalizability, point tracking has primarily relied on simpler backbones trained from scratch on synthetic data, which may limit robustness in real-world scenarios. Additionally, point tracking requires temporal awareness to ensure coherence across frames, but using temporally-aware features is still underexplored. Most current methods often employ a two-stage process: an initial coarse prediction followed by a refinement stage to inject temporal information and correct errors from the coarse stage. These approach, however, is computationally expensive and potentially redundant if the feature backbone itself captures sufficient temporal information. In this work, we introduce Chrono, a feature backbone specifically designed for point tracking with built-in temporal awareness. Leveraging pre-trained representations from self-supervised learner DINOv2 and enhanced with a temporal adapter, Chrono effectively captures long-term temporal context, enabling precise prediction even without the refinement stage. Experimental results demonstrate that Chrono achieves state-of-the-art performance in a refiner-free setting on the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets, among common feature backbones used in point tracking as well as DINOv2, with exceptional efficiency. Project page: https://cvlab-kaist.github.io/Chrono/
BroadWay: Boost Your Text-to-Video Generation Model in a Training-free Way
The text-to-video (T2V) generation models, offering convenient visual creation, have recently garnered increasing attention. Despite their substantial potential, the generated videos may present artifacts, including structural implausibility, temporal inconsistency, and a lack of motion, often resulting in near-static video. In this work, we have identified a correlation between the disparity of temporal attention maps across different blocks and the occurrence of temporal inconsistencies. Additionally, we have observed that the energy contained within the temporal attention maps is directly related to the magnitude of motion amplitude in the generated videos. Based on these observations, we present BroadWay, a training-free method to improve the quality of text-to-video generation without introducing additional parameters, augmenting memory or sampling time. Specifically, BroadWay is composed of two principal components: 1) Temporal Self-Guidance improves the structural plausibility and temporal consistency of generated videos by reducing the disparity between the temporal attention maps across various decoder blocks. 2) Fourier-based Motion Enhancement enhances the magnitude and richness of motion by amplifying the energy of the map. Extensive experiments demonstrate that BroadWay significantly improves the quality of text-to-video generation with negligible additional cost.
Generating Animated Layouts as Structured Text Representations
Despite the remarkable progress in text-to-video models, achieving precise control over text elements and animated graphics remains a significant challenge, especially in applications such as video advertisements. To address this limitation, we introduce Animated Layout Generation, a novel approach to extend static graphic layouts with temporal dynamics. We propose a Structured Text Representation for fine-grained video control through hierarchical visual elements. To demonstrate the effectiveness of our approach, we present VAKER (Video Ad maKER), a text-to-video advertisement generation pipeline that combines a three-stage generation process with Unstructured Text Reasoning for seamless integration with LLMs. VAKER fully automates video advertisement generation by incorporating dynamic layout trajectories for objects and graphics across specific video frames. Through extensive evaluations, we demonstrate that VAKER significantly outperforms existing methods in generating video advertisements. Project Page: https://yeonsangshin.github.io/projects/Vaker
TimelineQA: A Benchmark for Question Answering over Timelines
Lifelogs are descriptions of experiences that a person had during their life. Lifelogs are created by fusing data from the multitude of digital services, such as online photos, maps, shopping and content streaming services. Question answering over lifelogs can offer personal assistants a critical resource when they try to provide advice in context. However, obtaining answers to questions over lifelogs is beyond the current state of the art of question answering techniques for a variety of reasons, the most pronounced of which is that lifelogs combine free text with some degree of structure such as temporal and geographical information. We create and publicly release TimelineQA1, a benchmark for accelerating progress on querying lifelogs. TimelineQA generates lifelogs of imaginary people. The episodes in the lifelog range from major life episodes such as high school graduation to those that occur on a daily basis such as going for a run. We describe a set of experiments on TimelineQA with several state-of-the-art QA models. Our experiments reveal that for atomic queries, an extractive QA system significantly out-performs a state-of-the-art retrieval-augmented QA system. For multi-hop queries involving aggregates, we show that the best result is obtained with a state-of-the-art table QA technique, assuming the ground truth set of episodes for deriving the answer is available.
OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding?
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
End-to-End Training for Autoregressive Video Diffusion via Self-Resampling
Autoregressive video diffusion models hold promise for world simulation but are vulnerable to exposure bias arising from the train-test mismatch. While recent works address this via post-training, they typically rely on a bidirectional teacher model or online discriminator. To achieve an end-to-end solution, we introduce Resampling Forcing, a teacher-free framework that enables training autoregressive video models from scratch and at scale. Central to our approach is a self-resampling scheme that simulates inference-time model errors on history frames during training. Conditioned on these degraded histories, a sparse causal mask enforces temporal causality while enabling parallel training with frame-level diffusion loss. To facilitate efficient long-horizon generation, we further introduce history routing, a parameter-free mechanism that dynamically retrieves the top-k most relevant history frames for each query. Experiments demonstrate that our approach achieves performance comparable to distillation-based baselines while exhibiting superior temporal consistency on longer videos owing to native-length training.
Vid3D: Synthesis of Dynamic 3D Scenes using 2D Video Diffusion
A recent frontier in computer vision has been the task of 3D video generation, which consists of generating a time-varying 3D representation of a scene. To generate dynamic 3D scenes, current methods explicitly model 3D temporal dynamics by jointly optimizing for consistency across both time and views of the scene. In this paper, we instead investigate whether it is necessary to explicitly enforce multiview consistency over time, as current approaches do, or if it is sufficient for a model to generate 3D representations of each timestep independently. We hence propose a model, Vid3D, that leverages 2D video diffusion to generate 3D videos by first generating a 2D "seed" of the video's temporal dynamics and then independently generating a 3D representation for each timestep in the seed video. We evaluate Vid3D against two state-of-the-art 3D video generation methods and find that Vid3D is achieves comparable results despite not explicitly modeling 3D temporal dynamics. We further ablate how the quality of Vid3D depends on the number of views generated per frame. While we observe some degradation with fewer views, performance degradation remains minor. Our results thus suggest that 3D temporal knowledge may not be necessary to generate high-quality dynamic 3D scenes, potentially enabling simpler generative algorithms for this task.
GRIM: GRaph-based Interactive narrative visualization for gaMes
Dialogue-based Role Playing Games (RPGs) require powerful storytelling. The narratives of these may take years to write and typically involve a large creative team. In this work, we demonstrate the potential of large generative text models to assist this process. GRIM, a prototype GRaph-based Interactive narrative visualization system for gaMes, generates a rich narrative graph with branching storylines that match a high-level narrative description and constraints provided by the designer. Game designers can interactively edit the graph by automatically generating new sub-graphs that fit the edits within the original narrative and constraints. We illustrate the use of GRIM in conjunction with GPT-4, generating branching narratives for four well-known stories with different contextual constraints.
Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models
Large language models (LLMs) have exhibited impressive performance in language comprehension and various reasoning tasks. However, their abilities in spatial reasoning, a crucial aspect of human cognition, remain relatively unexplored. Human possess a remarkable ability to create mental images of unseen objects and actions through a process known as the Mind's Eye, enabling the imagination of the unseen world. Inspired by this cognitive capacity, we propose Visualization-of-Thought (VoT) prompting. VoT aims to elicit spatial reasoning of LLMs by visualizing their reasoning traces, thereby guiding subsequent reasoning steps. We employed VoT for multi-hop spatial reasoning tasks, including natural language navigation, visual navigation, and visual tiling in 2D grid worlds. Experimental results demonstrated that VoT significantly enhances the spatial reasoning abilities of LLMs. Notably, VoT outperformed existing multimodal large language models (MLLMs) in these tasks. While VoT works surprisingly well on LLMs, the ability to generate mental images to facilitate spatial reasoning resembles the mind's eye process, suggesting its potential viability in MLLMs.
ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural Language
The use of natural language interfaces (NLIs) for the creation of charts is becoming increasingly popular due to the intuitiveness of natural language interactions. One key challenge in this approach is to accurately capture user intents and transform them to proper chart specifications. This obstructs the wide use of NLI in chart generation, as users' natural language inputs are generally abstract (i.e., ambiguous or under-specified), without a clear specification of visual encodings. Recently, pre-trained large language models (LLMs) have exhibited superior performance in understanding and generating natural language, demonstrating great potential for downstream tasks. Inspired by this major trend, we propose ChartGPT, generating charts from abstract natural language inputs. However, LLMs are struggling to address complex logic problems. To enable the model to accurately specify the complex parameters and perform operations in chart generation, we decompose the generation process into a step-by-step reasoning pipeline, so that the model only needs to reason a single and specific sub-task during each run. Moreover, LLMs are pre-trained on general datasets, which might be biased for the task of chart generation. To provide adequate visualization knowledge, we create a dataset consisting of abstract utterances and charts and improve model performance through fine-tuning. We further design an interactive interface for ChartGPT that allows users to check and modify the intermediate outputs of each step. The effectiveness of the proposed system is evaluated through quantitative evaluations and a user study.
Theory is Shapes
"Theory figures" are a staple of theoretical visualization research. Common shapes such as Cartesian planes and flowcharts can be used not only to explain conceptual contributions, but to think through and refine the contribution itself. Yet, theory figures tend to be limited to a set of standard shapes, limiting the creative and expressive potential of visualization theory. In this work, we explore how the shapes used in theory figures afford different understandings and explanations of their underlying phenomena. We speculate on the value of visualizing theories using more expressive configurations, such as icebergs, horseshoes, M\"obius strips, and BLT sandwiches. By reflecting on figure-making's generative role in the practice of theorizing, we conclude that theory is, in fact, shapes.
History-Aware Reasoning for GUI Agents
Advances in Multimodal Large Language Models have significantly enhanced Graphical User Interface (GUI) automation. Equipping GUI agents with reliable episodic reasoning capabilities is essential for bridging the gap between users' concise task descriptions and the complexities of real-world execution. Current methods integrate Reinforcement Learning (RL) with System-2 Chain-of-Thought, yielding notable gains in reasoning enhancement. For long-horizon GUI tasks, historical interactions connect each screen to the goal-oriented episode chain, and effectively leveraging these clues is crucial for the current decision. However, existing native GUI agents exhibit weak short-term memory in their explicit reasoning, interpreting the chained interactions as discrete screen understanding, i.e., unawareness of the historical interactions within the episode. This history-agnostic reasoning challenges their performance in GUI automation. To alleviate this weakness, we propose a History-Aware Reasoning (HAR) framework, which encourages an agent to reflect on its own errors and acquire episodic reasoning knowledge from them via tailored strategies that enhance short-term memory in long-horizon interaction. The framework mainly comprises constructing a reflective learning scenario, synthesizing tailored correction guidelines, and designing a hybrid RL reward function. Using the HAR framework, we develop a native end-to-end model, HAR-GUI-3B, which alters the inherent reasoning mode from history-agnostic to history-aware, equipping the GUI agent with stable short-term memory and reliable perception of screen details. Comprehensive evaluations across a range of GUI-related benchmarks demonstrate the effectiveness and generalization of our method.
Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization
Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization.
Retrieval Augmented Generation for Dynamic Graph Modeling
Modeling dynamic graphs, such as those found in social networks, recommendation systems, and e-commerce platforms, is crucial for capturing evolving relationships and delivering relevant insights over time. Traditional approaches primarily rely on graph neural networks with temporal components or sequence generation models, which often focus narrowly on the historical context of target nodes. This limitation restricts the ability to adapt to new and emerging patterns in dynamic graphs. To address this challenge, we propose a novel framework, Retrieval-Augmented Generation for Dynamic Graph modeling (RAG4DyG), which enhances dynamic graph predictions by incorporating contextually and temporally relevant examples from broader graph structures. Our approach includes a time- and context-aware contrastive learning module to identify high-quality demonstrations and a graph fusion strategy to effectively integrate these examples with historical contexts. The proposed framework is designed to be effective in both transductive and inductive scenarios, ensuring adaptability to previously unseen nodes and evolving graph structures. Extensive experiments across multiple real-world datasets demonstrate the effectiveness of RAG4DyG in improving predictive accuracy and adaptability for dynamic graph modeling. The code and datasets are publicly available at https://github.com/YuxiaWu/RAG4DyG.
Immersed in my Ideas: Using Virtual Reality and Multimodal Interactions to Visualize Users' Ideas and Thoughts
This paper introduces VIVRA (Voice Interactive Virtual Reality Annotation), a VR application combining multimodal interaction with large language models (LLMs) to transform users' ideas into interactive 3D visualizations. VIVRA converts verbalized thoughts into "idea balloons" that summarize and expand on detected topics by an LLM. VIVRA allows users to verbalize their thoughts in real time or record their ideas to display the topics later. We evaluated the effectiveness of VIVRA in an exploratory study with 29 participants and a user study with 10 participants. Our results show that VIVRA enhanced users' ability to reflect on and develop ideas, achieving high levels of satisfaction, usability, and engagement. Participants valued VIVRA as a reflective tool for exploring personal thoughts and ideas. We discuss the potential advantages and uses of this application, highlighting the potential of combining immersive technologies with LLMs to create powerful ideation and reflection tools.
PPTBench: Towards Holistic Evaluation of Large Language Models for PowerPoint Layout and Design Understanding
PowerPoint presentations combine rich textual content with structured visual layouts, making them a natural testbed for evaluating the multimodal reasoning and layout understanding abilities of modern MLLMs. However, existing benchmarks focus solely on narrow subtasks while overlooking layout-centric challenges, which are central to real-world slide creation and editing. To bridge this gap, we introduce PPTBench, a comprehensive multimodal benchmark for evaluating LLMs on PowerPoint-related tasks. Leveraging a diverse source of 958 PPTX files, PPTBench evaluates models across four categories with 4,439 samples, including Detection, Understanding, Modification, and Generation. Our experiments reveal a substantial gap between semantic understanding and visual-layout reasoning in current MLLMs: models can interpret slide content but fail to produce coherent spatial arrangements. Ablation and further analysis show that current MLLMs struggle to combine visual cues with JSON-based layout structures and fail to integrate visual information into their API planning ability. And case studies visually expose systematic layout errors such as misalignment and element overlap. These findings provides a new perspective on evaluating VLLMs in PPT scenarios, highlighting challenges and directions for future research on visual-structural reasoning and coherent slide generation. All datasets and code are fully released to support reproducibility and future research.
Antagonising explanation and revealing bias directly through sequencing and multimodal inference
Deep generative models produce data according to a learned representation, e.g. diffusion models, through a process of approximation computing possible samples. Approximation can be understood as reconstruction and the large datasets used to train models as sets of records in which we represent the physical world with some data structure (photographs, audio recordings, manuscripts). During the process of reconstruction, e.g., image frames develop each timestep towards a textual input description. While moving forward in time, frame sets are shaped according to learned bias and their production, we argue here, can be considered as going back in time; not by inspiration on the backward diffusion process but acknowledging culture is specifically marked in the records. Futures of generative modelling, namely in film and audiovisual arts, can benefit by dealing with diffusion systems as a process to compute the future by inevitably being tied to the past, if acknowledging the records as to capture fields of view at a specific time, and to correlate with our own finite memory ideals. Models generating new data distributions can target video production as signal processors and by developing sequences through timelines we ourselves also go back to decade-old algorithmic and multi-track methodologies revealing the actual predictive failure of contemporary approaches to synthesis in moving image, both as relevant to composition and not explanatory.
Follow the Flow: Fine-grained Flowchart Attribution with Neurosymbolic Agents
Flowcharts are a critical tool for visualizing decision-making processes. However, their non-linear structure and complex visual-textual relationships make it challenging to interpret them using LLMs, as vision-language models frequently hallucinate nonexistent connections and decision paths when analyzing these diagrams. This leads to compromised reliability for automated flowchart processing in critical domains such as logistics, health, and engineering. We introduce the task of Fine-grained Flowchart Attribution, which traces specific components grounding a flowchart referring LLM response. Flowchart Attribution ensures the verifiability of LLM predictions and improves explainability by linking generated responses to the flowchart's structure. We propose FlowPathAgent, a neurosymbolic agent that performs fine-grained post hoc attribution through graph-based reasoning. It first segments the flowchart, then converts it into a structured symbolic graph, and then employs an agentic approach to dynamically interact with the graph, to generate attribution paths. Additionally, we present FlowExplainBench, a novel benchmark for evaluating flowchart attributions across diverse styles, domains, and question types. Experimental results show that FlowPathAgent mitigates visual hallucinations in LLM answers over flowchart QA, outperforming strong baselines by 10-14% on our proposed FlowExplainBench dataset.
ChartCheck: An Evidence-Based Fact-Checking Dataset over Real-World Chart Images
Data visualizations are common in the real-world. We often use them in data sources such as scientific documents, news articles, textbooks, and social media to summarize key information in a visual form. Charts can also mislead its audience by communicating false information or biasing them towards a specific agenda. Verifying claims against charts is not a straightforward process. It requires analyzing both the text and visual components of the chart, considering characteristics such as colors, positions, and orientations. Moreover, to determine if a claim is supported by the chart content often requires different types of reasoning. To address this challenge, we introduce ChartCheck, a novel dataset for fact-checking against chart images. ChartCheck is the first large-scale dataset with 1.7k real-world charts and 10.5k human-written claims and explanations. We evaluated the dataset on state-of-the-art models and achieved an accuracy of 73.9 in the finetuned setting. Additionally, we identified chart characteristics and reasoning types that challenge the models.
ReasonGraph: Visualisation of Reasoning Paths
Large Language Models (LLMs) reasoning processes are challenging to analyze due to their complexity and the lack of organized visualization tools. We present ReasonGraph, a web-based platform for visualizing and analyzing LLM reasoning processes. It supports both sequential and tree-based reasoning methods while integrating with major LLM providers and over fifty state-of-the-art models. ReasonGraph incorporates an intuitive UI with meta reasoning method selection, configurable visualization parameters, and a modular framework that facilitates efficient extension. Our evaluation shows high parsing reliability, efficient processing, and strong usability across various downstream applications. By providing a unified visualization framework, ReasonGraph reduces cognitive load in analyzing complex reasoning paths, improves error detection in logical processes, and enables more effective development of LLM-based applications. The platform is open-source, promoting accessibility and reproducibility in LLM reasoning analysis.
EvolvTrip: Enhancing Literary Character Understanding with Temporal Theory-of-Mind Graphs
A compelling portrayal of characters is essential to the success of narrative writing. For readers, appreciating a character's traits requires the ability to infer their evolving beliefs, desires, and intentions over the course of a complex storyline, a cognitive skill known as Theory-of-Mind (ToM). Performing ToM reasoning in prolonged narratives requires readers to integrate historical context with current narrative information, a task at which humans excel but Large Language Models (LLMs) often struggle. To systematically evaluate LLMs' ToM reasoning capability in long narratives, we construct LitCharToM, a benchmark of character-centric questions across four ToM dimensions from classic literature. Further, we introduce EvolvTrip, a perspective-aware temporal knowledge graph that tracks psychological development throughout narratives. Our experiments demonstrate that EvolvTrip consistently enhances performance of LLMs across varying scales, even in challenging extended-context scenarios. EvolvTrip proves to be particularly valuable for smaller models, partially bridging the performance gap with larger LLMs and showing great compatibility with lengthy narratives. Our findings highlight the importance of explicit representation of temporal character mental states in narrative comprehension and offer a foundation for more sophisticated character understanding. Our data and code are publicly available at https://github.com/Bernard-Yang/EvolvTrip.
Generating Long Videos of Dynamic Scenes
We present a video generation model that accurately reproduces object motion, changes in camera viewpoint, and new content that arises over time. Existing video generation methods often fail to produce new content as a function of time while maintaining consistencies expected in real environments, such as plausible dynamics and object persistence. A common failure case is for content to never change due to over-reliance on inductive biases to provide temporal consistency, such as a single latent code that dictates content for the entire video. On the other extreme, without long-term consistency, generated videos may morph unrealistically between different scenes. To address these limitations, we prioritize the time axis by redesigning the temporal latent representation and learning long-term consistency from data by training on longer videos. To this end, we leverage a two-phase training strategy, where we separately train using longer videos at a low resolution and shorter videos at a high resolution. To evaluate the capabilities of our model, we introduce two new benchmark datasets with explicit focus on long-term temporal dynamics.
FOS: A Large-Scale Temporal Graph Benchmark for Scientific Interdisciplinary Link Prediction
Interdisciplinary scientific breakthroughs mostly emerge unexpectedly, and forecasting the formation of novel research fields remains a major challenge. We introduce FOS (Future Of Science), a comprehensive time-aware graph-based benchmark that reconstructs annual co-occurrence graphs of 65,027 research sub-fields (spanning 19 general domains) over the period 1827-2024. In these graphs, edges denote the co-occurrence of two fields in a single publication and are timestamped with the corresponding publication year. Nodes are enriched with semantic embeddings, and edges are characterized by temporal and topological descriptors. We formulate the prediction of new field-pair linkages as a temporal link-prediction task, emphasizing the "first-time" connections that signify pioneering interdisciplinary directions. Through extensive experiments, we evaluate a suite of state-of-the-art temporal graph architectures under multiple negative-sampling regimes and show that (i) embedding long-form textual descriptions of fields significantly boosts prediction accuracy, and (ii) distinct model classes excel under different evaluation settings. Case analyses show that top-ranked link predictions on FOS align with field pairings that emerge in subsequent years of academic publications. We publicly release FOS, along with its temporal data splits and evaluation code, to establish a reproducible benchmark for advancing research in predicting scientific frontiers.
On the Feasibility of Vision-Language Models for Time-Series Classification
We build upon time-series classification by leveraging the capabilities of Vision Language Models (VLMs). We find that VLMs produce competitive results after two or less epochs of fine-tuning. We develop a novel approach that incorporates graphical data representations as images in conjunction with numerical data. This approach is rooted in the hypothesis that graphical representations can provide additional contextual information that numerical data alone may not capture. Additionally, providing a graphical representation can circumvent issues such as limited context length faced by LLMs. To further advance this work, we implemented a scalable end-to-end pipeline for training on different scenarios, allowing us to isolate the most effective strategies for transferring learning capabilities from LLMs to Time Series Classification (TSC) tasks. Our approach works with univariate and multivariate time-series data. In addition, we conduct extensive and practical experiments to show how this approach works for time-series classification and generative labels.
Consistent Story Generation: Unlocking the Potential of Zigzag Sampling
Text-to-image generation models have made significant progress in producing high-quality images from textual descriptions, yet they continue to struggle with maintaining subject consistency across multiple images, a fundamental requirement for visual storytelling. Existing methods attempt to address this by either fine-tuning models on large-scale story visualization datasets, which is resource-intensive, or by using training-free techniques that share information across generations, which still yield limited success. In this paper, we introduce a novel training-free sampling strategy called Zigzag Sampling with Asymmetric Prompts and Visual Sharing to enhance subject consistency in visual story generation. Our approach proposes a zigzag sampling mechanism that alternates between asymmetric prompting to retain subject characteristics, while a visual sharing module transfers visual cues across generated images to %further enforce consistency. Experimental results, based on both quantitative metrics and qualitative evaluations, demonstrate that our method significantly outperforms previous approaches in generating coherent and consistent visual stories. The code is available at https://github.com/Mingxiao-Li/Asymmetry-Zigzag-StoryDiffusion.
PixelCraft: A Multi-Agent System for High-Fidelity Visual Reasoning on Structured Images
Structured images (e.g., charts and geometric diagrams) remain challenging for multimodal large language models (MLLMs), as perceptual slips can cascade into erroneous conclusions. Intermediate visual cues can steer reasoning; however, existing cue-based methods are constrained with low-fidelity image processing and linear, rigid reasoning patterns, limiting their effectiveness on complex structured-image tasks. In this paper, we propose PixelCraft, a novel multi-agent system for high-fidelity image processing and flexible visual reasoning on structured images. The system comprises a dispatcher, a planner, a reasoner, critics, and a set of visual tool agents. To achieve high-fidelity processing, we construct a high-quality corpus and fine-tune an MLLM into a grounding model, whose pixel-level localizations are integrated with traditional computer vision (CV) algorithms in tool agents. Building on this foundation, PixelCraft facilitates flexible visual reasoning through a dynamic three-stage workflow of tool selection, agent discussion, and self-criticism. Moreover, unlike prior linear reasoning patterns that simply append historical images, PixelCraft maintains an image memory to allow the planner to adaptively revisit earlier visual steps, explore alternative reasoning branches, and dynamically adjust the reasoning trajectory during discussion. Extensive experiments on challenging chart and geometry benchmarks demonstrate that PixelCraft significantly improves visual reasoning performance for advanced MLLMs, setting a new standard for structured image reasoning. Our code will be available at https://github.com/microsoft/PixelCraft.
VChain: Chain-of-Visual-Thought for Reasoning in Video Generation
Recent video generation models can produce smooth and visually appealing clips, but they often struggle to synthesize complex dynamics with a coherent chain of consequences. Accurately modeling visual outcomes and state transitions over time remains a core challenge. In contrast, large language and multimodal models (e.g., GPT-4o) exhibit strong visual state reasoning and future prediction capabilities. To bridge these strengths, we introduce VChain, a novel inference-time chain-of-visual-thought framework that injects visual reasoning signals from multimodal models into video generation. Specifically, VChain contains a dedicated pipeline that leverages large multimodal models to generate a sparse set of critical keyframes as snapshots, which are then used to guide the sparse inference-time tuning of a pre-trained video generator only at these key moments. Our approach is tuning-efficient, introduces minimal overhead and avoids dense supervision. Extensive experiments on complex, multi-step scenarios show that VChain significantly enhances the quality of generated videos.
