- Auto White-Balance Correction for Mixed-Illuminant Scenes Auto white balance (AWB) is applied by camera hardware at capture time to remove the color cast caused by the scene illumination. The vast majority of white-balance algorithms assume a single light source illuminates the scene; however, real scenes often have mixed lighting conditions. This paper presents an effective AWB method to deal with such mixed-illuminant scenes. A unique departure from conventional AWB, our method does not require illuminant estimation, as is the case in traditional camera AWB modules. Instead, our method proposes to render the captured scene with a small set of predefined white-balance settings. Given this set of rendered images, our method learns to estimate weighting maps that are used to blend the rendered images to generate the final corrected image. Through extensive experiments, we show this proposed method produces promising results compared to other alternatives for single- and mixed-illuminant scene color correction. Our source code and trained models are available at https://github.com/mahmoudnafifi/mixedillWB. 3 authors · Sep 17, 2021 1
5 Test-time scaling of diffusions with flow maps A common recipe to improve diffusion models at test-time so that samples score highly against a user-specified reward is to introduce the gradient of the reward into the dynamics of the diffusion itself. This procedure is often ill posed, as user-specified rewards are usually only well defined on the data distribution at the end of generation. While common workarounds to this problem are to use a denoiser to estimate what a sample would have been at the end of generation, we propose a simple solution to this problem by working directly with a flow map. By exploiting a relationship between the flow map and velocity field governing the instantaneous transport, we construct an algorithm, Flow Map Trajectory Tilting (FMTT), which provably performs better ascent on the reward than standard test-time methods involving the gradient of the reward. The approach can be used to either perform exact sampling via importance weighting or principled search that identifies local maximizers of the reward-tilted distribution. We demonstrate the efficacy of our approach against other look-ahead techniques, and show how the flow map enables engagement with complicated reward functions that make possible new forms of image editing, e.g. by interfacing with vision language models. 7 authors · Nov 27, 2025 2
- A Method for Identifying Farmland System Habitat Types Based on the Dynamic-Weighted Feature Fusion Network Model Addressing the current lack of a standardized habitat classification system for cultivated land ecosystems, incomplete coverage of habitat types, and the inability of existing models to effectively integrate semantic and texture features-resulting in insufficient segmentation accuracy and blurred boundaries for multi-scale habitats (e.g., large-scale field plots and micro-habitats)-this study developed a comprehensively annotated ultra-high-resolution remote sensing image dataset encompassing 15 categories of cultivated land system habitats. Furthermore, we propose a Dynamic-Weighted Feature Fusion Network (DWFF-Net). The encoder of this model utilizes a frozen-parameter DINOv3 to extract foundational features. By analyzing the relationships between different category images and feature maps, we introduce a data-level adaptive dynamic weighting strategy for feature fusion. The decoder incorporates a dynamic weight computation network to achieve thorough integration of multi-layer features, and a hybrid loss function is adopted to optimize model training. Experimental results on the constructed dataset demonstrate that the proposed model achieves a mean Intersection over Union (mIoU) of 0.6979 and an F1-score of 0.8049, outperforming the baseline network by 0.021 and 0.0161, respectively. Ablation studies further confirm the complementary nature of multi-layer feature fusion, which effectively improves the IoU for micro-habitat categories such as field ridges. This study establishes a habitat identification framework for cultivated land systems based on adaptive multi-layer feature fusion, enabling sub-meter precision habitat mapping at a low cost and providing robust technical support for fine-grained habitat monitoring in cultivated landscapes. 5 authors · Nov 10, 2025