upload training script and reward server script
Browse files- reward_server/launch_reward.sh +38 -0
- reward_server/model_server.py +252 -0
- train.sh +36 -0
reward_server/launch_reward.sh
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
set -x
|
| 2 |
+
|
| 3 |
+
MODEL_PATH=$1
|
| 4 |
+
ANSWER_PATH=$2
|
| 5 |
+
METRIC=$3
|
| 6 |
+
PORT=8800
|
| 7 |
+
|
| 8 |
+
export VLLM_ENGINE_ITERATION_TIMEOUT_S=60
|
| 9 |
+
nohup vllm serve ${MODEL_PATH} \
|
| 10 |
+
--trust-remote-code \
|
| 11 |
+
--served-model-name server_model \
|
| 12 |
+
--max-num-seqs 256 \
|
| 13 |
+
--max-model-len 4096 \
|
| 14 |
+
--port 8000 \
|
| 15 |
+
> vllm_server.log &
|
| 16 |
+
|
| 17 |
+
# sleep 60
|
| 18 |
+
|
| 19 |
+
if [[ "${METRIC}" == "prob" ]]; then
|
| 20 |
+
nohup python model_server.py \
|
| 21 |
+
--tokenizer_path ${MODEL_PATH} \
|
| 22 |
+
--answer_path ${ANSWER_PATH} \
|
| 23 |
+
--normalize_reward \
|
| 24 |
+
--port ${PORT} \
|
| 25 |
+
--prob_reward \
|
| 26 |
+
--vllm_url "http://localhost:8000/v1" \
|
| 27 |
+
--vllm_model server_model \
|
| 28 |
+
> reward_server.log &
|
| 29 |
+
else
|
| 30 |
+
nohup python model_server.py \
|
| 31 |
+
--tokenizer_path ${MODEL_PATH} \
|
| 32 |
+
--answer_path ${ANSWER_PATH} \
|
| 33 |
+
--normalize_reward \
|
| 34 |
+
--port ${PORT} \
|
| 35 |
+
--vllm_url "http://localhost:8000/v1" \
|
| 36 |
+
--vllm_model server_model \
|
| 37 |
+
> reward_server.log &
|
| 38 |
+
fi
|
reward_server/model_server.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import re
|
| 3 |
+
import torch
|
| 4 |
+
import uvicorn
|
| 5 |
+
from fastapi import FastAPI, Request
|
| 6 |
+
from fastapi.responses import JSONResponse
|
| 7 |
+
from transformers import AutoTokenizer
|
| 8 |
+
import asyncio
|
| 9 |
+
from collections import defaultdict
|
| 10 |
+
import json
|
| 11 |
+
from openai import AsyncOpenAI
|
| 12 |
+
import time
|
| 13 |
+
import math
|
| 14 |
+
# Set OpenAI's API key and API base to use vLLM's API server.
|
| 15 |
+
|
| 16 |
+
# for free-form including multiple-choice
|
| 17 |
+
PROMPT_critic_updated = '''
|
| 18 |
+
Given a problem, determine whether the final answer in the provided (incomplete) solution process matches the reference answer.
|
| 19 |
+
The reference answer may be one single option character (e.g., A, B, C, D), a numerical value, an expression, or a list of answers if multiple questions are involved.
|
| 20 |
+
**The reference answer may be in Chinese or another language, but your evaluation should be language-agnostic.**
|
| 21 |
+
|
| 22 |
+
Your task:
|
| 23 |
+
- Compare the final output of the solution process with the reference answer.
|
| 24 |
+
- If they **match exactly**, output **YES**.
|
| 25 |
+
- If they **do not match**, output **NO**.
|
| 26 |
+
- If the solution process is unclear, incomplete, or ambiguous, assume it is incorrect and output **NO**.
|
| 27 |
+
|
| 28 |
+
Your output must be strictly **'YES'** or **'NO'**, with no additional words, punctuation, or explanation.
|
| 29 |
+
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
**Question:**
|
| 33 |
+
{question}
|
| 34 |
+
|
| 35 |
+
**Solution Process (Final Step Only):**
|
| 36 |
+
{response}
|
| 37 |
+
|
| 38 |
+
**Reference Answer:**
|
| 39 |
+
{reference}
|
| 40 |
+
|
| 41 |
+
**Output:**
|
| 42 |
+
'''
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def parse_im_sections(text):
|
| 47 |
+
# Match all sections between <|im_start|> and <|im_end|>
|
| 48 |
+
sections = re.findall(r"<\|im_start\|>(.*?)<\|im_end\|>", text, re.DOTALL)
|
| 49 |
+
parsed = {}
|
| 50 |
+
for section in sections:
|
| 51 |
+
try:
|
| 52 |
+
# Split the role and content
|
| 53 |
+
role, content = section.split("\n", 1)
|
| 54 |
+
parsed[role.strip()] = content.strip()
|
| 55 |
+
except ValueError:
|
| 56 |
+
print(f"Skipping malformed section: {section}")
|
| 57 |
+
return parsed
|
| 58 |
+
|
| 59 |
+
def extract_last_non_empty_line(text, role="assistant"):
|
| 60 |
+
# Extract the last non-empty line from assistant's content
|
| 61 |
+
pattern = fr"<\|im_start\|>{role}(.*?)(?:<\|im_start\|>|<\|endoftext\|>|<\|eot_id\|>|$)"
|
| 62 |
+
match = re.search(pattern, text, re.DOTALL)
|
| 63 |
+
if match:
|
| 64 |
+
content = match.group(1).strip()
|
| 65 |
+
# Get the last non-empty line
|
| 66 |
+
lines = [line for line in content.splitlines() if line.strip()]
|
| 67 |
+
if lines:
|
| 68 |
+
last_non_empty_line=lines[-1]
|
| 69 |
+
else:
|
| 70 |
+
return ""
|
| 71 |
+
return last_non_empty_line
|
| 72 |
+
return ""
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def reward_normalization(rewards):
|
| 76 |
+
if len(rewards) == 1:
|
| 77 |
+
return [0.0]
|
| 78 |
+
rewards = torch.tensor(rewards, dtype=torch.float64)
|
| 79 |
+
if rewards.std() == 0:
|
| 80 |
+
normalized_rewards = torch.zeros_like(rewards)
|
| 81 |
+
else:
|
| 82 |
+
normalized_rewards = (rewards - rewards.mean()) / rewards.std()
|
| 83 |
+
|
| 84 |
+
return normalized_rewards.tolist()
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def strip_sequence(text, pad_token, eos_token):
|
| 88 |
+
pad_token_escaped = re.escape(pad_token)
|
| 89 |
+
eos_token_escaped = re.escape(eos_token)
|
| 90 |
+
|
| 91 |
+
pattern = f"^({eos_token_escaped}|{pad_token_escaped})+"
|
| 92 |
+
text = re.sub(pattern, "", text)
|
| 93 |
+
|
| 94 |
+
pattern = f"({eos_token_escaped}|{pad_token_escaped})+$"
|
| 95 |
+
text = re.sub(pattern, "", text)
|
| 96 |
+
return text
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def group_reward_normalization(rewards, n_samples_per_prompt=4):
|
| 100 |
+
rewards = torch.tensor(rewards, dtype=torch.float64)
|
| 101 |
+
rewards = rewards.reshape(-1, n_samples_per_prompt)
|
| 102 |
+
|
| 103 |
+
mean = rewards.mean(dim=-1, keepdim=True)
|
| 104 |
+
std = rewards.std(dim=-1, keepdim=True)
|
| 105 |
+
|
| 106 |
+
normalized_rewards = torch.where(std == 0, torch.zeros_like(rewards), (rewards - mean) / std)
|
| 107 |
+
|
| 108 |
+
return normalized_rewards.flatten().tolist()
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class RewardModelProxy:
|
| 112 |
+
def __init__(self, args):
|
| 113 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path, trust_remote_code=True)
|
| 114 |
+
self.normalize_reward = args.normalize_reward
|
| 115 |
+
self.group_normalize_reward = args.group_normalize_reward
|
| 116 |
+
self.qa_dict = defaultdict(str)
|
| 117 |
+
self.load_dict(args.answer_path)
|
| 118 |
+
self.temperature = 0
|
| 119 |
+
self.stop=[self.tokenizer.eos_token,"<|im_end|>"]
|
| 120 |
+
self.max_tokens=1
|
| 121 |
+
self.prob_reward=args.prob_reward
|
| 122 |
+
self.log_path=args.log_path
|
| 123 |
+
self.vllm_model=args.vllm_model
|
| 124 |
+
|
| 125 |
+
def load_dict(self, path):
|
| 126 |
+
# Initialize self.qa_dict
|
| 127 |
+
with open(path, "r", encoding="utf-8") as file:
|
| 128 |
+
data = json.load(file)
|
| 129 |
+
for unit in data:
|
| 130 |
+
question = unit["query"][1]["content"]
|
| 131 |
+
label = unit["label"]
|
| 132 |
+
self.qa_dict[question] = label
|
| 133 |
+
|
| 134 |
+
if self.qa_dict:
|
| 135 |
+
sample_question, sample_label = next(iter(self.qa_dict.items()))
|
| 136 |
+
print("Sample Question:", sample_question)
|
| 137 |
+
print("Sample Label:", sample_label)
|
| 138 |
+
else:
|
| 139 |
+
print("qa_dict is empty.")
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
async def process_sample(self,query):
|
| 143 |
+
query = strip_sequence(query, self.tokenizer.pad_token, self.tokenizer.eos_token)+ self.tokenizer.eos_token
|
| 144 |
+
question = parse_im_sections(query)["user"]
|
| 145 |
+
answer = extract_last_non_empty_line(query, role="assistant")
|
| 146 |
+
if not answer.strip():
|
| 147 |
+
return 0.0
|
| 148 |
+
else:
|
| 149 |
+
prompt_question = PROMPT_critic_updated.format(question=question, reference=self.qa_dict[question], response=answer)
|
| 150 |
+
return await self.get_reward_from_vllm(prompt_question)
|
| 151 |
+
|
| 152 |
+
async def get_reward_from_vllm(self, query):
|
| 153 |
+
"""Retrieve model judgment reward (with probability analysis)"""
|
| 154 |
+
max_retries = 10
|
| 155 |
+
delay=10
|
| 156 |
+
for attempt in range(max_retries):
|
| 157 |
+
try:
|
| 158 |
+
response = await client.chat.completions.create(
|
| 159 |
+
model=self.vllm_model,
|
| 160 |
+
messages=[
|
| 161 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 162 |
+
{"role": "user", "content": query},
|
| 163 |
+
],
|
| 164 |
+
temperature=self.temperature,
|
| 165 |
+
max_tokens=self.max_tokens,
|
| 166 |
+
stop=self.stop,
|
| 167 |
+
logprobs=True,
|
| 168 |
+
top_logprobs=10 # Get top 10 token probabilities
|
| 169 |
+
)
|
| 170 |
+
return self.calculate_reward_from_logprobs(response)
|
| 171 |
+
|
| 172 |
+
except Exception as e:
|
| 173 |
+
print(f"Attempt {attempt+1} failed: {str(e)}, retrying in {delay} seconds...")
|
| 174 |
+
await asyncio.sleep(delay)
|
| 175 |
+
print(f"Failed after {max_retries} retries, query content: {query[:200]}...")
|
| 176 |
+
return 0.0 # Return baseline value on failure
|
| 177 |
+
|
| 178 |
+
def calculate_reward_from_logprobs(self, response):
|
| 179 |
+
"""Calculate normalized reward based on log probabilities"""
|
| 180 |
+
# Extract probabilities of all possible tokens
|
| 181 |
+
logprobs = response.choices[0].logprobs.content[0].top_logprobs
|
| 182 |
+
token_probs = {token.token: math.exp(token.logprob) for token in logprobs}
|
| 183 |
+
|
| 184 |
+
# Combine probabilities of YES/NO (case-insensitive)
|
| 185 |
+
yes_prob = sum(prob for token, prob in token_probs.items() if token.lower().strip()=="yes")
|
| 186 |
+
no_prob = sum(prob for token, prob in token_probs.items()if token.lower().strip()=="no")
|
| 187 |
+
total = yes_prob + no_prob
|
| 188 |
+
if total == 0:
|
| 189 |
+
return 0.0 # Return baseline value when no valid judgment
|
| 190 |
+
if self.prob_reward:
|
| 191 |
+
print(yes_prob/total)
|
| 192 |
+
return yes_prob / total # Normalized probability
|
| 193 |
+
return 1.0 if yes_prob > no_prob else 0.0 # Hard judgment mode
|
| 194 |
+
|
| 195 |
+
async def get_reward(self, queries):
|
| 196 |
+
print("Processing queries[0]: {}".format(queries[0]))
|
| 197 |
+
tasks = [self.process_sample(query) for query in queries]
|
| 198 |
+
scores = await asyncio.gather(*tasks)
|
| 199 |
+
print("Generated scores: {}".format(scores))
|
| 200 |
+
if self.log_path:
|
| 201 |
+
with open(self.log_path, 'a', encoding='utf-8') as f:
|
| 202 |
+
unit = {
|
| 203 |
+
"query_list": queries if isinstance(queries, list) else [],
|
| 204 |
+
"hard_score_list": scores if isinstance(scores, list) else []
|
| 205 |
+
}
|
| 206 |
+
json.dump(unit, f, ensure_ascii=False)
|
| 207 |
+
f.write('\n')
|
| 208 |
+
if self.normalize_reward:
|
| 209 |
+
return reward_normalization(scores)
|
| 210 |
+
elif self.group_normalize_reward:
|
| 211 |
+
return group_reward_normalization(scores)
|
| 212 |
+
else:
|
| 213 |
+
return scores
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
if __name__ == "__main__":
|
| 217 |
+
parser = argparse.ArgumentParser()
|
| 218 |
+
# Reward Model
|
| 219 |
+
parser.add_argument("--tokenizer_path", type=str, default=None)
|
| 220 |
+
parser.add_argument("--answer_path", type=str, default=None)
|
| 221 |
+
parser.add_argument("--prob_reward", action="store_true", default=False)
|
| 222 |
+
parser.add_argument("--normalize_reward", action="store_true", default=False, help="Enable Reward Normazation")
|
| 223 |
+
parser.add_argument("--group_normalize_reward", action="store_true", default=False, help="Enable Group Reward Normazation")
|
| 224 |
+
parser.add_argument("--port", type=int, default=5000, help="Port number for the server")
|
| 225 |
+
parser.add_argument("--host", type=str, default="0.0.0.0", help="IP for the server")
|
| 226 |
+
parser.add_argument("--log_path", type=str, default=None)
|
| 227 |
+
parser.add_argument("--vllm_url", type=str, default=None)
|
| 228 |
+
parser.add_argument("--vllm_model", type=str, default=None)
|
| 229 |
+
args = parser.parse_args()
|
| 230 |
+
openai_api_key = "EMPTY"
|
| 231 |
+
openai_api_base = args.vllm_url
|
| 232 |
+
|
| 233 |
+
client = AsyncOpenAI(
|
| 234 |
+
api_key=openai_api_key,
|
| 235 |
+
base_url=openai_api_base,
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
# Server setup
|
| 239 |
+
reward_model = RewardModelProxy(args)
|
| 240 |
+
app = FastAPI()
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
@app.post("/get_reward")
|
| 244 |
+
async def get_reward(request: Request):
|
| 245 |
+
data = await request.json()
|
| 246 |
+
queries = data.get("query")
|
| 247 |
+
rewards = await reward_model.get_reward(queries)
|
| 248 |
+
result = {"rewards": rewards}
|
| 249 |
+
print(f"Sent JSON response: {result}")
|
| 250 |
+
return JSONResponse(result)
|
| 251 |
+
|
| 252 |
+
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
train.sh
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
set -x
|
| 2 |
+
|
| 3 |
+
EXPERIMENT_NAME=$1 # for example, "sft_reward_training"
|
| 4 |
+
PRETRAIN_PATH=$2 # path_to_Qwen2.5-7B-Instruct
|
| 5 |
+
TRAIN_DATA_PATH=$3 # path_to_training_data (https://huggingface.co/datasets/sarosavo/Master-RM)
|
| 6 |
+
|
| 7 |
+
working_dir=$(pwd)
|
| 8 |
+
LOG_PATH=${working_dir}/${EXPERIMENT_NAME}/train.log
|
| 9 |
+
SAVE_PATH=${working_dir}/${EXPERIMENT_NAME}/checkpoint
|
| 10 |
+
mkdir -p ${SAVE_PATH}
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
|
| 15 |
+
|
| 16 |
+
deepspeed --module openrlhf.cli.train_sft \
|
| 17 |
+
--max_len 4096 \
|
| 18 |
+
--dataset $TRAIN_DATA_PATH \
|
| 19 |
+
--input_key query \
|
| 20 |
+
--output_key output \
|
| 21 |
+
--apply_chat_template \
|
| 22 |
+
--train_batch_size 128 \
|
| 23 |
+
--micro_train_batch_size 4 \
|
| 24 |
+
--pretrain $PRETRAIN_PATH \
|
| 25 |
+
--save_path $SAVE_PATH \
|
| 26 |
+
--save_steps -1 \
|
| 27 |
+
--logging_steps 1 \
|
| 28 |
+
--eval_steps -1 \
|
| 29 |
+
--zero_stage 3 \
|
| 30 |
+
--max_epochs 1 \
|
| 31 |
+
--bf16 \
|
| 32 |
+
--flash_attn \
|
| 33 |
+
--learning_rate 5e-6 \
|
| 34 |
+
--packing_samples \
|
| 35 |
+
2>&1 | tee ${LOG_PATH}
|
| 36 |
+
|