C-2.2 / app.py
AI-RESEARCHER-2024's picture
Update app.py
e9c4ac2 verified
import spaces
# Configure ZeroGPU
@spaces.GPU
def process_video_with_gpu(video, resize_option):
"""ZeroGPU-accelerated video processing"""
# Create assessor inside the GPU function to avoid pickling issues
from google import genai
client = genai.Client(api_key=GOOGLE_API_KEY)
assessor = CICE_Assessment(client)
return process_video_core(video, resize_option, assessor)
import gradio as gr
from google import genai
from google.genai import types
import os
import time
from datetime import datetime
import re
from gtts import gTTS
import tempfile
import numpy as np
from PIL import Image
import cv2
from reportlab.lib.pagesizes import letter
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
from reportlab.lib.units import inch
from reportlab.lib.enums import TA_JUSTIFY, TA_CENTER
from reportlab.lib.colors import HexColor
import subprocess
import shutil
# Configure Google API Key from environment variable or Hugging Face secrets
print("πŸ”‘ Setting up Google API Key...")
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY environment variable is not set. Please set it in Hugging Face Spaces secrets.")
client = genai.Client(api_key=GOOGLE_API_KEY)
print("βœ… Google Generative AI configured successfully!")
# Define the CICE Assessment Class
class CICE_Assessment:
def __init__(self, client):
self.client = client
self.model_name = "gemini-2.0-flash-exp"
def analyze_video(self, video_path):
"""Analyze video using the 18-point CICE 2.0 assessment with specific behavioral cues"""
try:
# Determine mime type based on file extension
import mimetypes
mime_type, _ = mimetypes.guess_type(video_path)
if mime_type is None:
# Default to mp4 if cannot determine
mime_type = 'video/mp4'
# Upload video to Gemini
print(f"πŸ“€ Uploading video to Gemini AI (type: {mime_type})...")
with open(video_path, 'rb') as f:
video_file = self.client.files.upload(file=f, config={'mime_type': mime_type})
# Wait for processing
print("⏳ Processing video (this may take 30-60 seconds)...")
max_wait = 300
wait_time = 0
while video_file.state == "PROCESSING" and wait_time < max_wait:
time.sleep(3)
wait_time += 3
video_file = self.client.files.get(name=video_file.name)
if video_file.state == "FAILED":
raise Exception("Video processing failed")
print("πŸ” Analyzing team interactions...")
# CICE 2.0 Assessment Prompt
prompt = """Analyze this healthcare team interaction video and provide a comprehensive assessment based on the CICE 2.0 instrument's 18 interprofessional competencies, looking for these SPECIFIC BEHAVIORAL CUES:
For EACH competency, clearly state whether it was "OBSERVED" or "NOT OBSERVED" based on these specific behaviors:
1. IDENTIFIES FACTORS INFLUENCING HEALTH STATUS
LOOK FOR: Team mentions allergy bracelet, fall-related trauma, multiple injuries, or states airway/breathing/circulation concerns out loud
2. IDENTIFIES TEAM GOALS FOR THE PATIENT
LOOK FOR: Team verbalizes goals like: stabilize airway, CPR/AED, give epinephrine, control bleeding, preserve tooth, prepare EMS handoff
3. PRIORITIZES GOALS FOCUSED ON IMPROVING HEALTH OUTCOMES
LOOK FOR: CPR/AED prioritized before bleeding/dental injury, EpiPen administered before addressing secondary injuries
4. VERBALIZES DISCIPLINE-SPECIFIC ROLE (PRE-BRIEF)
LOOK FOR: Students acknowledge interprofessional communication expectations and scene safety review before scenario begins
5. OFFERS TO SEEK GUIDANCE FROM COLLEAGUES
LOOK FOR: Peer-to-peer checks (e.g., dental to dental: confirm tooth storage; nursing to nursing: confirm CPR quality)
6. COMMUNICATES ABOUT COST-EFFECTIVE AND TIMELY CARE
LOOK FOR: Team chooses readily available supplies (AED, saline, tourniquet) without delay, states need for rapid EMS transfer
7. DIRECTS QUESTIONS TO OTHER HEALTH PROFESSIONALS BASED ON EXPERTISE
LOOK FOR: Asks discipline-specific expertise (e.g., "Dentalβ€”what do we do with the tooth?"), invites pharmacy/medical input on epinephrine use
8. AVOIDS DISCIPLINE-SPECIFIC TERMINOLOGY
LOOK FOR: Uses plain language like "no pulse" instead of "asystole"
9. EXPLAINS DISCIPLINE-SPECIFIC TERMINOLOGY WHEN NECESSARY
LOOK FOR: Clarifies medical/dental terms for others when necessary
10. COMMUNICATES ROLES AND RESPONSIBILITIES CLEARLY
LOOK FOR: Announces assignments out loud: "I'll do compressions," "I'll call 911," "I'll document"
11. ENGAGES IN ACTIVE LISTENING
LOOK FOR: Repeats back instructions ("Everyone clear for shock"), pauses to hear teammates' updates
12. SOLICITS AND ACKNOWLEDGES PERSPECTIVES
LOOK FOR: Leader asks "Anything else we need to address?", responds to peer input respectfully
13. RECOGNIZES APPROPRIATE CONTRIBUTIONS
LOOK FOR: Affirms correct actions verbally ("Good catch on allergy bracelet"), non-verbal acknowledgment (nodding, thumbs up)
14. RESPECTFUL OF OTHER TEAM MEMBERS
LOOK FOR: Listens without interrupting, values input across professions
15. COLLABORATIVELY WORKS THROUGH INTERPROFESSIONAL CONFLICTS
LOOK FOR: Negotiates intervention priorities (airway vs. bleeding) respectfully
16. REFLECTS ON STRENGTHS OF TEAM INTERACTIONS (POST-BRIEF)
LOOK FOR: Notes strong teamwork, communication, or role clarity after the scenario
17. REFLECTS ON CHALLENGES OF TEAM INTERACTIONS (POST-BRIEF)
LOOK FOR: Identifies confusion, delays, or role overlap in debriefing
18. IDENTIFIES HOW TO IMPROVE TEAM EFFECTIVENESS (POST-BRIEF)
LOOK FOR: Suggests faster role assignment, consistent closed-loop communication, earlier epi use
STRUCTURE YOUR RESPONSE AS FOLLOWS:
## OVERALL ASSESSMENT
Brief overview of the team interaction quality.
## DETAILED COMPETENCY EVALUATION
For each of the 18 competencies, format as:
Competency [number]: [name]
Status: [OBSERVED/NOT OBSERVED]
Evidence: [Specific behavioral cue observed or explanation of absence]
## STRENGTHS
Top 3-5 key strengths with specific examples
## AREAS FOR IMPROVEMENT
Top 3-5 areas needing work with specific suggestions
## AUDIO SUMMARY
[Create a concise 60-second spoken summary focusing on: overall performance level, top 3 strengths, top 3 areas for improvement, and 2 key actionable recommendations. Write this in a natural, conversational tone suitable for text-to-speech narration.]
## FINAL SCORE
Competencies Observed: X/18
Overall Performance Level: [Exemplary (85-100%)/Proficient (70-84%)/Developing (50-69%)/Needs Improvement (0-49%)]"""
response = self.client.models.generate_content(
model=self.model_name,
contents=[
types.Part.from_uri(file_uri=video_file.uri, mime_type=video_file.mime_type),
prompt
]
)
print("βœ… Analysis complete!")
return response.text
except Exception as e:
return f"Error during analysis: {str(e)}"
def generate_audio_feedback(self, text):
"""Generate a concise 1-minute audio feedback summary"""
# Extract the audio summary section from the assessment
audio_summary_match = re.search(r'## AUDIO SUMMARY\s*(.*?)(?=##|\Z)', text, re.DOTALL)
if audio_summary_match:
summary_text = audio_summary_match.group(1).strip()
else:
# Fallback: Create a brief summary from the assessment
summary_text = self.create_brief_summary(text)
# Clean text for speech
clean_text = re.sub(r'[#*_\[\]()]', ' ', summary_text)
clean_text = re.sub(r'\s+', ' ', clean_text)
clean_text = re.sub(r'[-β€’Β·]\s+', '', clean_text)
# Add introduction and conclusion for better audio experience
audio_script = f"""CICE Healthcare Team Assessment Summary.
{clean_text}
Please refer to the detailed written report for complete competency evaluation and specific recommendations.
End of audio summary."""
# Generate audio with gTTS
try:
tts = gTTS(text=audio_script, lang='en', slow=False, tld='com')
# Create a proper temporary file
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
tts.save(temp_audio.name)
temp_audio.close()
return temp_audio.name
except Exception as e:
print(f"⚠️ Audio generation failed: {str(e)}")
return None
def create_brief_summary(self, text):
"""Create a brief summary if AUDIO SUMMARY section is not found"""
# Parse scores
observed_count = text.lower().count("observed") - text.lower().count("not observed")
total = 18
percentage = (observed_count / total) * 100
# Determine performance level
if percentage >= 85:
level = "Exemplary"
elif percentage >= 70:
level = "Proficient"
elif percentage >= 50:
level = "Developing"
else:
level = "Needs Improvement"
summary = f"""The team demonstrated {level} performance with {observed_count} out of {total} competencies observed,
achieving {percentage:.0f} percent overall.
Key strengths included strong team communication and role clarity.
Areas for improvement include enhancing active listening and conflict resolution skills.
The team should focus on pre-briefing protocols and post-scenario debriefing to enhance future performance.
Emphasis should be placed on clear role assignment and closed-loop communication during critical interventions."""
return summary
def parse_assessment_scores(self, assessment_text):
"""Parse assessment text to extract scores"""
# Method 1: Look for "Status: OBSERVED" vs "Status: NOT OBSERVED" patterns
import re
# Find all status lines
status_pattern = r'Status:\s*(OBSERVED|NOT OBSERVED)'
matches = re.findall(status_pattern, assessment_text, re.IGNORECASE)
# Count only "OBSERVED" (not "NOT OBSERVED")
observed_count = sum(1 for match in matches if match.upper() == "OBSERVED")
# If no matches found with Status: pattern, try alternative parsing
if len(matches) == 0:
# Alternative: Look for competency lines with OBSERVED/NOT OBSERVED
lines = assessment_text.split('\n')
observed_count = 0
for i, line in enumerate(lines):
# Look for competency indicators followed by status
if 'Competency' in line and i + 1 < len(lines):
next_line = lines[i + 1]
# Check if the status line indicates OBSERVED (not NOT OBSERVED)
if 'OBSERVED' in next_line.upper() and 'NOT OBSERVED' not in next_line.upper():
observed_count += 1
# If still no matches, use a more robust pattern
if observed_count == 0:
# Count lines that say "OBSERVED" but not "NOT OBSERVED"
for line in lines:
# Clean line for better matching
clean_line = line.strip().upper()
if clean_line.startswith('STATUS:'):
if 'NOT OBSERVED' in clean_line:
continue
elif 'OBSERVED' in clean_line:
observed_count += 1
total_competencies = 18
percentage = (observed_count / total_competencies) * 100 if total_competencies > 0 else 0
# Professional color scheme with better contrast
if percentage >= 85:
level = "Exemplary"
color = "#0F766E" # Deep teal
elif percentage >= 70:
level = "Proficient"
color = "#1E40AF" # Professional blue
elif percentage >= 50:
level = "Developing"
color = "#EA580C" # Professional orange
else:
level = "Needs Improvement"
color = "#B91C1C" # Deep red
return observed_count, total_competencies, percentage, level, color
def generate_pdf_report(self, assessment_text):
"""Generate a PDF report from the assessment text"""
try:
# Create a temporary file for the PDF
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix='.pdf')
# Create the PDF document
doc = SimpleDocTemplate(
temp_pdf.name,
pagesize=letter,
rightMargin=72,
leftMargin=72,
topMargin=72,
bottomMargin=18,
)
# Container for the 'Flowable' objects
elements = []
# Define styles with professional colors
styles = getSampleStyleSheet()
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=24,
textColor=HexColor('#111827'), # Darker gray for better readability
spaceAfter=30,
alignment=TA_CENTER
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=14,
textColor=HexColor('#1E40AF'), # Professional blue
spaceAfter=12,
spaceBefore=12,
bold=True
)
body_style = ParagraphStyle(
'CustomBody',
parent=styles['BodyText'],
fontSize=11,
alignment=TA_JUSTIFY,
spaceAfter=12
)
# Add title
elements.append(Paragraph("CICE 2.0 Healthcare Team Assessment Report", title_style))
elements.append(Spacer(1, 12))
# Add timestamp
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
elements.append(Paragraph(f"<b>Assessment Date:</b> {timestamp}", body_style))
elements.append(Spacer(1, 20))
# Process the assessment text into PDF-friendly format
lines = assessment_text.split('\n')
for line in lines:
line = line.strip()
if not line:
elements.append(Spacer(1, 6))
elif line.startswith('##'):
# Major heading
heading_text = line.replace('##', '').strip()
elements.append(Paragraph(heading_text, heading_style))
elif line.startswith('Competency'):
# Competency item
elements.append(Paragraph(f"<b>{line}</b>", body_style))
elif line.startswith('Status:') or line.startswith('Evidence:'):
# Sub-items
elements.append(Paragraph(line, body_style))
else:
# Regular text
# Escape special characters for PDF
line = line.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;')
elements.append(Paragraph(line, body_style))
# Build PDF
doc.build(elements)
temp_pdf.close()
return temp_pdf.name
except Exception as e:
print(f"⚠️ PDF generation failed: {str(e)}")
# Fallback to text file
temp_txt = tempfile.NamedTemporaryFile(delete=False, suffix='.txt', mode='w')
temp_txt.write("CICE 2.0 Healthcare Team Interaction Assessment\n")
temp_txt.write("="*60 + "\n")
temp_txt.write(f"Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
temp_txt.write("="*60 + "\n\n")
temp_txt.write(assessment_text)
temp_txt.close()
return temp_txt.name
# Initialize the assessment tool
assessor = CICE_Assessment(client)
# Add video processing helper functions
def resize_video(input_path, target_width, target_height):
"""Resize video to target dimensions to speed up processing"""
try:
# Open the video
cap = cv2.VideoCapture(input_path)
# Get original video properties
fps = int(cap.get(cv2.CAP_PROP_FPS))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# Create temporary output file
temp_output = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
temp_output.close()
# Create video writer with new dimensions
out = cv2.VideoWriter(temp_output.name, fourcc, fps, (target_width, target_height))
print(f"πŸ“ Resizing video to {target_width}x{target_height}...")
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Resize frame
resized_frame = cv2.resize(frame, (target_width, target_height))
out.write(resized_frame)
frame_count += 1
cap.release()
out.release()
print(f"βœ… Video resized successfully ({frame_count} frames)")
return temp_output.name
except Exception as e:
print(f"⚠️ Video resize failed: {str(e)}")
return input_path # Return original if resize fails
def get_video_info(video_path):
"""Get video dimensions and other info"""
try:
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
return width, height, fps, frame_count
except:
return None, None, None, None
# Function to show immediate status when recording stops
def show_saving_status(video):
"""Show immediate status bar when recording stops"""
if video is None:
return gr.update(visible=False), None
# Create animated status HTML
status_html = """
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 20px; border-radius: 10px; margin: 20px 0; animation: pulse 1.5s ease-in-out infinite;">
<style>
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.8; }
}
@keyframes slide {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.progress-bar {
position: relative;
height: 6px;
background: rgba(255, 255, 255, 0.3);
border-radius: 3px;
overflow: hidden;
margin-top: 15px;
}
.progress-bar::after {
content: '';
position: absolute;
top: 0;
left: 0;
width: 40%;
height: 100%;
background: white;
animation: slide 1.5s ease-in-out infinite;
}
</style>
<div style="text-align: center; color: white;">
<div style="font-size: 24px; font-weight: bold; margin-bottom: 10px;">
πŸ“Ή Processing Your Recording...
</div>
<div style="font-size: 16px; opacity: 0.95;">
Saving video file β€’ Preparing for download
</div>
<div class="progress-bar"></div>
</div>
</div>
"""
return gr.update(value=status_html, visible=True), video
# Enhanced save function with status updates
def save_recorded_video_with_status(video):
"""Save the recorded video with status updates"""
if video is None:
return None, gr.update(value="", visible=False)
try:
# Create a copy of the video file with a timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f"recorded_video_{timestamp}.mp4"
temp_output = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4', prefix=f"recorded_{timestamp}_")
# Copy the video file
import shutil
shutil.copy2(video, temp_output.name)
temp_output.close()
# Success status
success_html = """
<div style="background: linear-gradient(135deg, #10b981 0%, #059669 100%); padding: 15px; border-radius: 10px; margin: 20px 0;">
<div style="text-align: center; color: white;">
<div style="font-size: 20px; font-weight: bold;">
βœ… Video Saved Successfully!
</div>
<div style="font-size: 14px; margin-top: 5px; opacity: 0.95;">
Ready for download β€’ Click "Analyze Video" to assess
</div>
</div>
</div>
"""
print(f"πŸ“Ή Video saved: {output_filename}")
return temp_output.name, gr.update(value=success_html, visible=True)
except Exception as e:
print(f"⚠️ Failed to save video: {str(e)}")
error_html = """
<div style="background: linear-gradient(135deg, #ef4444 0%, #dc2626 100%); padding: 15px; border-radius: 10px; margin: 20px 0;">
<div style="text-align: center; color: white;">
<div style="font-size: 20px; font-weight: bold;">
⚠️ Error Saving Video
</div>
<div style="font-size: 14px; margin-top: 5px;">
Please try recording again
</div>
</div>
</div>
"""
return None, gr.update(value=error_html, visible=True)
# Function to hide status after a delay
def hide_status_after_delay():
"""Hide the status bar after showing success"""
time.sleep(3) # Wait 3 seconds
return gr.update(value="", visible=False)
# Define the core processing function (separate from GPU wrapper)
def process_video_core(video, resize_option, assessor):
"""Process uploaded or recorded video"""
if video is None:
return "Please upload or record a video first.", None, None, None
try:
# Get original video info
orig_width, orig_height, fps, frame_count = get_video_info(video)
if orig_width and orig_height:
print(f"πŸ“Ή Original video: {orig_width}x{orig_height} @ {fps}fps ({frame_count} frames)")
# Get file size
file_size_mb = os.path.getsize(video) / (1024 * 1024)
print(f"πŸ“Ή Processing video ({file_size_mb:.1f}MB)...")
# Apply resizing based on user selection
video_to_process = video
temp_resized_file = None
if resize_option != "Original (No Resize)":
# Parse the resolution from the option string
if "640x480" in resize_option:
target_width, target_height = 640, 480
elif "800x600" in resize_option:
target_width, target_height = 800, 600
elif "1280x720" in resize_option:
target_width, target_height = 1280, 720
else:
target_width, target_height = orig_width, orig_height
# Only resize if different from original
if orig_width and orig_height and (orig_width != target_width or orig_height != target_height):
temp_resized_file = resize_video(video, target_width, target_height)
video_to_process = temp_resized_file
# Check new file size
new_file_size_mb = os.path.getsize(video_to_process) / (1024 * 1024)
print(f"πŸ“¦ Resized video: {new_file_size_mb:.1f}MB (saved {file_size_mb - new_file_size_mb:.1f}MB)")
# Start assessment
print("πŸ₯ Starting CICE 2.0 Healthcare Team Assessment...")
assessment_result = assessor.analyze_video(video_to_process)
# Clean up temporary resized file if created
if temp_resized_file and temp_resized_file != video:
try:
os.unlink(temp_resized_file)
except:
pass
if "Error" in assessment_result:
return assessment_result, None, None, None
# Generate 1-minute audio feedback
print("πŸ”Š Generating 1-minute audio summary...")
audio_path = assessor.generate_audio_feedback(assessment_result)
# Generate PDF report
print("πŸ“„ Generating PDF report...")
pdf_path = assessor.generate_pdf_report(assessment_result)
# Parse scores for visual summary
observed, total, percentage, level, color = assessor.parse_assessment_scores(assessment_result)
# Create enhanced visual summary HTML with professional colors
summary_html = f"""
<div style="max-width:800px; margin:20px auto; padding:30px; border-radius:15px; box-shadow:0 2px 10px rgba(0,0,0,0.08); background:white;">
<h2 style="text-align:center; color:#111827; margin-bottom:30px; font-weight:600;">CICE 2.0 Assessment Summary</h2>
<div style="display:flex; justify-content:space-around; margin:30px 0;">
<div style="text-align:center;">
<div style="font-size:48px; font-weight:bold; color:{color};">{observed}/{total}</div>
<div style="color:#4B5563; margin-top:10px; font-weight:500;">Competencies Observed</div>
</div>
<div style="text-align:center;">
<div style="font-size:48px; font-weight:bold; color:{color};">{percentage:.0f}%</div>
<div style="color:#4B5563; margin-top:10px; font-weight:500;">Overall Score</div>
</div>
</div>
<div style="text-align:center; padding:20px; background:#F8FAFC; border-radius:10px; margin:20px 0; border:1px solid #E2E8F0;">
<div style="font-size:24px; font-weight:bold; color:{color};">Performance Level: {level}</div>
</div>
<div style="margin-top:30px;">
<h3 style="color:#111827; margin-bottom:20px; font-weight:600;">🎯 Key Behavioral Indicators Assessed:</h3>
<div style="background:#F8FAFC; padding:15px; border-radius:10px; margin:15px 0; border:1px solid #E2E8F0;">
<h4 style="color:#0F766E; margin-top:0; font-weight:600;">βœ… Critical Actions</h4>
<ul style="line-height:1.8; margin:10px 0;">
<li style="color:#374151;">CPR/AED prioritization</li>
<li style="color:#374151;">Epinephrine administration timing</li>
<li style="color:#374151;">Clear role assignments ("I'll do compressions")</li>
<li style="color:#374151;">Closed-loop communication</li>
</ul>
</div>
<div style="background:#F8FAFC; padding:15px; border-radius:10px; margin:15px 0; border:1px solid #E2E8F0;">
<h4 style="color:#1E40AF; margin-top:0; font-weight:600;">πŸ—£οΈ Communication Markers</h4>
<ul style="line-height:1.8; margin:10px 0;">
<li style="color:#374151;">Plain language use (avoiding medical jargon)</li>
<li style="color:#374151;">Active listening (repeating back instructions)</li>
<li style="color:#374151;">Soliciting input ("Anything else we need?")</li>
<li style="color:#374151;">Recognizing contributions ("Good catch!")</li>
</ul>
</div>
<div style="background:#F8FAFC; padding:15px; border-radius:10px; margin:15px 0; border:1px solid #E2E8F0;">
<h4 style="color:#6B21A8; margin-top:0; font-weight:600;">πŸ”„ Team Dynamics</h4>
<ul style="line-height:1.8; margin:10px 0;">
<li style="color:#374151;">Pre-brief safety review</li>
<li style="color:#374151;">Peer-to-peer verification</li>
<li style="color:#374151;">Respectful conflict resolution</li>
<li style="color:#374151;">Post-brief reflection on strengths/challenges</li>
</ul>
</div>
</div>
<div style="margin-top:30px; padding:20px; background:#FFF7ED; border-radius:10px; border-left:4px solid #EA580C;">
<p style="text-align:center; color:#431407; margin:0; font-weight:600;">
πŸ”Š Listen to the 1-minute audio summary for key findings<br>
πŸ“„ Download the PDF report for complete documentation
</p>
</div>
</div>
"""
return assessment_result, summary_html, audio_path, pdf_path
except Exception as e:
error_msg = f"❌ Error during processing: {str(e)}"
print(error_msg)
return error_msg, None, None, None
# Wrapper function that calls the GPU-accelerated version
def process_video(video, resize_option):
"""Wrapper function to call GPU-accelerated processing"""
return process_video_with_gpu(video, resize_option)
# Create and launch the Gradio interface
print("πŸš€ Launching CICE 2.0 Healthcare Assessment Tool...")
with gr.Blocks(title="CICE 2.0 Healthcare Assessment Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ₯ CICE 2.0 Healthcare Team Assessment Tool
**Analyze healthcare team interactions using specific behavioral cues from the 18-point CICE 2.0 framework**
This tool evaluates critical team behaviors including:
- Values/ethics for interprofessional practice
- Roles/responsibilities
- Interprofessional communication
- Teams and teamwork
---
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### πŸ“Ή Video Input")
# Video resolution dropdown
resize_dropdown = gr.Dropdown(
choices=[
"Original (No Resize)",
"640x480 (Fastest - Recommended for quick tests)",
"800x600 (Fast - Good balance)",
"1280x720 (HD - Best quality, slower)"
],
value="800x600 (Fast - Good balance)",
label="Video Resolution",
info="Lower resolutions process faster and use less API quota"
)
video_input = gr.Video(
label="Upload or Record Video",
sources=["upload", "webcam"],
format="mp4",
include_audio=True,
interactive=True,
webcam_constraints={"video": {"width": 800, "height": 600}},
autoplay=False, # Disable autoplay for faster loading
show_download_button=True # Show download button immediately
)
# Status bar for immediate feedback
status_bar = gr.HTML(
value="",
visible=False,
elem_id="status-bar"
)
# Add download component for recorded videos
recorded_video_download = gr.File(
label="πŸ“₯ Download Recorded Video",
interactive=False,
visible=False
)
gr.Markdown("""
### πŸ“ Instructions:
1. **Select video resolution** (lower = faster processing)
2. **Upload** a pre-recorded video or **Record** using your webcam
3. Video will be saved and downloadable immediately after recording stops
4. Click **Analyze Video** (on the right) to start the assessment
5. Wait for the AI to process (1-2 minutes)
6. Listen to the **1-minute audio summary**
7. Download the **PDF report** for documentation
**Video Resolution Guide:**
- **640x480**: Fastest processing, uses least quota
- **800x600**: Recommended balance (default)
- **1280x720**: Best quality, takes longer
- **Original**: No resizing (slowest)
**Key Behaviors Assessed:**
- Allergy/medical history identification
- CPR/AED prioritization
- Clear role assignments
- Plain language communication
- Active listening behaviors
- Team respect and conflict resolution
""")
with gr.Column(scale=2):
gr.Markdown("### πŸ“Š Assessment Results")
# Move analyze button here (to the right column)
analyze_btn = gr.Button("πŸ” Analyze Video", variant="primary", size="lg")
# Visual summary
summary_output = gr.HTML(
label="Visual Summary",
value="<p style='text-align:center; color:#6b7280; padding:40px;'>Results will appear here after analysis...</p>"
)
# Audio feedback - downloadable
audio_output = gr.Audio(
label="πŸ”Š 1-Minute Audio Summary (Downloadable)",
type="filepath",
interactive=False
)
# PDF report - downloadable
pdf_output = gr.File(
label="πŸ“„ Download Full PDF Report",
interactive=False,
file_types=[".pdf", ".txt"]
)
# Detailed assessment text
assessment_output = gr.Textbox(
label="Detailed CICE 2.0 Assessment (Text View)",
lines=20,
max_lines=30,
interactive=False,
placeholder="Detailed assessment will appear here..."
)
# Footer
gr.Markdown("""
---
### About This Assessment
This tool uses Google's Gemini AI to identify specific behavioral markers that indicate effective interprofessional collaboration
in healthcare settings. The assessment focuses on observable actions such as:
- Verbal role assignments ("I'll do compressions")
- Recognition phrases ("Good catch on the allergy bracelet")
- Plain language use instead of medical jargon
- Pre-brief and post-brief team discussions
**Output Files:**
- πŸ“Š 1-minute audio summary (MP3 format)
- πŸ“„ Complete PDF assessment report
**Powered by Google Gemini 2.0 Flash | ZeroGPU on HuggingFace Spaces**
""")
# Auto-save video when recording stops with immediate status feedback
video_input.stop_recording(
fn=show_saving_status,
inputs=[video_input],
outputs=[status_bar, video_input],
api_name="show_status"
).then(
fn=save_recorded_video_with_status,
inputs=[video_input],
outputs=[recorded_video_download, status_bar],
api_name="save_video"
).then(
fn=lambda x: gr.update(visible=True if x else False),
inputs=[recorded_video_download],
outputs=[recorded_video_download]
).then(
fn=lambda: time.sleep(3),
inputs=[],
outputs=[]
).then(
fn=lambda: gr.update(value="", visible=False),
inputs=[],
outputs=[status_bar]
)
# Connect the analyze button
analyze_btn.click(
fn=process_video,
inputs=[video_input, resize_dropdown],
outputs=[assessment_output, summary_output, audio_output, pdf_output],
api_name="analyze"
)
# Launch the app
if __name__ == "__main__":
demo.launch()