Update app.py
Browse files
app.py
CHANGED
|
@@ -2,21 +2,31 @@ import os
|
|
| 2 |
import gradio as gr
|
| 3 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
| 4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
-
from llama_index.llms.
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
os.system('sleep 5')
|
| 11 |
-
os.system('ollama pull llama3.2')
|
| 12 |
-
os.system('ollama pull llama3.2')
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# Initialize embeddings and LLM
|
| 15 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
|
| 16 |
-
llama = Ollama(
|
| 17 |
-
model="llama3.2",
|
| 18 |
-
request_timeout=1000,
|
| 19 |
-
)
|
| 20 |
|
| 21 |
def initialize_index():
|
| 22 |
"""Initialize the vector store index from PDF files in the data directory"""
|
|
@@ -34,7 +44,7 @@ def initialize_index():
|
|
| 34 |
)
|
| 35 |
|
| 36 |
# Return query engine with Llama
|
| 37 |
-
return index.as_query_engine(llm=
|
| 38 |
|
| 39 |
# Initialize the query engine at startup
|
| 40 |
query_engine = initialize_index()
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
| 4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from llama_index.llms.llama_cpp import LlamaCPP
|
| 6 |
+
from llama_index.llms.llama_cpp.llama_utils import (
|
| 7 |
+
messages_to_prompt,
|
| 8 |
+
completion_to_prompt,
|
| 9 |
+
)
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
model_url = 'https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF/resolve/main/Llama-3.2-3B-Instruct-Q4_K_M.gguf'
|
| 12 |
+
llm = LlamaCPP(
|
| 13 |
+
# You can pass in the URL to a GGML model to download it automatically
|
| 14 |
+
model_url=model_url,
|
| 15 |
+
temperature=0.1,
|
| 16 |
+
max_new_tokens=256,
|
| 17 |
+
context_window=2048,
|
| 18 |
+
# kwargs to pass to __call__()
|
| 19 |
+
generate_kwargs={},
|
| 20 |
+
# kwargs to pass to __init__()
|
| 21 |
+
# set to at least 1 to use GPU
|
| 22 |
+
model_kwargs={"n_gpu_layers": 1},
|
| 23 |
+
# transform inputs into Llama2 format
|
| 24 |
+
messages_to_prompt=messages_to_prompt,
|
| 25 |
+
completion_to_prompt=completion_to_prompt,
|
| 26 |
+
verbose=True,
|
| 27 |
+
)
|
| 28 |
# Initialize embeddings and LLM
|
| 29 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
def initialize_index():
|
| 32 |
"""Initialize the vector store index from PDF files in the data directory"""
|
|
|
|
| 44 |
)
|
| 45 |
|
| 46 |
# Return query engine with Llama
|
| 47 |
+
return index.as_query_engine(llm=llm)
|
| 48 |
|
| 49 |
# Initialize the query engine at startup
|
| 50 |
query_engine = initialize_index()
|