Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- 04.png +0 -0
- 07.png +0 -0
- app.py +50 -0
- model.h5 +3 -0
- requirements.txt +2 -0
- tensorflow_datasets.ipynb +250 -0
04.png
ADDED
|
07.png
ADDED
|
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# Load the trained model
|
| 6 |
+
model = tf.keras.models.load_model('model.h5')
|
| 7 |
+
print("Model loaded successfully!")
|
| 8 |
+
|
| 9 |
+
def preprocess_image(image):
|
| 10 |
+
"""Process the input image to match MNIST format"""
|
| 11 |
+
# Convert to grayscale
|
| 12 |
+
image = image.convert('L')
|
| 13 |
+
# Resize to 28x28
|
| 14 |
+
image = image.resize((28, 28))
|
| 15 |
+
# Convert to numpy array and normalize
|
| 16 |
+
image_array = np.array(image)
|
| 17 |
+
image_array = image_array / 255.0
|
| 18 |
+
# Reshape to match model input
|
| 19 |
+
image_array = np.expand_dims(image_array, axis=0)
|
| 20 |
+
return image_array
|
| 21 |
+
|
| 22 |
+
def predict_digit(image):
|
| 23 |
+
if image is None:
|
| 24 |
+
return None
|
| 25 |
+
|
| 26 |
+
# Preprocess the image
|
| 27 |
+
processed_image = preprocess_image(image)
|
| 28 |
+
|
| 29 |
+
# Make prediction
|
| 30 |
+
predictions = model.predict(processed_image)
|
| 31 |
+
pred_scores = tf.nn.softmax(predictions[0]).numpy()
|
| 32 |
+
pred_class = np.argmax(pred_scores)
|
| 33 |
+
|
| 34 |
+
# Create result string
|
| 35 |
+
result = f"Prediction: {pred_class}"
|
| 36 |
+
|
| 37 |
+
return result
|
| 38 |
+
|
| 39 |
+
# Create Gradio interface
|
| 40 |
+
demo = gr.Interface(
|
| 41 |
+
fn=predict_digit,
|
| 42 |
+
inputs=gr.Image(type="pil"),
|
| 43 |
+
outputs=gr.Textbox(label="Result"),
|
| 44 |
+
title="MNIST Digit Recognizer",
|
| 45 |
+
description="Upload a digit from 0-9 and the model will predict which digit it is.",
|
| 46 |
+
examples=None,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
demo.launch()
|
model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6aac72609e1d15790a883acae3830d5afbb79e073e74714f5b997d4b6f64e40e
|
| 3 |
+
size 452712
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# requirements.txt
|
| 2 |
+
tensorflow
|
tensorflow_datasets.ipynb
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "USSV_OlCFKOD"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"# Training a neural network on MNIST with Keras\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"This simple example demonstrates how to plug TensorFlow Datasets (TFDS) into a Keras model.\n"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "markdown",
|
| 16 |
+
"metadata": {
|
| 17 |
+
"id": "J8y9ZkLXmAZc"
|
| 18 |
+
},
|
| 19 |
+
"source": [
|
| 20 |
+
"Copyright 2020 The TensorFlow Datasets Authors, Licensed under the Apache License, Version 2.0"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "markdown",
|
| 25 |
+
"metadata": {
|
| 26 |
+
"id": "OGw9EgE0tC0C"
|
| 27 |
+
},
|
| 28 |
+
"source": [
|
| 29 |
+
"<table class=\"tfo-notebook-buttons\" align=\"left\">\n",
|
| 30 |
+
" <td>\n",
|
| 31 |
+
" <a target=\"_blank\" href=\"https://www.tensorflow.org/datasets/keras_example\"><img src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" />View on TensorFlow.org</a>\n",
|
| 32 |
+
" </td>\n",
|
| 33 |
+
" <td>\n",
|
| 34 |
+
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/datasets/blob/master/docs/keras_example.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
|
| 35 |
+
" </td>\n",
|
| 36 |
+
" <td>\n",
|
| 37 |
+
" <a target=\"_blank\" href=\"https://github.com/tensorflow/datasets/blob/master/docs/keras_example.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View source on GitHub</a>\n",
|
| 38 |
+
" </td>\n",
|
| 39 |
+
" <td>\n",
|
| 40 |
+
" <a href=\"https://storage.googleapis.com/tensorflow_docs/datasets/docs/keras_example.ipynb\"><img src=\"https://www.tensorflow.org/images/download_logo_32px.png\" />Download notebook</a>\n",
|
| 41 |
+
" </td>\n",
|
| 42 |
+
"</table>"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"execution_count": null,
|
| 48 |
+
"metadata": {
|
| 49 |
+
"id": "TTBSvHcSLBzc"
|
| 50 |
+
},
|
| 51 |
+
"outputs": [],
|
| 52 |
+
"source": [
|
| 53 |
+
"import tensorflow as tf\n",
|
| 54 |
+
"import tensorflow_datasets as tfds"
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"cell_type": "markdown",
|
| 59 |
+
"metadata": {
|
| 60 |
+
"id": "VjI6VgOBf0v0"
|
| 61 |
+
},
|
| 62 |
+
"source": [
|
| 63 |
+
"## Step 1: Create your input pipeline\n",
|
| 64 |
+
"\n",
|
| 65 |
+
"Start by building an efficient input pipeline using advices from:\n",
|
| 66 |
+
"* The [Performance tips](https://www.tensorflow.org/datasets/performances) guide\n",
|
| 67 |
+
"* The [Better performance with the `tf.data` API](https://www.tensorflow.org/guide/data_performance#optimize_performance) guide\n"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "markdown",
|
| 72 |
+
"metadata": {
|
| 73 |
+
"id": "c3aH3vP_XLI8"
|
| 74 |
+
},
|
| 75 |
+
"source": [
|
| 76 |
+
"### Load a dataset\n",
|
| 77 |
+
"\n",
|
| 78 |
+
"Load the MNIST dataset with the following arguments:\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"* `shuffle_files=True`: The MNIST data is only stored in a single file, but for larger datasets with multiple files on disk, it's good practice to shuffle them when training.\n",
|
| 81 |
+
"* `as_supervised=True`: Returns a tuple `(img, label)` instead of a dictionary `{'image': img, 'label': label}`."
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"cell_type": "code",
|
| 86 |
+
"execution_count": null,
|
| 87 |
+
"metadata": {
|
| 88 |
+
"id": "ZUMhCXhFXdHQ"
|
| 89 |
+
},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"(ds_train, ds_test), ds_info = tfds.load(\n",
|
| 93 |
+
" 'mnist',\n",
|
| 94 |
+
" split=['train', 'test'],\n",
|
| 95 |
+
" shuffle_files=True,\n",
|
| 96 |
+
" as_supervised=True,\n",
|
| 97 |
+
" with_info=True,\n",
|
| 98 |
+
")"
|
| 99 |
+
]
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"cell_type": "markdown",
|
| 103 |
+
"metadata": {
|
| 104 |
+
"id": "rgwCFAcWXQTx"
|
| 105 |
+
},
|
| 106 |
+
"source": [
|
| 107 |
+
"### Build a training pipeline\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"Apply the following transformations:\n",
|
| 110 |
+
"\n",
|
| 111 |
+
"* `tf.data.Dataset.map`: TFDS provide images of type `tf.uint8`, while the model expects `tf.float32`. Therefore, you need to normalize images.\n",
|
| 112 |
+
"* `tf.data.Dataset.cache` As you fit the dataset in memory, cache it before shuffling for a better performance.<br/>\n",
|
| 113 |
+
"__Note:__ Random transformations should be applied after caching.\n",
|
| 114 |
+
"* `tf.data.Dataset.shuffle`: For true randomness, set the shuffle buffer to the full dataset size.<br/>\n",
|
| 115 |
+
"__Note:__ For large datasets that can't fit in memory, use `buffer_size=1000` if your system allows it.\n",
|
| 116 |
+
"* `tf.data.Dataset.batch`: Batch elements of the dataset after shuffling to get unique batches at each epoch.\n",
|
| 117 |
+
"* `tf.data.Dataset.prefetch`: It is good practice to end the pipeline by prefetching [for performance](https://www.tensorflow.org/guide/data_performance#prefetching)."
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": null,
|
| 123 |
+
"metadata": {
|
| 124 |
+
"id": "haykx2K9XgiI"
|
| 125 |
+
},
|
| 126 |
+
"outputs": [],
|
| 127 |
+
"source": [
|
| 128 |
+
"def normalize_img(image, label):\n",
|
| 129 |
+
" \"\"\"Normalizes images: `uint8` -> `float32`.\"\"\"\n",
|
| 130 |
+
" return tf.cast(image, tf.float32) / 255., label\n",
|
| 131 |
+
"\n",
|
| 132 |
+
"ds_train = ds_train.map(\n",
|
| 133 |
+
" normalize_img, num_parallel_calls=tf.data.AUTOTUNE)\n",
|
| 134 |
+
"ds_train = ds_train.cache()\n",
|
| 135 |
+
"ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)\n",
|
| 136 |
+
"ds_train = ds_train.batch(128)\n",
|
| 137 |
+
"ds_train = ds_train.prefetch(tf.data.AUTOTUNE)"
|
| 138 |
+
]
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"cell_type": "markdown",
|
| 142 |
+
"metadata": {
|
| 143 |
+
"id": "RbsMy4X1XVFv"
|
| 144 |
+
},
|
| 145 |
+
"source": [
|
| 146 |
+
"### Build an evaluation pipeline\n",
|
| 147 |
+
"\n",
|
| 148 |
+
"Your testing pipeline is similar to the training pipeline with small differences:\n",
|
| 149 |
+
"\n",
|
| 150 |
+
" * You don't need to call `tf.data.Dataset.shuffle`.\n",
|
| 151 |
+
" * Caching is done after batching because batches can be the same between epochs."
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"cell_type": "code",
|
| 156 |
+
"execution_count": null,
|
| 157 |
+
"metadata": {
|
| 158 |
+
"id": "A0KjuDf7XiqY"
|
| 159 |
+
},
|
| 160 |
+
"outputs": [],
|
| 161 |
+
"source": [
|
| 162 |
+
"ds_test = ds_test.map(\n",
|
| 163 |
+
" normalize_img, num_parallel_calls=tf.data.AUTOTUNE)\n",
|
| 164 |
+
"ds_test = ds_test.batch(128)\n",
|
| 165 |
+
"ds_test = ds_test.cache()\n",
|
| 166 |
+
"ds_test = ds_test.prefetch(tf.data.AUTOTUNE)"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "markdown",
|
| 171 |
+
"metadata": {
|
| 172 |
+
"id": "nTFoji3INMEM"
|
| 173 |
+
},
|
| 174 |
+
"source": [
|
| 175 |
+
"## Step 2: Create and train the model\n",
|
| 176 |
+
"\n",
|
| 177 |
+
"Plug the TFDS input pipeline into a simple Keras model, compile the model, and train it."
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"cell_type": "code",
|
| 182 |
+
"execution_count": null,
|
| 183 |
+
"metadata": {
|
| 184 |
+
"id": "XWqxdmS1NLKA"
|
| 185 |
+
},
|
| 186 |
+
"outputs": [],
|
| 187 |
+
"source": [
|
| 188 |
+
"model = tf.keras.models.Sequential([\n",
|
| 189 |
+
" tf.keras.layers.Flatten(input_shape=(28, 28)),\n",
|
| 190 |
+
" tf.keras.layers.Dense(128, activation='relu'),\n",
|
| 191 |
+
" tf.keras.layers.Dense(10)\n",
|
| 192 |
+
"])\n",
|
| 193 |
+
"model.compile(\n",
|
| 194 |
+
" optimizer=tf.keras.optimizers.Adam(0.001),\n",
|
| 195 |
+
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
|
| 196 |
+
" metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],\n",
|
| 197 |
+
")\n",
|
| 198 |
+
"\n",
|
| 199 |
+
"model.fit(\n",
|
| 200 |
+
" ds_train,\n",
|
| 201 |
+
" epochs=6,\n",
|
| 202 |
+
" validation_data=ds_test,\n",
|
| 203 |
+
")"
|
| 204 |
+
]
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"cell_type": "markdown",
|
| 208 |
+
"source": [
|
| 209 |
+
"Save Model Weights"
|
| 210 |
+
],
|
| 211 |
+
"metadata": {
|
| 212 |
+
"id": "lOLnm8sk-rDP"
|
| 213 |
+
}
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"cell_type": "code",
|
| 217 |
+
"source": [
|
| 218 |
+
"# save model\n",
|
| 219 |
+
"model.save('model.h5')"
|
| 220 |
+
],
|
| 221 |
+
"metadata": {
|
| 222 |
+
"id": "8nd9iSyG-s9p"
|
| 223 |
+
},
|
| 224 |
+
"execution_count": null,
|
| 225 |
+
"outputs": []
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"cell_type": "code",
|
| 229 |
+
"source": [],
|
| 230 |
+
"metadata": {
|
| 231 |
+
"id": "DQuEn_g7-vlR"
|
| 232 |
+
},
|
| 233 |
+
"execution_count": null,
|
| 234 |
+
"outputs": []
|
| 235 |
+
}
|
| 236 |
+
],
|
| 237 |
+
"metadata": {
|
| 238 |
+
"colab": {
|
| 239 |
+
"private_outputs": true,
|
| 240 |
+
"provenance": [],
|
| 241 |
+
"toc_visible": true
|
| 242 |
+
},
|
| 243 |
+
"kernelspec": {
|
| 244 |
+
"display_name": "Python 3",
|
| 245 |
+
"name": "python3"
|
| 246 |
+
}
|
| 247 |
+
},
|
| 248 |
+
"nbformat": 4,
|
| 249 |
+
"nbformat_minor": 0
|
| 250 |
+
}
|