Spaces:
Sleeping
Sleeping
File size: 6,085 Bytes
6cc0a7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import spaces
import os
# Model configuration
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct" # Small, efficient open-source model
MAX_NEW_TOKENS = 512
TEMPERATURE = 0.7
TOP_P = 0.95
# Initialize model and tokenizer
print(f"Loading model: {MODEL_NAME}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True
)
# Create text generation pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
)
@spaces.GPU(duration=60) # Request GPU for 60 seconds per call (for Hugging Face Spaces)
def generate_response(message, history, system_message, max_tokens, temperature, top_p):
"""Generate a response using the LLM."""
# Build conversation context
messages = []
# Add system message if provided
if system_message:
messages.append({"role": "system", "content": system_message})
# Add conversation history
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Apply chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Generate response
try:
outputs = pipe(
text,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
return_full_text=False
)
response = outputs[0]["generated_text"]
return response
except Exception as e:
return f"Error generating response: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Open Source LLM Chat", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Open Source LLM Chat
This app uses **{model}** - an open-source language model.
### Features:
- Interactive chat interface
- Adjustable generation parameters
- Custom system messages
- Deployed on Hugging Face Spaces
""".format(model=MODEL_NAME)
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Chat History",
height=500,
bubble_full_width=False
)
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here and press Enter...",
lines=2
)
with gr.Row():
submit = gr.Button("Send", variant="primary")
clear = gr.Button("Clear Chat")
with gr.Column(scale=1):
gr.Markdown("### Settings")
system_message = gr.Textbox(
label="System Message (Optional)",
placeholder="You are a helpful AI assistant...",
lines=3
)
max_tokens = gr.Slider(
minimum=50,
maximum=2048,
value=MAX_NEW_TOKENS,
step=50,
label="Max Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=TEMPERATURE,
step=0.1,
label="Temperature (Creativity)"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=TOP_P,
step=0.05,
label="Top-p (Nucleus Sampling)"
)
gr.Markdown(
"""
### Parameter Guide:
- **Max Tokens**: Maximum length of response
- **Temperature**: Higher = more creative, Lower = more focused
- **Top-p**: Controls diversity of word choices
"""
)
gr.Markdown(
"""
---
### Tips:
- Start with a clear, specific question
- Adjust temperature for creative vs. factual responses
- Use system messages to set the AI's behavior
- Clear chat if responses become inconsistent
"""
)
# Handle message submission
def user_submit(message, history):
return "", history + [[message, None]]
def bot_respond(history, system_message, max_tokens, temperature, top_p):
if len(history) == 0 or history[-1][1] is not None:
return history
message = history[-1][0]
bot_message = generate_response(
message,
history[:-1], # Don't include the current message in history
system_message,
max_tokens,
temperature,
top_p
)
history[-1][1] = bot_message
return history
# Wire up the interface
msg.submit(
user_submit,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot_respond,
[chatbot, system_message, max_tokens, temperature, top_p],
chatbot
)
submit.click(
user_submit,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot_respond,
[chatbot, system_message, max_tokens, temperature, top_p],
chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
# Launch the app
if __name__ == "__main__":
demo.launch(
share=False,
show_error=True
)
|