import os import torch import gradio as gr import spaces import random import numpy as np from diffusers.utils import logging from PIL import Image from diffusers import OvisImagePipeline logging.set_verbosity_error() # DEVICE = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max device = "cuda" _dtype = torch.bfloat16 hf_token = os.getenv("HF_TOKEN") pipe = OvisImagePipeline.from_pretrained( "AIDC-AI/Ovis-Image-7B", token=hf_token, torch_dtype=torch.bfloat16 ) pipe.to("cuda") @spaces.GPU(duration=75) def generate(prompt, img_height=1024, img_width=1024, seed=42, steps=50, guidance_scale=5.0): print(f'inference with prompt : {prompt}, size: {img_height}x{img_width}, seed : {seed}, step : {steps}, cfg : {guidance_scale}') image = pipe( prompt, negative_prompt="", height=img_height, width=img_width, num_inference_steps=steps, true_cfg_scale=guidance_scale, ).images[0] return image examples = [ "Solar punk vehicle in a bustling city", "An anthropomorphic cat riding a Harley Davidson in Arizona with sunglasses and a leather jacket", "An elderly woman poses for a high fashion photoshoot in colorful, patterned clothes with a cyberpunk 2077 vibe", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# Ovis-Image [[code](https://github.com/AIDC-AI/Ovis-Image)] [[model](https://huggingface.co/AIDC-AI/Ovis-Image-7B)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt here", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): img_height = gr.Slider( label="Image Height", minimum=256, maximum=2048, step=32, value=1024, ) img_width = gr.Slider( label="Image Width", minimum=256, maximum=2048, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=14, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=50, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) gr.Examples( examples = examples, fn = generate, inputs = [prompt], outputs = [result], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = generate, inputs = [prompt, img_height, img_width, seed, num_inference_steps, guidance_scale], outputs = [result] ) if __name__ == '__main__': demo.launch()