# Copyright (C) 2025 AIDC-AI # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. import math from dataclasses import dataclass import torch from einops import rearrange from torch import nn, Tensor from ovis_image.model.ops import attention, rope class EmbedND(nn.Module): def __init__(self, dim: int, theta: int, axes_dim: list[int]): super().__init__() self.dim = dim self.theta = theta self.axes_dim = axes_dim @torch.no_grad() def forward(self, ids: Tensor) -> Tensor: n_axes = ids.shape[-1] emb = torch.cat( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3, ) # bs x 1 x 512 x 64 x 2 x 2 return emb.unsqueeze(1) def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ t = time_factor * t half = dim // 2 with torch.device(t.device): freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) if torch.is_floating_point(t): embedding = embedding.to(t) return embedding class MLPEmbedder(nn.Module): def __init__(self, in_dim: int, hidden_dim: int): super().__init__() self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) self.silu = nn.SiLU() self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) def init_weights(self, init_std: float = 0.02): nn.init.normal_(self.in_layer.weight, std=init_std) nn.init.constant_(self.in_layer.bias, 0) nn.init.normal_(self.out_layer.weight, std=init_std) nn.init.constant_(self.out_layer.bias, 0) def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) class QKNorm(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.query_norm = nn.RMSNorm(dim) self.key_norm = nn.RMSNorm(dim) def init_weights(self): self.query_norm.reset_parameters() self.key_norm.reset_parameters() def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: q = self.query_norm(q) k = self.key_norm(k) return q.to(v), k.to(v) class SelfAttention(nn.Module): def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.norm = QKNorm(head_dim) self.proj = nn.Linear(dim, dim) def init_weights(self): for layer in (self.qkv, self.proj): nn.init.xavier_uniform_(layer.weight) if layer.bias is not None: nn.init.constant_(layer.bias, 0) self.norm.init_weights() def forward(self, x: Tensor, pe: Tensor) -> Tensor: qkv = self.qkv(x) q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) q, k = self.norm(q, k, v) x = attention(q, k, v, pe=pe) x = self.proj(x) return x class YakMLP(nn.Module): # Use SwiGLU def __init__(self, hidden_size: int, intermediate_size: int): super().__init__() self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=True) self.act_fn = nn.SiLU() def init_weights(self): for layer in (self.gate_proj, self.up_proj, self.down_proj): nn.init.xavier_uniform_(layer.weight) nn.init.constant_(layer.bias, 0) def forward(self, x: Tensor) -> Tensor: down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def build_mlp(hidden_size, intermediate_size, activation = "gelu_tanh"): if activation == "gelu_tanh": mlp = nn.Sequential( nn.Linear(hidden_size, intermediate_size, bias=True), nn.GELU(approximate="tanh"), nn.Linear(intermediate_size, hidden_size, bias=True), ) else: mlp = YakMLP(hidden_size, intermediate_size) return mlp def init_mlp(mlp, activation = "gelu_tanh"): if activation == "gelu_tanh": for layer in (mlp[0], mlp[2]): nn.init.xavier_uniform_(layer.weight) nn.init.constant_(layer.bias, 0) else: mlp.init_weights() @dataclass class ModulationOut: shift: Tensor scale: Tensor gate: Tensor class Modulation(nn.Module): def __init__(self, dim: int, multiples: int = 1): super().__init__() assert multiples in [1, 2, 3] self.multiples = multiples self.multiplier = 3 * multiples self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) self.act = nn.SiLU() def init_weights(self): nn.init.constant_(self.lin.weight, 0) nn.init.constant_(self.lin.bias, 0) def forward(self, vec: Tensor): out = self.lin(self.act(vec))[:, None, :].chunk( self.multiplier, dim=-1 ) if self.multiples == 1: return ModulationOut(*out[:3]) elif self.multiples == 2: return ( ModulationOut(*out[:3]), ModulationOut(*out[3:]), ) elif self.multiples == 3: return ( ModulationOut(*out[:3]), ModulationOut(*out[3:6]), ModulationOut(*out[6:]), ) class DoubleStreamBlock(nn.Module): def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, activation: str = "gelu_tanh", norm_layer: nn.Module = nn.LayerNorm, ): super().__init__() mlp_hidden_dim = int(hidden_size * mlp_ratio) self.num_heads = num_heads self.hidden_size = hidden_size self.activation = activation self.img_mod = Modulation(hidden_size, multiples=2) self.img_norm1 = norm_layer(hidden_size, elementwise_affine=False, eps=1e-6) self.img_attn = SelfAttention( dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias ) self.img_norm2 = norm_layer(hidden_size, elementwise_affine=False, eps=1e-6) self.img_mlp = build_mlp(hidden_size, mlp_hidden_dim, activation) self.txt_mod = Modulation(hidden_size, multiples=2) self.txt_norm1 = norm_layer(hidden_size, elementwise_affine=False, eps=1e-6) self.txt_attn = SelfAttention( dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias ) self.txt_norm2 = norm_layer(hidden_size, elementwise_affine=False, eps=1e-6) self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, activation) def init_weights(self): # initialize all the nn.Linear submodules init_mlp(self.img_mlp, self.activation) init_mlp(self.txt_mlp, self.activation) # initialize Modulation layers, SelfAttention layers for layer in (self.img_attn, self.img_mod, self.txt_attn, self.txt_mod): layer.init_weights() # Reset parameters for Normalization layers for norm in (self.txt_norm1, self.txt_norm2, self.img_norm1, self.img_norm2): norm.reset_parameters() def forward( self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor ) -> tuple[Tensor, Tensor]: img_mod1, img_mod2 = self.img_mod(vec) txt_mod1, txt_mod2 = self.txt_mod(vec) # prepare image for attention img_modulated = self.img_norm1(img) img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift img_qkv = self.img_attn.qkv(img_modulated) img_q, img_k, img_v = rearrange( img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads ) img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) # prepare txt for attention txt_modulated = self.txt_norm1(txt) txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift txt_qkv = self.txt_attn.qkv(txt_modulated) txt_q, txt_k, txt_v = rearrange( txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads ) txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) # run actual attention q = torch.cat((txt_q, img_q), dim=2) k = torch.cat((txt_k, img_k), dim=2) v = torch.cat((txt_v, img_v), dim=2) attn = attention(q, k, v, pe=pe) txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] # calculate the img bloks img = img + img_mod1.gate * self.img_attn.proj(img_attn) img = img + img_mod2.gate * self.img_mlp( (1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift ) # calculate the txt bloks txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) txt = txt + txt_mod2.gate * self.txt_mlp( (1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift ) return img, txt class SingleStreamBlock(nn.Module): """ A DiT block with parallel linear layers as described in https://arxiv.org/abs/2302.05442 and adapted modulation interface. """ def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, qkv_bias: bool = False, qk_scale: float | None = None, activation: str = "gelu_tanh", norm_layer: nn.Module = nn.LayerNorm, ): super().__init__() self.hidden_dim = hidden_size self.num_heads = num_heads head_dim = hidden_size // num_heads self.scale = qk_scale or head_dim**-0.5 self.activation = activation self.mlp_hidden_dim = int(hidden_size * mlp_ratio) if activation == "gelu_tanh": # qkv and mlp_in self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, bias=qkv_bias) else: # qkv and mlp_in and mlp_gate self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim * 2, bias=qkv_bias) # proj and mlp_out self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) self.norm = QKNorm(head_dim) self.hidden_size = hidden_size self.pre_norm = norm_layer(hidden_size, elementwise_affine=False, eps=1e-6) if activation == "gelu_tanh": self.mlp_act = nn.GELU(approximate="tanh") else: self.mlp_act = nn.SiLU() self.modulation = Modulation(hidden_size, multiples=1) def init_weights(self): for layer in (self.linear1, self.linear2): nn.init.xavier_uniform_(layer.weight) if layer.bias is not None: nn.init.constant_(layer.bias, 0) self.norm.init_weights() self.pre_norm.reset_parameters() self.modulation.init_weights() def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: mod = self.modulation(vec) x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift if self.activation == "gelu_tanh": qkv, mlp = torch.split( self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1 ) else: qkv, mlp, mlp_gate = torch.split( self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim, self.mlp_hidden_dim], dim=-1 ) q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) q, k = self.norm(q, k, v) # compute attention attn = attention(q, k, v, pe=pe) if self.activation == "gelu_tanh": # compute activation in mlp stream, cat again and run second linear layer x = x + mod.gate * self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) else: x = x + mod.gate * self.linear2( torch.cat((attn, self.mlp_act(mlp_gate) * mlp), 2) ) return x class LastLayer(nn.Module): def __init__( self, hidden_size: int, patch_size: int, out_channels: int, norm_layer: nn.Module = nn.LayerNorm, ): super().__init__() self.norm_final = norm_layer(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear( hidden_size, patch_size * patch_size * out_channels, bias=True ) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def init_weights(self): nn.init.constant_(self.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.linear.weight, 0) nn.init.constant_(self.linear.bias, 0) self.norm_final.reset_parameters() def forward(self, x: Tensor, vec: Tensor) -> Tensor: shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] x = self.linear(x) return x