File size: 20,233 Bytes
d961e88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import asyncio
import re
import traceback
from dataclasses import asdict, dataclass
from datetime import datetime
from typing import Any, Optional

from jinja2 import Environment, StrictUndefined
from torch import cosine_similarity

from pptagent.agent import Agent, AsyncAgent
from pptagent.llms import LLM, AsyncLLM
from pptagent.utils import edit_distance, get_logger, package_join, pexists

from .element import Section, SubSection, Table, link_medias

logger = get_logger(__name__)

env = Environment(undefined=StrictUndefined)

MERGE_METADATA_PROMPT = env.from_string(
    open(package_join("prompts", "merge_metadata.txt")).read()
)
HEADING_EXTRACT_PROMPT = env.from_string(
    open(package_join("prompts", "heading_extract.txt")).read()
)
SECTION_SUMMARY_PROMPT = env.from_string(
    open(package_join("prompts", "section_summary.txt")).read()
)

MARKDOWN_IMAGE_REGEX = re.compile(r"!\[.*\]\(.*\)")
MARKDOWN_TABLE_REGEX = re.compile(r"\|.*\|")


def split_markdown_by_headings(

    markdown_content: str,

    headings: list[str],

    adjusted_headings: list[str],

    min_chunk_size: int = 64,

) -> list[str]:
    """

    Split markdown content using headings as separators without regex.



    Args:

        markdown_content (str): The markdown content to split

        headings (list[str]): List of heading strings to split by



    Returns:

        list[str]: List of content sections

    """
    adjusted_headings = [
        max(headings, key=lambda x: edit_distance(x, ah)) for ah in adjusted_headings
    ]
    sections = []
    current_section = []

    for line in markdown_content.splitlines():
        if any(line.strip().startswith(h) for h in adjusted_headings):
            if len(current_section) != 0:
                sections.append("\n".join(current_section).strip())
            current_section = [line]
        else:
            current_section.append(line)

    if len(current_section) != 0:
        sections.append("\n".join(current_section).strip())

    # if an chunk is too small, merge it with the previous chunk
    for i in reversed(range(1, len(sections))):
        if len(sections[i]) < min_chunk_size:
            sections[i - 1] += sections[i]
            sections.pop(i)

    if len(sections[0]) < min_chunk_size:
        sections[0] += sections[1]
        sections.pop(1)

    return sections


def to_paragraphs(original_text: str, max_chunk_size: int = 256):
    paragraphs = []
    medias = []
    for i, para in enumerate(original_text.split("\n\n")):
        para = para.strip()
        if not para:
            continue
        paragraph = {"markdown_content": para, "index": i}
        if MARKDOWN_TABLE_REGEX.match(para):
            paragraph["type"] = "table"
            medias.append(paragraph)
        elif MARKDOWN_IMAGE_REGEX.match(para):
            paragraph["type"] = "image"
            medias.append(paragraph)
        else:
            paragraphs.append(paragraph)
    for media in medias:
        pre_chunk = ""
        after_chunk = ""
        for chunk in reversed(paragraphs):
            if chunk["index"] < media["index"]:
                pre_chunk += chunk["markdown_content"] + "\n\n"
                if len(pre_chunk) > max_chunk_size:
                    break
        for chunk in paragraphs:
            if chunk["index"] > media["index"]:
                after_chunk += chunk["markdown_content"] + "\n\n"
                if len(after_chunk) > max_chunk_size:
                    break
        media["near_chunks"] = (pre_chunk, after_chunk)
    return medias


@dataclass
class Document:
    image_dir: str
    sections: list[Section]
    metadata: dict[str, str]

    def __post_init__(self):
        self.metadata["presentation-date"] = datetime.now().strftime("%Y-%m-%d")

    def iter_medias(self):
        for section in self.sections:
            yield from section.iter_medias()

    def get_table(self, image_path: str):
        for media in self.iter_medias():
            if media.path == image_path and isinstance(media, Table):
                return media
        raise ValueError(f"table not found: {image_path}")

    @classmethod
    def from_dict(

        cls, data: dict[str, Any], image_dir: str, require_caption: bool = True

    ):
        assert (
            "sections" in data
        ), f"'sections' key is required in data dictionary but was not found. Input keys: {list(data.keys())}"
        assert (
            "metadata" in data
        ), f"'metadata' key is required in data dictionary but was not found. Input keys: {list(data.keys())}"
        assert pexists(image_dir), f"image directory is not found: {image_dir}"
        document = cls(
            image_dir=image_dir,
            sections=[Section.from_dict(section) for section in data["sections"]],
            metadata=data["metadata"],
        )
        for section in document.sections:
            section.validate_medias(image_dir, require_caption)
        return document

    @classmethod
    def _parse_chunk(

        cls,

        extractor: Agent,

        language_model: LLM,

        vision_model: LLM,

        table_model: LLM,

        metadata: Optional[dict[str, Any]],

        section: Optional[dict[str, Any]],

        image_dir: str,

        turn_id: int = None,

        retry: int = 0,

        medias: Optional[list[dict]] = None,

    ):
        if retry == 0:
            medias = to_paragraphs(section)
            turn_id, section = extractor(markdown_document=section)
            metadata = section.pop("metadata", {})
        try:
            section["subsections"] = link_medias(medias, section["subsections"])
            section = Section.from_dict(section)
            for media in section.iter_medias():
                media.parse(table_model, image_dir)
                if isinstance(media, Table):
                    media.get_caption(language_model)
                else:
                    media.get_caption(vision_model)
            section.validate_medias(image_dir, False)
        except Exception as e:
            if retry < 3:
                logger.info("Retry section with error: %s", str(e))
                new_section = extractor.retry(
                    str(e), traceback.format_exc(), turn_id, retry + 1
                )
                return cls._parse_chunk(
                    extractor,
                    language_model,
                    vision_model,
                    table_model,
                    metadata,
                    new_section,
                    image_dir,
                    turn_id,
                    retry + 1,
                    medias,
                )
            else:
                logger.error(
                    "Failed to extract section, tried %d times",
                    retry,
                    exc_info=e,
                )
                raise e
        return metadata, section

    @classmethod
    async def _parse_chunk_async(

        cls,

        extractor: AsyncAgent,

        language_model: AsyncLLM,

        vision_model: AsyncLLM,

        table_model: Optional[AsyncLLM],

        metadata: Optional[dict[str, Any]],

        section: Optional[dict[str, Any]],

        image_dir: str,

        turn_id: int = None,

        retry: int = 0,

        medias: Optional[list[dict]] = None,

    ):
        if retry == 0:
            medias = to_paragraphs(section)
            turn_id, section = await extractor(markdown_document=section)
            metadata = section.pop("metadata", {})
        try:
            section["subsections"] = link_medias(medias, section["subsections"])
            section = Section.from_dict(section)
            for media in section.iter_medias():
                await media.parse_async(table_model, image_dir)
                if isinstance(media, Table):
                    await media.get_caption_async(language_model)
                else:
                    await media.get_caption_async(vision_model)
            section.validate_medias(image_dir, False)
        except Exception as e:
            if retry < 3:
                logger.info("Retry section with error: %s", str(e))
                new_section = await extractor.retry(
                    str(e), traceback.format_exc(), turn_id, retry + 1
                )
                return await cls._parse_chunk_async(
                    extractor,
                    language_model,
                    vision_model,
                    table_model,
                    metadata,
                    new_section,
                    image_dir,
                    turn_id,
                    retry + 1,
                    medias,
                )
            else:
                logger.error(
                    "Failed to extract section, tried %d times",
                    retry,
                    exc_info=e,
                )
                raise e
        return metadata, section

    @classmethod
    def from_markdown(

        cls,

        markdown_content: str,

        language_model: LLM,

        vision_model: LLM,

        image_dir: str,

        table_model: Optional[LLM] = None,

    ):
        """

        Create a Document from markdown content.



        Args:

            markdown_content (str): The markdown content.

            language_model (LLM): The language model.

            vision_model (LLM): The vision model.

            image_dir (str): The directory containing images.



        Returns:

            Document: The created document.

        """
        doc_extractor = Agent(
            "doc_extractor",
            llm_mapping={"language": language_model, "vision": vision_model},
        )

        metadata_list = []
        sections = []

        headings = re.findall(r"^#+\s+.*", markdown_content, re.MULTILINE)
        adjusted_headings = language_model(
            HEADING_EXTRACT_PROMPT.render(headings=headings), return_json=True
        )

        for chunk in split_markdown_by_headings(
            markdown_content, headings, adjusted_headings
        ):
            metadata, section = cls._parse_chunk(
                doc_extractor,
                language_model,
                vision_model,
                table_model,
                None,
                chunk,
                image_dir,
            )
            section.summary = language_model(
                SECTION_SUMMARY_PROMPT.render(section_content=chunk),
            )
            metadata_list.append(metadata)
            sections.append(section)

        merged_metadata = language_model(
            MERGE_METADATA_PROMPT.render(metadata=metadata_list), return_json=True
        )
        return Document(
            image_dir=image_dir, metadata=merged_metadata, sections=sections
        )

    @classmethod
    async def from_markdown_async(

        cls,

        markdown_content: str,

        language_model: AsyncLLM,

        vision_model: AsyncLLM,

        image_dir: str,

        table_model: Optional[AsyncLLM] = None,

    ):
        doc_extractor = AsyncAgent(
            "doc_extractor",
            llm_mapping={"language": language_model, "vision": vision_model},
        )

        headings = re.findall(r"^#+\s+.*", markdown_content, re.MULTILINE)
        adjusted_headings = await language_model(
            HEADING_EXTRACT_PROMPT.render(headings=headings), return_json=True
        )
        metadata = []
        sections = []
        tasks = []

        async with asyncio.TaskGroup() as tg:
            for chunk in split_markdown_by_headings(
                markdown_content, headings, adjusted_headings
            ):
                task1 = tg.create_task(
                    cls._parse_chunk_async(
                        doc_extractor,
                        language_model,
                        vision_model,
                        table_model,
                        None,
                        chunk,
                        image_dir,
                    )
                )
                task2 = tg.create_task(
                    language_model(
                        SECTION_SUMMARY_PROMPT.render(section_content=chunk),
                    )
                )
                tasks.append((task1, task2))

        # Process results in order
        for task1, task2 in tasks:
            meta, section = task1.result()
            metadata.append(meta)
            sections.append(section)
            for section in sections:
                section.summary = task2.result()

        merged_metadata = await language_model(
            MERGE_METADATA_PROMPT.render(metadata=metadata), return_json=True
        )
        return Document(
            image_dir=image_dir, metadata=merged_metadata, sections=sections
        )

    def __contains__(self, key: str):
        for section in self.sections:
            if section.title == key:
                return True
        return False

    def __getitem__(self, key: str):
        for section in self.sections:
            if section.title == key:
                return section
        raise KeyError(
            f"section not found: {key}, available sections: {[section.title for section in self.sections]}"
        )

    def to_dict(self):
        return asdict(self)

    def retrieve(

        self,

        indexs: dict[str, list[str]],

    ) -> list[SubSection]:
        assert isinstance(
            indexs, dict
        ), "subsection_keys for index must be a dict, follow a two-level structure"
        subsecs = []
        for sec_key, subsec_keys in indexs.items():
            section = self[sec_key]
            for subsec_key in subsec_keys:
                subsecs.append(section[subsec_key])
        return subsecs

    def find_caption(self, caption: str):
        for media in self.iter_medias():
            if media.caption == caption:
                return media.path
        raise ValueError(f"Image caption not found: {caption}")

    def get_overview(self, include_summary: bool = False):
        overview = ""
        for section in self.sections:
            overview += f"Section: {section.title}\n"
            if include_summary:
                overview += f"\tSummary: {section.summary}\n"
            for subsection in section.subsections:
                overview += f"\tSubsection: {subsection.title}\n"
                for media in subsection.medias:
                    overview += f"\t\tMedia: {media.caption}\n"
                overview += "\n"
        return overview

    @property
    def metainfo(self):
        return "\n".join([f"{k}: {v}" for k, v in self.metadata.items()])

    @property
    def subsections(self):
        return [subsec for section in self.sections for subsec in section.subsections]


@dataclass
class OutlineItem:
    purpose: str
    section: str
    indexs: dict[str, list[str]] | str
    images: list[str]

    @classmethod
    def from_dict(cls, data: dict[str, Any]):
        assert (
            "purpose" in data and "section" in data
        ), "purpose and section of outline item are required"
        return cls(
            purpose=data["purpose"],
            section=data["section"],
            indexs=data.get("indexs", {}),
            images=data.get("images", []),
        )

    def retrieve(self, slide_idx: int, document: Document):
        subsections = document.retrieve(self.indexs)
        header = f"Slide-{slide_idx+1}: {self.purpose}\n"
        content = ""
        for subsection in subsections:
            content += f"Paragraph: {subsection.title}\nContent: {subsection.content}\n"
        images = [
            f"Image: {document.find_caption(caption)}\nCaption: {caption}"
            for caption in self.images
        ]
        return header, content, images

    def check_retrieve(self, document: Document, sim_bound: float):
        for sec_key, subsec_keys in list(self.indexs.items()):
            section = max(
                document.sections, key=lambda x: edit_distance(x.title, sec_key)
            )
            self.indexs[section.title] = self.indexs.pop(sec_key)
            if edit_distance(section.title, sec_key) < sim_bound:
                logger.warning(
                    f"section not found: {sec_key}, available sections: {[section.title for section in document.sections]}.",
                )
                raise ValueError(
                    f"section not found: {sec_key}, available sections: {[section.title for section in document.sections]}."
                )
            for idx in range(len(subsec_keys)):
                subsection = max(
                    section.subsections,
                    key=lambda x: edit_distance(x.title, subsec_keys[idx]),
                )
                self.indexs[section.title][idx] = subsection.title
                if edit_distance(subsection.title, subsec_keys[idx]) < sim_bound:
                    raise ValueError(
                        f"subsection {subsec_keys[idx]} not found in section {section.title}, available subsections: {[subsection.title for subsection in section.subsections]}."
                    )

    def check_images(self, document: Document, text_model: LLM, sim_bound: float):
        doc_images = list(document.iter_medias())
        image_embeddings = []
        for idx, image in enumerate(self.images):
            if len(doc_images) == 0:
                raise ValueError("Document does not contain any images.")
            similar = max(doc_images, key=lambda x: edit_distance(x.caption, image))
            if edit_distance(similar.caption, image) > sim_bound:
                self.images[idx] = similar.caption
                continue
            if len(image_embeddings) == 0:
                image_embeddings.extend(
                    [text_model.get_embedding(image) for image in self.images]
                )

            embedding = text_model.get_embedding(image)
            similar = max(
                range(len(image_embeddings)),
                key=lambda x: cosine_similarity(embedding, image_embeddings[x]),
            )
            if cosine_similarity(embedding, image_embeddings[similar]) > sim_bound:
                self.images[idx] = doc_images[similar].caption
            else:
                logger.warning(
                    f"image not found: {image}, available images: {[image.caption for image in doc_images]}.",
                )
                raise ValueError(
                    f"image not found: {image}, available images: \n{[image.caption for image in doc_images]}\nPlease ensure the caption is exactly matched."
                )

    async def check_images_async(

        self, document: Document, text_model: AsyncLLM, sim_bound: float

    ):
        doc_images = list(document.iter_medias())
        image_embeddings = []
        for idx, image in enumerate(self.images):
            if len(doc_images) == 0:
                raise ValueError("Document does not contain any images.")
            similar = max(doc_images, key=lambda x: edit_distance(x.caption, image))
            if edit_distance(similar.caption, image) > sim_bound:
                self.images[idx] = similar.caption
                continue
            if len(image_embeddings) == 0:
                image_embeddings = await asyncio.gather(
                    *[text_model.get_embedding(image) for image in self.images]
                )

            embedding = await text_model.get_embedding(image)
            similar = max(
                range(len(image_embeddings)),
                key=lambda x: cosine_similarity(embedding, image_embeddings[x]),
            )
            if cosine_similarity(embedding, image_embeddings[similar]) > sim_bound:
                self.images[idx] = doc_images[similar].caption