import numpy as np import io from flask import Flask, request, jsonify, send_file from flask_cors import CORS from tensorflow.keras.models import load_model from PIL import Image # Load model model = load_model("unet_model.h5", compile = False) app = Flask(__name__) CORS(app) # allow frontend to fetch # Preprocess function def preprocess_image(image, target_size = (192, 176)): image = image.resize((target_size[1], target_size[0])) # width, height image = np.array(image) / 255.0 if image.ndim == 2: image = np.expand_dims(image, axis = -1) return np.expand_dims(image, axis = 0) @app.route("/predict", methods=["POST"]) def predict(): if "file" not in request.files: return jsonify({"error": "No file uploaded"}), 400 file = request.files["file"] img = Image.open(file.stream).convert("L") # grayscale input_data = preprocess_image(img) pred = model.predict(input_data)[0] if pred.ndim == 3 and pred.shape[-1] == 1: pred = np.squeeze(pred, axis = -1) pred_img = (pred * 255).astype(np.uint8) pred_img = Image.fromarray(pred_img) buf = io.BytesIO() pred_img.save(buf, format="PNG") buf.seek(0) return send_file(buf, mimetype = "image/png") if __name__ == "__main__": app.run(host = "127.0.0.1", port = 5000, debug = True)