Spaces:
Runtime error
Runtime error
Update engineers/deformes3D.py
Browse files- engineers/deformes3D.py +97 -28
engineers/deformes3D.py
CHANGED
|
@@ -2,28 +2,34 @@
|
|
| 2 |
#
|
| 3 |
# Copyright (C) 2025 Carlos Rodrigues dos Santos
|
| 4 |
#
|
| 5 |
-
# Version: 1.
|
| 6 |
#
|
| 7 |
-
# This
|
| 8 |
-
#
|
| 9 |
-
#
|
| 10 |
|
| 11 |
-
from PIL import Image
|
| 12 |
import os
|
| 13 |
import time
|
| 14 |
import logging
|
| 15 |
import gradio as gr
|
| 16 |
import yaml
|
|
|
|
|
|
|
| 17 |
|
| 18 |
from managers.flux_kontext_manager import flux_kontext_singleton
|
| 19 |
from engineers.deformes2D_thinker import deformes2d_thinker_singleton
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
| 23 |
class Deformes3DEngine:
|
| 24 |
"""
|
| 25 |
ADUC Specialist for static image (keyframe) generation.
|
| 26 |
-
|
| 27 |
"""
|
| 28 |
def __init__(self, workspace_dir):
|
| 29 |
self.workspace_dir = workspace_dir
|
|
@@ -46,58 +52,121 @@ class Deformes3DEngine:
|
|
| 46 |
|
| 47 |
def generate_keyframes_from_storyboard(self, storyboard: list, initial_ref_path: str, global_prompt: str, keyframe_resolution: int, general_ref_paths: list, progress_callback_factory: callable = None):
|
| 48 |
"""
|
| 49 |
-
Orchestrates the generation of all keyframes
|
|
|
|
|
|
|
| 50 |
"""
|
| 51 |
current_base_image_path = initial_ref_path
|
| 52 |
previous_prompt = "N/A (initial reference image)"
|
| 53 |
-
|
| 54 |
width, height = keyframe_resolution, keyframe_resolution
|
|
|
|
| 55 |
|
| 56 |
num_keyframes_to_generate = len(storyboard) - 1
|
| 57 |
-
|
| 58 |
-
logger.info(f"IMAGE SPECIALIST: Received order to generate {num_keyframes_to_generate} keyframes.")
|
| 59 |
|
| 60 |
for i in range(num_keyframes_to_generate):
|
| 61 |
scene_index = i + 1
|
| 62 |
current_scene = storyboard[i]
|
| 63 |
future_scene = storyboard[i+1]
|
| 64 |
-
|
| 65 |
|
| 66 |
logger.info(f"--> Generating Keyframe {scene_index}/{num_keyframes_to_generate}...")
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
new_flux_prompt = deformes2d_thinker_singleton.get_anticipatory_keyframe_prompt(
|
| 70 |
global_prompt=global_prompt, scene_history=previous_prompt,
|
| 71 |
current_scene_desc=current_scene, future_scene_desc=future_scene,
|
| 72 |
last_image_path=current_base_image_path, fixed_ref_paths=general_ref_paths
|
| 73 |
)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
callback=progress_callback
|
| 83 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
final_keyframes.append(new_keyframe_path)
|
| 86 |
-
current_base_image_path = new_keyframe_path
|
| 87 |
-
previous_prompt = new_flux_prompt
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# --- Singleton Instantiation ---
|
| 93 |
try:
|
| 94 |
with open("config.yaml", 'r') as f:
|
| 95 |
config = yaml.safe_load(f)
|
| 96 |
WORKSPACE_DIR = config['application']['workspace_dir']
|
| 97 |
-
|
| 98 |
-
# Correctly instantiate the Deformes3DEngine class
|
| 99 |
deformes3d_engine_singleton = Deformes3DEngine(workspace_dir=WORKSPACE_DIR)
|
| 100 |
-
|
| 101 |
except Exception as e:
|
| 102 |
logger.error(f"Could not initialize Deformes3DEngine: {e}", exc_info=True)
|
| 103 |
deformes3d_engine_singleton = None
|
|
|
|
| 2 |
#
|
| 3 |
# Copyright (C) 2025 Carlos Rodrigues dos Santos
|
| 4 |
#
|
| 5 |
+
# Version: 1.5.1
|
| 6 |
#
|
| 7 |
+
# This version maintains the core FLUX-based keyframe generation and adds the
|
| 8 |
+
# LTX-based "enrichment" as a secondary, experimental step for each keyframe,
|
| 9 |
+
# allowing for direct comparison without altering the primary workflow.
|
| 10 |
|
| 11 |
+
from PIL import Image, ImageOps
|
| 12 |
import os
|
| 13 |
import time
|
| 14 |
import logging
|
| 15 |
import gradio as gr
|
| 16 |
import yaml
|
| 17 |
+
import torch
|
| 18 |
+
import numpy as np
|
| 19 |
|
| 20 |
from managers.flux_kontext_manager import flux_kontext_singleton
|
| 21 |
from engineers.deformes2D_thinker import deformes2d_thinker_singleton
|
| 22 |
+
from aduc_types import LatentConditioningItem
|
| 23 |
+
from managers.ltx_manager import ltx_manager_singleton
|
| 24 |
+
from managers.vae_manager import vae_manager_singleton
|
| 25 |
+
from managers.latent_enhancer_manager import latent_enhancer_specialist_singleton
|
| 26 |
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
| 29 |
class Deformes3DEngine:
|
| 30 |
"""
|
| 31 |
ADUC Specialist for static image (keyframe) generation.
|
| 32 |
+
Primary engine is FLUX, with an experimental LTX enrichment step.
|
| 33 |
"""
|
| 34 |
def __init__(self, workspace_dir):
|
| 35 |
self.workspace_dir = workspace_dir
|
|
|
|
| 52 |
|
| 53 |
def generate_keyframes_from_storyboard(self, storyboard: list, initial_ref_path: str, global_prompt: str, keyframe_resolution: int, general_ref_paths: list, progress_callback_factory: callable = None):
|
| 54 |
"""
|
| 55 |
+
Orchestrates the generation of all keyframes. For each keyframe, first
|
| 56 |
+
generates a version with FLUX, and then an "enriched" version with LTX
|
| 57 |
+
for direct comparison.
|
| 58 |
"""
|
| 59 |
current_base_image_path = initial_ref_path
|
| 60 |
previous_prompt = "N/A (initial reference image)"
|
| 61 |
+
final_keyframes_gallery = [current_base_image_path]
|
| 62 |
width, height = keyframe_resolution, keyframe_resolution
|
| 63 |
+
target_resolution_tuple = (width, height)
|
| 64 |
|
| 65 |
num_keyframes_to_generate = len(storyboard) - 1
|
| 66 |
+
logger.info(f"IMAGE SPECIALIST: Received order to generate {num_keyframes_to_generate} keyframes (FLUX + LTX versions).")
|
|
|
|
| 67 |
|
| 68 |
for i in range(num_keyframes_to_generate):
|
| 69 |
scene_index = i + 1
|
| 70 |
current_scene = storyboard[i]
|
| 71 |
future_scene = storyboard[i+1]
|
| 72 |
+
progress_callback_flux = progress_callback_factory(scene_index, num_keyframes_to_generate) if progress_callback_factory else None
|
| 73 |
|
| 74 |
logger.info(f"--> Generating Keyframe {scene_index}/{num_keyframes_to_generate}...")
|
| 75 |
+
|
| 76 |
+
# --- STEP A: Generate with FLUX (Primary Method) ---
|
| 77 |
+
logger.info(f" - Step A: Generating with FLUX...")
|
| 78 |
|
| 79 |
+
flux_prompt = deformes2d_thinker_singleton.get_anticipatory_keyframe_prompt(
|
|
|
|
| 80 |
global_prompt=global_prompt, scene_history=previous_prompt,
|
| 81 |
current_scene_desc=current_scene, future_scene_desc=future_scene,
|
| 82 |
last_image_path=current_base_image_path, fixed_ref_paths=general_ref_paths
|
| 83 |
)
|
| 84 |
|
| 85 |
+
flux_ref_paths = list(set([current_base_image_path] + general_ref_paths))
|
| 86 |
+
flux_ref_images = [Image.open(p) for p in flux_ref_paths]
|
| 87 |
|
| 88 |
+
flux_keyframe_path = self._generate_single_keyframe(
|
| 89 |
+
prompt=flux_prompt, reference_images=flux_ref_images,
|
| 90 |
+
output_filename=f"keyframe_{scene_index}_flux.png", width=width, height=height,
|
| 91 |
+
callback=progress_callback_flux
|
|
|
|
| 92 |
)
|
| 93 |
+
final_keyframes_gallery.append(flux_keyframe_path)
|
| 94 |
+
|
| 95 |
+
# --- STEP B: LTX Enrichment Experiment ---
|
| 96 |
+
logger.info(f" - Step B: Generating enrichment with LTX...")
|
| 97 |
+
|
| 98 |
+
ltx_context_paths = list(reversed(context_paths))
|
| 99 |
+
logger.info(f" - LTX Context Order (Reversed): {[os.path.basename(p) for p in ltx_context_paths]}")
|
| 100 |
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
ltx_conditioning_items = []
|
| 103 |
+
context_paths = [current_base_image_path] + [p for p in general_ref_paths if p != current_base_image_path][:3]
|
| 104 |
+
|
| 105 |
+
weight = 0.6
|
| 106 |
+
for idx, path in enumerate(ltx_context_paths):
|
| 107 |
+
img_pil = Image.open(path).convert("RGB")
|
| 108 |
+
img_processed = self._preprocess_image_for_latent_conversion(img_pil, target_resolution_tuple)
|
| 109 |
+
pixel_tensor = self._pil_to_pixel_tensor(img_processed)
|
| 110 |
+
latent_tensor = vae_manager_singleton.encode(pixel_tensor)
|
| 111 |
+
|
| 112 |
+
ltx_conditioning_items.append(LatentConditioningItem(latent_tensor, 0, weight))
|
| 113 |
+
|
| 114 |
+
if idx >= 0:
|
| 115 |
+
weight -= 0.1
|
| 116 |
+
|
| 117 |
+
ltx_base_params = {"guidance_scale": 3.0, "stg_scale": 0.1, "num_inference_steps": 25}
|
| 118 |
+
generated_latents, _ = ltx_manager_singleton.generate_latent_fragment(
|
| 119 |
+
height=height, width=width,
|
| 120 |
+
conditioning_items_data=ltx_conditioning_items,
|
| 121 |
+
motion_prompt=flux_prompt,
|
| 122 |
+
video_total_frames=16,
|
| 123 |
+
video_fps=24,
|
| 124 |
+
**ltx_base_params
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
final_latent = generated_latents[:, :, -1:, :, :]
|
| 128 |
+
upscaled_latent = latent_enhancer_specialist_singleton.upscale(final_latent)
|
| 129 |
+
enriched_pixel_tensor = vae_manager_singleton.decode(upscaled_latent)
|
| 130 |
+
|
| 131 |
+
ltx_keyframe_path = os.path.join(self.workspace_dir, f"keyframe_{scene_index}_ltx.png")
|
| 132 |
+
self.save_image_from_tensor(enriched_pixel_tensor, ltx_keyframe_path)
|
| 133 |
+
final_keyframes_gallery.append(ltx_keyframe_path)
|
| 134 |
+
|
| 135 |
+
# Use the FLUX keyframe as the base for the next iteration to maintain the primary narrative path
|
| 136 |
+
current_base_image_path = flux_keyframe_path
|
| 137 |
+
previous_prompt = flux_prompt
|
| 138 |
+
|
| 139 |
+
logger.info(f"IMAGE SPECIALIST: Generation of all keyframe versions (FLUX + LTX) complete.")
|
| 140 |
+
return final_keyframes_gallery
|
| 141 |
+
|
| 142 |
+
# --- HELPER FUNCTIONS ---
|
| 143 |
+
|
| 144 |
+
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
|
| 145 |
+
"""Resizes and fits an image to the target resolution for VAE encoding."""
|
| 146 |
+
if image.size != target_resolution:
|
| 147 |
+
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
|
| 148 |
+
return image
|
| 149 |
+
|
| 150 |
+
def _pil_to_pixel_tensor(self, pil_image: Image.Image) -> torch.Tensor:
|
| 151 |
+
"""Helper to convert PIL to the 5D pixel tensor the VAE expects."""
|
| 152 |
+
image_np = np.array(pil_image).astype(np.float32) / 255.0
|
| 153 |
+
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
|
| 154 |
+
return (tensor * 2.0) - 1.0
|
| 155 |
+
|
| 156 |
+
def save_image_from_tensor(self, pixel_tensor: torch.Tensor, path: str):
|
| 157 |
+
"""Helper to save a 1-frame pixel tensor as an image."""
|
| 158 |
+
tensor_chw = pixel_tensor.squeeze(0).squeeze(1)
|
| 159 |
+
tensor_hwc = tensor_chw.permute(1, 2, 0)
|
| 160 |
+
tensor_hwc = (tensor_hwc.clamp(-1, 1) + 1) / 2.0
|
| 161 |
+
image_np = (tensor_hwc.cpu().float().numpy() * 255).astype(np.uint8)
|
| 162 |
+
Image.fromarray(image_np).save(path)
|
| 163 |
|
| 164 |
# --- Singleton Instantiation ---
|
| 165 |
try:
|
| 166 |
with open("config.yaml", 'r') as f:
|
| 167 |
config = yaml.safe_load(f)
|
| 168 |
WORKSPACE_DIR = config['application']['workspace_dir']
|
|
|
|
|
|
|
| 169 |
deformes3d_engine_singleton = Deformes3DEngine(workspace_dir=WORKSPACE_DIR)
|
|
|
|
| 170 |
except Exception as e:
|
| 171 |
logger.error(f"Could not initialize Deformes3DEngine: {e}", exc_info=True)
|
| 172 |
deformes3d_engine_singleton = None
|