Spaces:
Sleeping
Sleeping
Update memory_logic.py
Browse files- memory_logic.py +251 -77
memory_logic.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
# memory_logic.py
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import time
|
|
@@ -7,7 +6,6 @@ import logging
|
|
| 7 |
import re
|
| 8 |
import threading
|
| 9 |
|
| 10 |
-
# Conditionally import heavy dependencies
|
| 11 |
try:
|
| 12 |
from sentence_transformers import SentenceTransformer
|
| 13 |
import faiss
|
|
@@ -30,38 +28,34 @@ except ImportError:
|
|
| 30 |
|
| 31 |
|
| 32 |
logger = logging.getLogger(__name__)
|
| 33 |
-
# Suppress verbose logs from dependencies
|
| 34 |
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
|
| 35 |
-
if logging.getLogger(lib_name):
|
| 36 |
logging.getLogger(lib_name).setLevel(logging.WARNING)
|
| 37 |
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") # Changed default path
|
| 42 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 43 |
-
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
|
| 44 |
-
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
|
| 45 |
|
| 46 |
-
# --- Globals for RAG within this module ---
|
| 47 |
_embedder = None
|
| 48 |
-
_dimension = 384
|
| 49 |
_faiss_memory_index = None
|
| 50 |
-
_memory_items_list = []
|
| 51 |
_faiss_rules_index = None
|
| 52 |
-
_rules_items_list = []
|
| 53 |
|
| 54 |
_initialized = False
|
| 55 |
_init_lock = threading.Lock()
|
| 56 |
|
| 57 |
-
# --- Helper: SQLite Connection ---
|
| 58 |
def _get_sqlite_connection():
|
| 59 |
if not sqlite3:
|
| 60 |
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
|
| 61 |
db_dir = os.path.dirname(SQLITE_DB_PATH)
|
| 62 |
if db_dir and not os.path.exists(db_dir):
|
| 63 |
os.makedirs(db_dir, exist_ok=True)
|
| 64 |
-
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
|
| 65 |
|
| 66 |
def _init_sqlite_tables():
|
| 67 |
if STORAGE_BACKEND != "SQLITE" or not sqlite3:
|
|
@@ -69,22 +63,17 @@ def _init_sqlite_tables():
|
|
| 69 |
try:
|
| 70 |
with _get_sqlite_connection() as conn:
|
| 71 |
cursor = conn.cursor()
|
| 72 |
-
# Stores JSON string of the memory object
|
| 73 |
cursor.execute("""
|
| 74 |
CREATE TABLE IF NOT EXISTS memories (
|
| 75 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 76 |
memory_json TEXT NOT NULL,
|
| 77 |
-
# Optionally add embedding here if not using separate FAISS index
|
| 78 |
-
# embedding BLOB,
|
| 79 |
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 80 |
)
|
| 81 |
""")
|
| 82 |
-
# Stores the rule text directly
|
| 83 |
cursor.execute("""
|
| 84 |
CREATE TABLE IF NOT EXISTS rules (
|
| 85 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 86 |
rule_text TEXT NOT NULL UNIQUE,
|
| 87 |
-
# embedding BLOB,
|
| 88 |
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 89 |
)
|
| 90 |
""")
|
|
@@ -93,7 +82,6 @@ def _init_sqlite_tables():
|
|
| 93 |
except Exception as e:
|
| 94 |
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
|
| 95 |
|
| 96 |
-
# --- Initialization ---
|
| 97 |
def initialize_memory_system():
|
| 98 |
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
|
| 99 |
|
|
@@ -105,10 +93,9 @@ def initialize_memory_system():
|
|
| 105 |
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
|
| 106 |
init_start_time = time.time()
|
| 107 |
|
| 108 |
-
# 1. Load Sentence Transformer Model (always needed for semantic operations)
|
| 109 |
if not SentenceTransformer or not faiss or not np:
|
| 110 |
logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
|
| 111 |
-
_initialized = False
|
| 112 |
return
|
| 113 |
|
| 114 |
if not _embedder:
|
|
@@ -120,17 +107,15 @@ def initialize_memory_system():
|
|
| 120 |
except Exception as e:
|
| 121 |
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
|
| 122 |
_initialized = False
|
| 123 |
-
return
|
| 124 |
|
| 125 |
-
# 2. Initialize SQLite if used
|
| 126 |
if STORAGE_BACKEND == "SQLITE":
|
| 127 |
_init_sqlite_tables()
|
| 128 |
|
| 129 |
-
# 3. Load Memories
|
| 130 |
logger.info("Loading memories...")
|
| 131 |
temp_memories_json = []
|
| 132 |
if STORAGE_BACKEND == "RAM":
|
| 133 |
-
_memory_items_list = []
|
| 134 |
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
|
| 135 |
try:
|
| 136 |
with _get_sqlite_connection() as conn:
|
|
@@ -139,8 +124,8 @@ def initialize_memory_system():
|
|
| 139 |
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
|
| 140 |
try:
|
| 141 |
logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
|
| 142 |
-
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
| 143 |
-
if "train" in dataset and "memory_json" in dataset["train"].column_names:
|
| 144 |
temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str)]
|
| 145 |
else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} for memories not found or 'memory_json' column missing.")
|
| 146 |
except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}")
|
|
@@ -148,16 +133,13 @@ def initialize_memory_system():
|
|
| 148 |
_memory_items_list = temp_memories_json
|
| 149 |
logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.")
|
| 150 |
|
| 151 |
-
# 4. Build/Load FAISS Memory Index
|
| 152 |
_faiss_memory_index = faiss.IndexFlatL2(_dimension)
|
| 153 |
if _memory_items_list:
|
| 154 |
logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
|
| 155 |
-
# Extract text to embed from memory JSON objects
|
| 156 |
texts_to_embed_mem = []
|
| 157 |
for mem_json_str in _memory_items_list:
|
| 158 |
try:
|
| 159 |
mem_obj = json.loads(mem_json_str)
|
| 160 |
-
# Consistent embedding strategy: user input + bot response + takeaway
|
| 161 |
text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
|
| 162 |
texts_to_embed_mem.append(text)
|
| 163 |
except json.JSONDecodeError:
|
|
@@ -165,7 +147,7 @@ def initialize_memory_system():
|
|
| 165 |
|
| 166 |
if texts_to_embed_mem:
|
| 167 |
try:
|
| 168 |
-
embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False)
|
| 169 |
embeddings_np = np.array(embeddings, dtype=np.float32)
|
| 170 |
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
|
| 171 |
_faiss_memory_index.add(embeddings_np)
|
|
@@ -173,8 +155,6 @@ def initialize_memory_system():
|
|
| 173 |
except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
|
| 174 |
logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
|
| 175 |
|
| 176 |
-
|
| 177 |
-
# 5. Load Rules
|
| 178 |
logger.info("Loading rules...")
|
| 179 |
temp_rules_text = []
|
| 180 |
if STORAGE_BACKEND == "RAM":
|
|
@@ -193,14 +173,13 @@ def initialize_memory_system():
|
|
| 193 |
else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules not found or 'rule_text' column missing.")
|
| 194 |
except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}")
|
| 195 |
|
| 196 |
-
_rules_items_list = sorted(list(set(temp_rules_text)))
|
| 197 |
logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.")
|
| 198 |
|
| 199 |
-
# 6. Build/Load FAISS Rules Index
|
| 200 |
_faiss_rules_index = faiss.IndexFlatL2(_dimension)
|
| 201 |
if _rules_items_list:
|
| 202 |
logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
|
| 203 |
-
if _rules_items_list:
|
| 204 |
try:
|
| 205 |
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
|
| 206 |
embeddings_np = np.array(embeddings, dtype=np.float32)
|
|
@@ -214,9 +193,7 @@ def initialize_memory_system():
|
|
| 214 |
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
|
| 215 |
|
| 216 |
|
| 217 |
-
# --- Memory Operations (Semantic) ---
|
| 218 |
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
|
| 219 |
-
"""Adds a memory entry to the configured backend and FAISS index."""
|
| 220 |
global _memory_items_list, _faiss_memory_index
|
| 221 |
if not _initialized: initialize_memory_system()
|
| 222 |
if not _embedder or not _faiss_memory_index:
|
|
@@ -240,31 +217,25 @@ def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple
|
|
| 240 |
logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
|
| 241 |
return False, "Embedding shape error."
|
| 242 |
|
| 243 |
-
# Add to FAISS
|
| 244 |
_faiss_memory_index.add(embedding_np)
|
| 245 |
|
| 246 |
-
# Add to in-memory list
|
| 247 |
_memory_items_list.append(memory_json_str)
|
| 248 |
|
| 249 |
-
# Add to persistent storage
|
| 250 |
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
| 251 |
with _get_sqlite_connection() as conn:
|
| 252 |
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
|
| 253 |
conn.commit()
|
| 254 |
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
| 255 |
-
# This can be slow, consider batching or async push
|
| 256 |
logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
|
| 257 |
-
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
| 258 |
|
| 259 |
logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}")
|
| 260 |
return True, "Memory added successfully."
|
| 261 |
except Exception as e:
|
| 262 |
logger.error(f"Error adding memory entry: {e}", exc_info=True)
|
| 263 |
-
# TODO: Potential rollback logic if FAISS add succeeded but backend failed (complex)
|
| 264 |
return False, f"Error adding memory: {e}"
|
| 265 |
|
| 266 |
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
|
| 267 |
-
"""Retrieves k most relevant memories using semantic search."""
|
| 268 |
if not _initialized: initialize_memory_system()
|
| 269 |
if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
|
| 270 |
logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.")
|
|
@@ -297,9 +268,7 @@ def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
|
|
| 297 |
return []
|
| 298 |
|
| 299 |
|
| 300 |
-
# --- Rule (Insight) Operations (Semantic) ---
|
| 301 |
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
|
| 302 |
-
"""Adds a rule if valid and not a duplicate. Updates backend and FAISS."""
|
| 303 |
global _rules_items_list, _faiss_rules_index
|
| 304 |
if not _initialized: initialize_memory_system()
|
| 305 |
if not _embedder or not _faiss_rules_index:
|
|
@@ -335,15 +304,9 @@ def add_rule_entry(rule_text: str) -> tuple[bool, str]:
|
|
| 335 |
return True, "Rule added successfully."
|
| 336 |
except Exception as e:
|
| 337 |
logger.error(f"Error adding rule entry: {e}", exc_info=True)
|
| 338 |
-
# Basic rollback if FAISS add succeeded
|
| 339 |
-
if rule_text in _rules_items_list and _faiss_rules_index.ntotal > 0: # Crude check
|
| 340 |
-
# A full rollback would involve rebuilding FAISS index from _rules_items_list before append.
|
| 341 |
-
# For simplicity, this is omitted here. State could be inconsistent on error.
|
| 342 |
-
pass
|
| 343 |
return False, f"Error adding rule: {e}"
|
| 344 |
|
| 345 |
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
|
| 346 |
-
"""Retrieves k most relevant rules using semantic search."""
|
| 347 |
if not _initialized: initialize_memory_system()
|
| 348 |
if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
|
| 349 |
return []
|
|
@@ -362,35 +325,31 @@ def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
|
|
| 362 |
return []
|
| 363 |
|
| 364 |
def remove_rule_entry(rule_text_to_delete: str) -> bool:
|
| 365 |
-
"""Removes a rule from backend and rebuilds FAISS for rules."""
|
| 366 |
global _rules_items_list, _faiss_rules_index
|
| 367 |
if not _initialized: initialize_memory_system()
|
| 368 |
if not _embedder or not _faiss_rules_index: return False
|
| 369 |
|
| 370 |
rule_text_to_delete = rule_text_to_delete.strip()
|
| 371 |
if rule_text_to_delete not in _rules_items_list:
|
| 372 |
-
return False
|
| 373 |
|
| 374 |
try:
|
| 375 |
_rules_items_list.remove(rule_text_to_delete)
|
| 376 |
-
_rules_items_list.sort()
|
| 377 |
|
| 378 |
-
# Rebuild FAISS index for rules (simplest way to ensure consistency after removal)
|
| 379 |
new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
|
| 380 |
if _rules_items_list:
|
| 381 |
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
|
| 382 |
embeddings_np = np.array(embeddings, dtype=np.float32)
|
| 383 |
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
|
| 384 |
new_faiss_rules_index.add(embeddings_np)
|
| 385 |
-
else:
|
| 386 |
logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
|
| 387 |
-
# Attempt to revert _rules_items_list (add back the rule)
|
| 388 |
_rules_items_list.append(rule_text_to_delete)
|
| 389 |
_rules_items_list.sort()
|
| 390 |
-
return False
|
| 391 |
_faiss_rules_index = new_faiss_rules_index
|
| 392 |
|
| 393 |
-
# Remove from persistent storage
|
| 394 |
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
| 395 |
with _get_sqlite_connection() as conn:
|
| 396 |
conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
|
|
@@ -402,25 +361,21 @@ def remove_rule_entry(rule_text_to_delete: str) -> bool:
|
|
| 402 |
return True
|
| 403 |
except Exception as e:
|
| 404 |
logger.error(f"Error removing rule entry: {e}", exc_info=True)
|
| 405 |
-
# Potential partial failure, state might be inconsistent.
|
| 406 |
return False
|
| 407 |
|
| 408 |
-
# --- Utility functions to get all data (for UI display, etc.) ---
|
| 409 |
def get_all_rules_cached() -> list[str]:
|
| 410 |
if not _initialized: initialize_memory_system()
|
| 411 |
return list(_rules_items_list)
|
| 412 |
|
| 413 |
def get_all_memories_cached() -> list[dict]:
|
| 414 |
if not _initialized: initialize_memory_system()
|
| 415 |
-
# Convert JSON strings to dicts for easier use by UI
|
| 416 |
mem_dicts = []
|
| 417 |
for mem_json_str in _memory_items_list:
|
| 418 |
try: mem_dicts.append(json.loads(mem_json_str))
|
| 419 |
-
except: pass
|
| 420 |
return mem_dicts
|
| 421 |
|
| 422 |
def clear_all_memory_data_backend() -> bool:
|
| 423 |
-
"""Clears all memories from backend and resets in-memory FAISS/list."""
|
| 424 |
global _memory_items_list, _faiss_memory_index
|
| 425 |
if not _initialized: initialize_memory_system()
|
| 426 |
|
|
@@ -429,11 +384,10 @@ def clear_all_memory_data_backend() -> bool:
|
|
| 429 |
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
| 430 |
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
|
| 431 |
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
| 432 |
-
# Deleting from HF usually means pushing an empty dataset
|
| 433 |
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
| 434 |
|
| 435 |
_memory_items_list = []
|
| 436 |
-
if _faiss_memory_index: _faiss_memory_index.reset()
|
| 437 |
logger.info("All memories cleared from backend and in-memory stores.")
|
| 438 |
except Exception as e:
|
| 439 |
logger.error(f"Error clearing all memory data: {e}")
|
|
@@ -441,7 +395,6 @@ def clear_all_memory_data_backend() -> bool:
|
|
| 441 |
return success
|
| 442 |
|
| 443 |
def clear_all_rules_data_backend() -> bool:
|
| 444 |
-
"""Clears all rules from backend and resets in-memory FAISS/list."""
|
| 445 |
global _rules_items_list, _faiss_rules_index
|
| 446 |
if not _initialized: initialize_memory_system()
|
| 447 |
|
|
@@ -460,7 +413,231 @@ def clear_all_rules_data_backend() -> bool:
|
|
| 460 |
success = False
|
| 461 |
return success
|
| 462 |
|
| 463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
|
| 465 |
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
|
| 466 |
|
|
@@ -486,12 +663,11 @@ def load_faiss_indices_from_disk():
|
|
| 486 |
global _faiss_memory_index, _faiss_rules_index
|
| 487 |
if not _initialized or not faiss: return
|
| 488 |
|
| 489 |
-
if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index:
|
| 490 |
try:
|
| 491 |
logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
|
| 492 |
_faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
|
| 493 |
logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
|
| 494 |
-
# Consistency check: FAISS ntotal vs len(_memory_items_list)
|
| 495 |
if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
|
| 496 |
logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
|
| 497 |
except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
|
|
@@ -503,6 +679,4 @@ def load_faiss_indices_from_disk():
|
|
| 503 |
logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
|
| 504 |
if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
|
| 505 |
logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
|
| 506 |
-
except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")
|
| 507 |
-
|
| 508 |
-
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import time
|
|
|
|
| 6 |
import re
|
| 7 |
import threading
|
| 8 |
|
|
|
|
| 9 |
try:
|
| 10 |
from sentence_transformers import SentenceTransformer
|
| 11 |
import faiss
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
logger = logging.getLogger(__name__)
|
|
|
|
| 31 |
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
|
| 32 |
+
if logging.getLogger(lib_name):
|
| 33 |
logging.getLogger(lib_name).setLevel(logging.WARNING)
|
| 34 |
|
| 35 |
|
| 36 |
+
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper()
|
| 37 |
+
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
|
|
|
|
| 38 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 39 |
+
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
|
| 40 |
+
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
|
| 41 |
|
|
|
|
| 42 |
_embedder = None
|
| 43 |
+
_dimension = 384
|
| 44 |
_faiss_memory_index = None
|
| 45 |
+
_memory_items_list = []
|
| 46 |
_faiss_rules_index = None
|
| 47 |
+
_rules_items_list = []
|
| 48 |
|
| 49 |
_initialized = False
|
| 50 |
_init_lock = threading.Lock()
|
| 51 |
|
|
|
|
| 52 |
def _get_sqlite_connection():
|
| 53 |
if not sqlite3:
|
| 54 |
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
|
| 55 |
db_dir = os.path.dirname(SQLITE_DB_PATH)
|
| 56 |
if db_dir and not os.path.exists(db_dir):
|
| 57 |
os.makedirs(db_dir, exist_ok=True)
|
| 58 |
+
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
|
| 59 |
|
| 60 |
def _init_sqlite_tables():
|
| 61 |
if STORAGE_BACKEND != "SQLITE" or not sqlite3:
|
|
|
|
| 63 |
try:
|
| 64 |
with _get_sqlite_connection() as conn:
|
| 65 |
cursor = conn.cursor()
|
|
|
|
| 66 |
cursor.execute("""
|
| 67 |
CREATE TABLE IF NOT EXISTS memories (
|
| 68 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 69 |
memory_json TEXT NOT NULL,
|
|
|
|
|
|
|
| 70 |
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 71 |
)
|
| 72 |
""")
|
|
|
|
| 73 |
cursor.execute("""
|
| 74 |
CREATE TABLE IF NOT EXISTS rules (
|
| 75 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 76 |
rule_text TEXT NOT NULL UNIQUE,
|
|
|
|
| 77 |
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 78 |
)
|
| 79 |
""")
|
|
|
|
| 82 |
except Exception as e:
|
| 83 |
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
|
| 84 |
|
|
|
|
| 85 |
def initialize_memory_system():
|
| 86 |
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
|
| 87 |
|
|
|
|
| 93 |
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
|
| 94 |
init_start_time = time.time()
|
| 95 |
|
|
|
|
| 96 |
if not SentenceTransformer or not faiss or not np:
|
| 97 |
logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
|
| 98 |
+
_initialized = False
|
| 99 |
return
|
| 100 |
|
| 101 |
if not _embedder:
|
|
|
|
| 107 |
except Exception as e:
|
| 108 |
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
|
| 109 |
_initialized = False
|
| 110 |
+
return
|
| 111 |
|
|
|
|
| 112 |
if STORAGE_BACKEND == "SQLITE":
|
| 113 |
_init_sqlite_tables()
|
| 114 |
|
|
|
|
| 115 |
logger.info("Loading memories...")
|
| 116 |
temp_memories_json = []
|
| 117 |
if STORAGE_BACKEND == "RAM":
|
| 118 |
+
_memory_items_list = []
|
| 119 |
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
|
| 120 |
try:
|
| 121 |
with _get_sqlite_connection() as conn:
|
|
|
|
| 124 |
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
|
| 125 |
try:
|
| 126 |
logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
|
| 127 |
+
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
|
| 128 |
+
if "train" in dataset and "memory_json" in dataset["train"].column_names:
|
| 129 |
temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str)]
|
| 130 |
else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} for memories not found or 'memory_json' column missing.")
|
| 131 |
except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}")
|
|
|
|
| 133 |
_memory_items_list = temp_memories_json
|
| 134 |
logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.")
|
| 135 |
|
|
|
|
| 136 |
_faiss_memory_index = faiss.IndexFlatL2(_dimension)
|
| 137 |
if _memory_items_list:
|
| 138 |
logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
|
|
|
|
| 139 |
texts_to_embed_mem = []
|
| 140 |
for mem_json_str in _memory_items_list:
|
| 141 |
try:
|
| 142 |
mem_obj = json.loads(mem_json_str)
|
|
|
|
| 143 |
text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
|
| 144 |
texts_to_embed_mem.append(text)
|
| 145 |
except json.JSONDecodeError:
|
|
|
|
| 147 |
|
| 148 |
if texts_to_embed_mem:
|
| 149 |
try:
|
| 150 |
+
embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False)
|
| 151 |
embeddings_np = np.array(embeddings, dtype=np.float32)
|
| 152 |
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
|
| 153 |
_faiss_memory_index.add(embeddings_np)
|
|
|
|
| 155 |
except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
|
| 156 |
logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
|
| 157 |
|
|
|
|
|
|
|
| 158 |
logger.info("Loading rules...")
|
| 159 |
temp_rules_text = []
|
| 160 |
if STORAGE_BACKEND == "RAM":
|
|
|
|
| 173 |
else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules not found or 'rule_text' column missing.")
|
| 174 |
except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}")
|
| 175 |
|
| 176 |
+
_rules_items_list = sorted(list(set(temp_rules_text)))
|
| 177 |
logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.")
|
| 178 |
|
|
|
|
| 179 |
_faiss_rules_index = faiss.IndexFlatL2(_dimension)
|
| 180 |
if _rules_items_list:
|
| 181 |
logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
|
| 182 |
+
if _rules_items_list:
|
| 183 |
try:
|
| 184 |
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
|
| 185 |
embeddings_np = np.array(embeddings, dtype=np.float32)
|
|
|
|
| 193 |
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
|
| 194 |
|
| 195 |
|
|
|
|
| 196 |
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
|
|
|
|
| 197 |
global _memory_items_list, _faiss_memory_index
|
| 198 |
if not _initialized: initialize_memory_system()
|
| 199 |
if not _embedder or not _faiss_memory_index:
|
|
|
|
| 217 |
logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
|
| 218 |
return False, "Embedding shape error."
|
| 219 |
|
|
|
|
| 220 |
_faiss_memory_index.add(embedding_np)
|
| 221 |
|
|
|
|
| 222 |
_memory_items_list.append(memory_json_str)
|
| 223 |
|
|
|
|
| 224 |
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
| 225 |
with _get_sqlite_connection() as conn:
|
| 226 |
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
|
| 227 |
conn.commit()
|
| 228 |
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
|
|
|
| 229 |
logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
|
| 230 |
+
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
| 231 |
|
| 232 |
logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}")
|
| 233 |
return True, "Memory added successfully."
|
| 234 |
except Exception as e:
|
| 235 |
logger.error(f"Error adding memory entry: {e}", exc_info=True)
|
|
|
|
| 236 |
return False, f"Error adding memory: {e}"
|
| 237 |
|
| 238 |
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
|
|
|
|
| 239 |
if not _initialized: initialize_memory_system()
|
| 240 |
if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
|
| 241 |
logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.")
|
|
|
|
| 268 |
return []
|
| 269 |
|
| 270 |
|
|
|
|
| 271 |
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
|
|
|
|
| 272 |
global _rules_items_list, _faiss_rules_index
|
| 273 |
if not _initialized: initialize_memory_system()
|
| 274 |
if not _embedder or not _faiss_rules_index:
|
|
|
|
| 304 |
return True, "Rule added successfully."
|
| 305 |
except Exception as e:
|
| 306 |
logger.error(f"Error adding rule entry: {e}", exc_info=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
return False, f"Error adding rule: {e}"
|
| 308 |
|
| 309 |
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
|
|
|
|
| 310 |
if not _initialized: initialize_memory_system()
|
| 311 |
if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
|
| 312 |
return []
|
|
|
|
| 325 |
return []
|
| 326 |
|
| 327 |
def remove_rule_entry(rule_text_to_delete: str) -> bool:
|
|
|
|
| 328 |
global _rules_items_list, _faiss_rules_index
|
| 329 |
if not _initialized: initialize_memory_system()
|
| 330 |
if not _embedder or not _faiss_rules_index: return False
|
| 331 |
|
| 332 |
rule_text_to_delete = rule_text_to_delete.strip()
|
| 333 |
if rule_text_to_delete not in _rules_items_list:
|
| 334 |
+
return False
|
| 335 |
|
| 336 |
try:
|
| 337 |
_rules_items_list.remove(rule_text_to_delete)
|
| 338 |
+
_rules_items_list.sort()
|
| 339 |
|
|
|
|
| 340 |
new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
|
| 341 |
if _rules_items_list:
|
| 342 |
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
|
| 343 |
embeddings_np = np.array(embeddings, dtype=np.float32)
|
| 344 |
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
|
| 345 |
new_faiss_rules_index.add(embeddings_np)
|
| 346 |
+
else:
|
| 347 |
logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
|
|
|
|
| 348 |
_rules_items_list.append(rule_text_to_delete)
|
| 349 |
_rules_items_list.sort()
|
| 350 |
+
return False
|
| 351 |
_faiss_rules_index = new_faiss_rules_index
|
| 352 |
|
|
|
|
| 353 |
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
| 354 |
with _get_sqlite_connection() as conn:
|
| 355 |
conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
|
|
|
|
| 361 |
return True
|
| 362 |
except Exception as e:
|
| 363 |
logger.error(f"Error removing rule entry: {e}", exc_info=True)
|
|
|
|
| 364 |
return False
|
| 365 |
|
|
|
|
| 366 |
def get_all_rules_cached() -> list[str]:
|
| 367 |
if not _initialized: initialize_memory_system()
|
| 368 |
return list(_rules_items_list)
|
| 369 |
|
| 370 |
def get_all_memories_cached() -> list[dict]:
|
| 371 |
if not _initialized: initialize_memory_system()
|
|
|
|
| 372 |
mem_dicts = []
|
| 373 |
for mem_json_str in _memory_items_list:
|
| 374 |
try: mem_dicts.append(json.loads(mem_json_str))
|
| 375 |
+
except: pass
|
| 376 |
return mem_dicts
|
| 377 |
|
| 378 |
def clear_all_memory_data_backend() -> bool:
|
|
|
|
| 379 |
global _memory_items_list, _faiss_memory_index
|
| 380 |
if not _initialized: initialize_memory_system()
|
| 381 |
|
|
|
|
| 384 |
if STORAGE_BACKEND == "SQLITE" and sqlite3:
|
| 385 |
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
|
| 386 |
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
|
|
|
|
| 387 |
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
|
| 388 |
|
| 389 |
_memory_items_list = []
|
| 390 |
+
if _faiss_memory_index: _faiss_memory_index.reset()
|
| 391 |
logger.info("All memories cleared from backend and in-memory stores.")
|
| 392 |
except Exception as e:
|
| 393 |
logger.error(f"Error clearing all memory data: {e}")
|
|
|
|
| 395 |
return success
|
| 396 |
|
| 397 |
def clear_all_rules_data_backend() -> bool:
|
|
|
|
| 398 |
global _rules_items_list, _faiss_rules_index
|
| 399 |
if not _initialized: initialize_memory_system()
|
| 400 |
|
|
|
|
| 413 |
success = False
|
| 414 |
return success
|
| 415 |
|
| 416 |
+
def load_rules_from_file(filepath: str | None):
|
| 417 |
+
if not filepath:
|
| 418 |
+
logger.info("LOAD_RULES_FILE environment variable not set. Skipping rules loading from file.")
|
| 419 |
+
return 0, 0, 0
|
| 420 |
+
|
| 421 |
+
if not os.path.exists(filepath):
|
| 422 |
+
logger.warning(f"LOAD_RULES: Specified rules file not found: {filepath}. Skipping loading.")
|
| 423 |
+
return 0, 0, 0
|
| 424 |
+
|
| 425 |
+
added_count, skipped_count, error_count = 0, 0, 0
|
| 426 |
+
potential_rules = []
|
| 427 |
+
|
| 428 |
+
try:
|
| 429 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
| 430 |
+
content = f.read()
|
| 431 |
+
except Exception as e:
|
| 432 |
+
logger.error(f"LOAD_RULES: Error reading file {filepath}: {e}", exc_info=False)
|
| 433 |
+
return 0, 0, 1
|
| 434 |
+
|
| 435 |
+
if not content.strip():
|
| 436 |
+
logger.info(f"LOAD_RULES: File {filepath} is empty. Skipping loading.")
|
| 437 |
+
return 0, 0, 0
|
| 438 |
+
|
| 439 |
+
file_name_lower = filepath.lower()
|
| 440 |
+
|
| 441 |
+
if file_name_lower.endswith(".txt"):
|
| 442 |
+
potential_rules = content.split("\n\n---\n\n")
|
| 443 |
+
if len(potential_rules) == 1 and "\n" in content:
|
| 444 |
+
potential_rules = [r.strip() for r in content.splitlines() if r.strip()]
|
| 445 |
+
elif file_name_lower.endswith(".jsonl"):
|
| 446 |
+
for line_num, line in enumerate(content.splitlines()):
|
| 447 |
+
line = line.strip()
|
| 448 |
+
if line:
|
| 449 |
+
try:
|
| 450 |
+
rule_text_in_json_string = json.loads(line)
|
| 451 |
+
if isinstance(rule_text_in_json_string, str):
|
| 452 |
+
potential_rules.append(rule_text_in_json_string)
|
| 453 |
+
else:
|
| 454 |
+
logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} did not contain a string value. Got: {type(rule_text_in_json_string)}")
|
| 455 |
+
error_count +=1
|
| 456 |
+
except json.JSONDecodeError:
|
| 457 |
+
logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} failed to parse as JSON: {line[:100]}")
|
| 458 |
+
error_count +=1
|
| 459 |
+
else:
|
| 460 |
+
logger.error(f"LOAD_RULES: Unsupported file type for rules: {filepath}. Must be .txt or .jsonl")
|
| 461 |
+
return 0, 0, 1
|
| 462 |
+
|
| 463 |
+
valid_potential_rules = [r.strip() for r in potential_rules if r.strip()]
|
| 464 |
+
total_to_process = len(valid_potential_rules)
|
| 465 |
+
|
| 466 |
+
if total_to_process == 0 and error_count == 0:
|
| 467 |
+
logger.info(f"LOAD_RULES: No valid rule segments found in {filepath} to process.")
|
| 468 |
+
return 0, 0, 0
|
| 469 |
+
elif total_to_process == 0 and error_count > 0:
|
| 470 |
+
logger.warning(f"LOAD_RULES: No valid rule segments found to process. Encountered {error_count} parsing/format errors in {filepath}.")
|
| 471 |
+
return 0, 0, error_count
|
| 472 |
+
|
| 473 |
+
logger.info(f"LOAD_RULES: Attempting to add {total_to_process} potential rules from {filepath}...")
|
| 474 |
+
for idx, rule_text in enumerate(valid_potential_rules):
|
| 475 |
+
success, status_msg = add_rule_entry(rule_text)
|
| 476 |
+
if success:
|
| 477 |
+
added_count += 1
|
| 478 |
+
elif status_msg == "duplicate":
|
| 479 |
+
skipped_count += 1
|
| 480 |
+
else:
|
| 481 |
+
logger.warning(f"LOAD_RULES: Failed to add rule from {filepath} (segment {idx+1}): '{rule_text[:50]}...'. Status: {status_msg}")
|
| 482 |
+
error_count += 1
|
| 483 |
+
|
| 484 |
+
logger.info(f"LOAD_RULES: Finished processing {filepath}. Added: {added_count}, Skipped (duplicates): {skipped_count}, Errors: {error_count}.")
|
| 485 |
+
return added_count, skipped_count, error_count
|
| 486 |
+
|
| 487 |
+
def load_memories_from_file(filepath: str | None):
|
| 488 |
+
if not filepath:
|
| 489 |
+
logger.info("LOAD_MEMORIES_FILE environment variable not set. Skipping memories loading from file.")
|
| 490 |
+
return 0, 0, 0
|
| 491 |
+
|
| 492 |
+
if not os.path.exists(filepath):
|
| 493 |
+
logger.warning(f"LOAD_MEMORIES: Specified memories file not found: {filepath}. Skipping loading.")
|
| 494 |
+
return 0, 0, 0
|
| 495 |
+
|
| 496 |
+
added_count, format_error_count, save_error_count = 0, 0, 0
|
| 497 |
+
memory_objects_to_process = []
|
| 498 |
+
|
| 499 |
+
try:
|
| 500 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
| 501 |
+
content = f.read()
|
| 502 |
+
except Exception as e:
|
| 503 |
+
logger.error(f"LOAD_MEMORIES: Error reading file {filepath}: {e}", exc_info=False)
|
| 504 |
+
return 0, 1, 0
|
| 505 |
+
|
| 506 |
+
if not content.strip():
|
| 507 |
+
logger.info(f"LOAD_MEMORIES: File {filepath} is empty. Skipping loading.")
|
| 508 |
+
return 0, 0, 0
|
| 509 |
+
|
| 510 |
+
file_ext = os.path.splitext(filepath.lower())[1]
|
| 511 |
+
|
| 512 |
+
if file_ext == ".json":
|
| 513 |
+
try:
|
| 514 |
+
parsed_json = json.loads(content)
|
| 515 |
+
if isinstance(parsed_json, list):
|
| 516 |
+
memory_objects_to_process = parsed_json
|
| 517 |
+
elif isinstance(parsed_json, dict):
|
| 518 |
+
memory_objects_to_process = [parsed_json]
|
| 519 |
+
else:
|
| 520 |
+
logger.warning(f"LOAD_MEMORIES (.json): File content is not a JSON list or object in {filepath}. Type: {type(parsed_json)}")
|
| 521 |
+
format_error_count = 1
|
| 522 |
+
except json.JSONDecodeError as e:
|
| 523 |
+
logger.warning(f"LOAD_MEMORIES (.json): Invalid JSON file {filepath}. Error: {e}")
|
| 524 |
+
format_error_count = 1
|
| 525 |
+
elif file_ext == ".jsonl":
|
| 526 |
+
for line_num, line in enumerate(content.splitlines()):
|
| 527 |
+
line = line.strip()
|
| 528 |
+
if line:
|
| 529 |
+
try:
|
| 530 |
+
memory_objects_to_process.append(json.loads(line))
|
| 531 |
+
except json.JSONDecodeError:
|
| 532 |
+
logger.warning(f"LOAD_MEMORIES (.jsonl): Line {line_num+1} in {filepath} parse error: {line[:100]}")
|
| 533 |
+
format_error_count += 1
|
| 534 |
+
else:
|
| 535 |
+
logger.error(f"LOAD_MEMORIES: Unsupported file type for memories: {filepath}. Must be .json or .jsonl")
|
| 536 |
+
return 0, 1, 0
|
| 537 |
+
|
| 538 |
+
total_to_process = len(memory_objects_to_process)
|
| 539 |
+
|
| 540 |
+
if total_to_process == 0 and format_error_count > 0 :
|
| 541 |
+
logger.warning(f"LOAD_MEMORIES: File parsing failed for {filepath}. Found {format_error_count} format errors and no processable objects.")
|
| 542 |
+
return 0, format_error_count, 0
|
| 543 |
+
elif total_to_process == 0:
|
| 544 |
+
logger.info(f"LOAD_MEMORIES: No memory objects found in {filepath} after parsing.")
|
| 545 |
+
return 0, 0, 0
|
| 546 |
+
|
| 547 |
+
logger.info(f"LOAD_MEMORIES: Attempting to add {total_to_process} memory objects from {filepath}...")
|
| 548 |
+
for idx, mem_data in enumerate(memory_objects_to_process):
|
| 549 |
+
if isinstance(mem_data, dict) and all(k in mem_data for k in ["user_input", "bot_response", "metrics"]):
|
| 550 |
+
success, _ = add_memory_entry(mem_data["user_input"], mem_data["metrics"], mem_data["bot_response"])
|
| 551 |
+
if success:
|
| 552 |
+
added_count += 1
|
| 553 |
+
else:
|
| 554 |
+
logger.warning(f"LOAD_MEMORIES: Failed to save memory object from {filepath} (segment {idx+1}). Data: {str(mem_data)[:100]}")
|
| 555 |
+
save_error_count += 1
|
| 556 |
+
else:
|
| 557 |
+
logger.warning(f"LOAD_MEMORIES: Skipped invalid memory object structure in {filepath} (segment {idx+1}): {str(mem_data)[:100]}")
|
| 558 |
+
format_error_count += 1
|
| 559 |
+
|
| 560 |
+
logger.info(f"LOAD_MEMORIES: Finished processing {filepath}. Added: {added_count}, Format/Structure Errors: {format_error_count}, Save Errors: {save_error_count}.")
|
| 561 |
+
return added_count, format_error_count, save_error_count
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
def process_rules_from_text_blob(rules_text: str, progress_callback=None) -> dict:
|
| 565 |
+
if not rules_text.strip():
|
| 566 |
+
return {"added": 0, "skipped": 0, "errors": 0, "total": 0}
|
| 567 |
+
|
| 568 |
+
potential_rules = rules_text.split("\n\n---\n\n")
|
| 569 |
+
if len(potential_rules) == 1 and "\n" in rules_text:
|
| 570 |
+
potential_rules = [r.strip() for r in rules_text.splitlines() if r.strip()]
|
| 571 |
+
|
| 572 |
+
unique_rules = sorted(list(set(filter(None, [r.strip() for r in potential_rules]))))
|
| 573 |
+
total_unique = len(unique_rules)
|
| 574 |
+
if total_unique == 0:
|
| 575 |
+
return {"added": 0, "skipped": 0, "errors": 0, "total": 0}
|
| 576 |
+
|
| 577 |
+
stats = {"added": 0, "skipped": 0, "errors": 0, "total": total_unique}
|
| 578 |
+
for idx, rule_text in enumerate(unique_rules):
|
| 579 |
+
success, status_msg = add_rule_entry(rule_text)
|
| 580 |
+
if success:
|
| 581 |
+
stats["added"] += 1
|
| 582 |
+
elif status_msg == "duplicate":
|
| 583 |
+
stats["skipped"] += 1
|
| 584 |
+
else:
|
| 585 |
+
stats["errors"] += 1
|
| 586 |
+
|
| 587 |
+
if progress_callback is not None:
|
| 588 |
+
progress_callback((idx + 1) / total_unique, desc=f"Processed {idx+1}/{total_unique} rules...")
|
| 589 |
+
|
| 590 |
+
return stats
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
def import_kb_from_kv_dict(kv_dict: dict, progress_callback=None) -> dict:
|
| 594 |
+
rules_to_add, memories_to_add = [], []
|
| 595 |
+
for key, value in kv_dict.items():
|
| 596 |
+
if key.startswith("rule_"):
|
| 597 |
+
try:
|
| 598 |
+
rules_to_add.append(json.loads(value))
|
| 599 |
+
except:
|
| 600 |
+
logger.warning(f"KB Dict Import: Bad rule format for key {key}")
|
| 601 |
+
elif key.startswith("memory_"):
|
| 602 |
+
try:
|
| 603 |
+
mem_dict = json.loads(value)
|
| 604 |
+
if isinstance(mem_dict, dict) and all(k in mem_dict for k in ['user_input', 'bot_response', 'metrics']):
|
| 605 |
+
memories_to_add.append(mem_dict)
|
| 606 |
+
except:
|
| 607 |
+
logger.warning(f"KB Dict Import: Bad memory format for key {key}")
|
| 608 |
+
|
| 609 |
+
stats = {"rules_added": 0, "rules_skipped": 0, "rules_errors": 0, "mems_added": 0, "mems_errors": 0}
|
| 610 |
+
total_items = len(rules_to_add) + len(memories_to_add)
|
| 611 |
+
processed_items = 0
|
| 612 |
+
|
| 613 |
+
if progress_callback is not None:
|
| 614 |
+
progress_callback(0, desc=f"Importing {total_items} items...")
|
| 615 |
+
|
| 616 |
+
for rule in rules_to_add:
|
| 617 |
+
s, m = add_rule_entry(rule)
|
| 618 |
+
if s:
|
| 619 |
+
stats["rules_added"] += 1
|
| 620 |
+
elif m == "duplicate":
|
| 621 |
+
stats["rules_skipped"] += 1
|
| 622 |
+
else:
|
| 623 |
+
stats["rules_errors"] += 1
|
| 624 |
+
processed_items += 1
|
| 625 |
+
if progress_callback is not None and total_items > 0:
|
| 626 |
+
progress_callback(processed_items / total_items, desc=f"Processing item {processed_items}/{total_items}...")
|
| 627 |
+
|
| 628 |
+
for mem in memories_to_add:
|
| 629 |
+
s, _ = add_memory_entry(mem['user_input'], mem['metrics'], mem['bot_response'])
|
| 630 |
+
if s:
|
| 631 |
+
stats["mems_added"] += 1
|
| 632 |
+
else:
|
| 633 |
+
stats["mems_errors"] += 1
|
| 634 |
+
processed_items += 1
|
| 635 |
+
if progress_callback is not None and total_items > 0:
|
| 636 |
+
progress_callback(processed_items / total_items, desc=f"Processing item {processed_items}/{total_items}...")
|
| 637 |
+
|
| 638 |
+
return stats
|
| 639 |
+
|
| 640 |
+
|
| 641 |
FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
|
| 642 |
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
|
| 643 |
|
|
|
|
| 663 |
global _faiss_memory_index, _faiss_rules_index
|
| 664 |
if not _initialized or not faiss: return
|
| 665 |
|
| 666 |
+
if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index:
|
| 667 |
try:
|
| 668 |
logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
|
| 669 |
_faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
|
| 670 |
logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
|
|
|
|
| 671 |
if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
|
| 672 |
logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
|
| 673 |
except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
|
|
|
|
| 679 |
logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
|
| 680 |
if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
|
| 681 |
logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
|
| 682 |
+
except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")
|
|
|
|
|
|