Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import streamlit as st
|
|
| 2 |
import plotly.express as px
|
| 3 |
import pandas as pd
|
| 4 |
import random
|
|
|
|
| 5 |
from umap import UMAP
|
| 6 |
from sentence_transformers import SentenceTransformer, util
|
| 7 |
from datasets import load_dataset
|
|
@@ -18,19 +19,19 @@ def load_words_dataset():
|
|
| 18 |
return dataset["Word"]
|
| 19 |
|
| 20 |
|
| 21 |
-
@st.cache_resource
|
| 22 |
-
def prepare_umap():
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
|
| 29 |
all_words = load_words_dataset()
|
| 30 |
|
| 31 |
model = load_model()
|
| 32 |
|
| 33 |
-
umap_3d = prepare_umap()
|
| 34 |
|
| 35 |
|
| 36 |
secret_word = random.choice(all_words)
|
|
@@ -49,7 +50,8 @@ if 'words_umap_df' not in st.session_state:
|
|
| 49 |
"s": [],
|
| 50 |
"l": [],
|
| 51 |
})
|
| 52 |
-
secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
|
|
|
|
| 53 |
words_umap_df.loc[len(words_umap_df)] = {
|
| 54 |
"x": secret_embedding_3d[0],
|
| 55 |
"y": secret_embedding_3d[1],
|
|
@@ -78,7 +80,8 @@ if st.button("Guess") or word:
|
|
| 78 |
).cpu().numpy()[0][0]
|
| 79 |
st.session_state['words'].append((str(word), similarity))
|
| 80 |
|
| 81 |
-
pt = umap_3d.transform([word_embedding])[0]
|
|
|
|
| 82 |
words_umap_df = st.session_state['words_umap_df']
|
| 83 |
words_umap_df.loc[len(words_umap_df)] = {
|
| 84 |
"x": pt[0],
|
|
|
|
| 2 |
import plotly.express as px
|
| 3 |
import pandas as pd
|
| 4 |
import random
|
| 5 |
+
import logging
|
| 6 |
from umap import UMAP
|
| 7 |
from sentence_transformers import SentenceTransformer, util
|
| 8 |
from datasets import load_dataset
|
|
|
|
| 19 |
return dataset["Word"]
|
| 20 |
|
| 21 |
|
| 22 |
+
# @st.cache_resource
|
| 23 |
+
# def prepare_umap():
|
| 24 |
+
# all_enc = model.encode(all_words)
|
| 25 |
+
# umap_3d = UMAP(n_components=3, init='random', random_state=0)
|
| 26 |
+
# proj_3d = umap_3d.fit_transform(random.sample(all_enc.tolist(), k=2000))
|
| 27 |
+
# return umap_3d
|
| 28 |
|
| 29 |
|
| 30 |
all_words = load_words_dataset()
|
| 31 |
|
| 32 |
model = load_model()
|
| 33 |
|
| 34 |
+
#umap_3d = prepare_umap()
|
| 35 |
|
| 36 |
|
| 37 |
secret_word = random.choice(all_words)
|
|
|
|
| 50 |
"s": [],
|
| 51 |
"l": [],
|
| 52 |
})
|
| 53 |
+
#secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
|
| 54 |
+
secret_embedding_3d = [0, 1, 2]
|
| 55 |
words_umap_df.loc[len(words_umap_df)] = {
|
| 56 |
"x": secret_embedding_3d[0],
|
| 57 |
"y": secret_embedding_3d[1],
|
|
|
|
| 80 |
).cpu().numpy()[0][0]
|
| 81 |
st.session_state['words'].append((str(word), similarity))
|
| 82 |
|
| 83 |
+
#pt = umap_3d.transform([word_embedding])[0]
|
| 84 |
+
pt = [0, 1, 2]
|
| 85 |
words_umap_df = st.session_state['words_umap_df']
|
| 86 |
words_umap_df.loc[len(words_umap_df)] = {
|
| 87 |
"x": pt[0],
|