Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,14 +3,13 @@ import plotly.express as px
|
|
| 3 |
import pandas as pd
|
| 4 |
import random
|
| 5 |
import logging
|
| 6 |
-
from umap import UMAP
|
| 7 |
from sentence_transformers import SentenceTransformer, util
|
| 8 |
from datasets import load_dataset
|
| 9 |
|
| 10 |
|
| 11 |
@st.cache_resource
|
| 12 |
-
def load_model():
|
| 13 |
-
return SentenceTransformer(
|
| 14 |
|
| 15 |
|
| 16 |
@st.cache_data
|
|
@@ -24,23 +23,20 @@ def choose_secret_word():
|
|
| 24 |
return random.choice(all_words)
|
| 25 |
|
| 26 |
|
| 27 |
-
@st.cache_resource
|
| 28 |
-
def prepare_umap():
|
| 29 |
-
all_enc = model.encode(all_words)
|
| 30 |
-
umap_3d = UMAP(n_components=3, init='random', random_state=0)
|
| 31 |
-
proj_3d = umap_3d.fit_transform(random.sample(all_enc.tolist(), k=1000))
|
| 32 |
-
return umap_3d
|
| 33 |
-
|
| 34 |
-
|
| 35 |
all_words = load_words_dataset()
|
| 36 |
|
| 37 |
-
model = load_model()
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
secret_word =choose_secret_word()
|
| 43 |
-
secret_embedding =
|
| 44 |
|
| 45 |
print("Secret word ", secret_word)
|
| 46 |
|
|
@@ -48,27 +44,6 @@ print("Secret word ", secret_word)
|
|
| 48 |
if 'words' not in st.session_state:
|
| 49 |
st.session_state['words'] = []
|
| 50 |
|
| 51 |
-
if 'words_umap_df' not in st.session_state:
|
| 52 |
-
words_umap_df = pd.DataFrame({
|
| 53 |
-
"x": [],
|
| 54 |
-
"y": [],
|
| 55 |
-
"z": [],
|
| 56 |
-
"similarity": [],
|
| 57 |
-
"s": [],
|
| 58 |
-
"l": [],
|
| 59 |
-
})
|
| 60 |
-
st.session_state['words_umap_df'] = words_umap_df
|
| 61 |
-
secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
|
| 62 |
-
words_umap_df.loc[len(words_umap_df)] = {
|
| 63 |
-
"x": secret_embedding_3d[0],
|
| 64 |
-
"y": secret_embedding_3d[1],
|
| 65 |
-
"z": secret_embedding_3d[2],
|
| 66 |
-
"similarity": 1,
|
| 67 |
-
"s": 10,
|
| 68 |
-
"l": "Secret word"
|
| 69 |
-
}
|
| 70 |
-
st.session_state['words_umap_df'] = words_umap_df
|
| 71 |
-
|
| 72 |
|
| 73 |
|
| 74 |
|
|
@@ -80,32 +55,15 @@ used_words = [w for w, s in st.session_state['words']]
|
|
| 80 |
|
| 81 |
if st.button("Guess") or word:
|
| 82 |
if word not in used_words:
|
| 83 |
-
word_embedding =
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
st.session_state['words'].append((str(word), similarity))
|
| 89 |
-
|
| 90 |
-
pt = umap_3d.transform([word_embedding])[0]
|
| 91 |
-
words_umap_df = st.session_state['words_umap_df']
|
| 92 |
-
words_umap_df.loc[len(words_umap_df)] = {
|
| 93 |
-
"x": pt[0],
|
| 94 |
-
"y": pt[1],
|
| 95 |
-
"z": pt[2],
|
| 96 |
-
"similarity": similarity,
|
| 97 |
-
"s": 3,
|
| 98 |
-
"l": str(word)
|
| 99 |
-
}
|
| 100 |
-
st.session_state['words_umap_df'] = words_umap_df
|
| 101 |
|
| 102 |
words_df = pd.DataFrame(
|
| 103 |
st.session_state['words'],
|
| 104 |
-
columns=["word"
|
| 105 |
-
).sort_values(by=["
|
| 106 |
st.dataframe(words_df, use_container_width=True)
|
| 107 |
|
| 108 |
-
|
| 109 |
-
words_umap_df = st.session_state['words_umap_df']
|
| 110 |
-
fig_3d = px.scatter_3d(words_umap_df, x="x", y="y", z="z", color="similarity", hover_name="l", hover_data={"x": False, "y": False, "z": False, "s": False}, size="s", size_max=10, range_color=(0,1))
|
| 111 |
-
st.plotly_chart(fig_3d, theme="streamlit", use_container_width=True)
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import random
|
| 5 |
import logging
|
|
|
|
| 6 |
from sentence_transformers import SentenceTransformer, util
|
| 7 |
from datasets import load_dataset
|
| 8 |
|
| 9 |
|
| 10 |
@st.cache_resource
|
| 11 |
+
def load_model(name):
|
| 12 |
+
return SentenceTransformer(name)
|
| 13 |
|
| 14 |
|
| 15 |
@st.cache_data
|
|
|
|
| 23 |
return random.choice(all_words)
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
all_words = load_words_dataset()
|
| 27 |
|
|
|
|
| 28 |
|
| 29 |
+
model_names = [
|
| 30 |
+
'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2',
|
| 31 |
+
'BAAI/bge-small-en-v1.5'
|
| 32 |
+
]
|
| 33 |
|
| 34 |
+
models = {
|
| 35 |
+
name: load_model(name) for name in model_names
|
| 36 |
+
}
|
| 37 |
|
| 38 |
+
secret_word =choose_secret_word().lower().strip()
|
| 39 |
+
secret_embedding = [models[name].encode(secret_word) for name in model_names]
|
| 40 |
|
| 41 |
print("Secret word ", secret_word)
|
| 42 |
|
|
|
|
| 44 |
if 'words' not in st.session_state:
|
| 45 |
st.session_state['words'] = []
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
|
|
|
|
| 55 |
|
| 56 |
if st.button("Guess") or word:
|
| 57 |
if word not in used_words:
|
| 58 |
+
word_embedding = [models[name].encode(word.lower().strip()) for name in model_names]
|
| 59 |
+
similarities = [util.pytorch_cos_sim(secret_embedding[i], word_embedding[i]).cpu().numpy()[0][0] for i, name in enumerate(model_names)]
|
| 60 |
+
st.session_state['words'].append([str(word)] + similarities))
|
| 61 |
+
|
| 62 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
words_df = pd.DataFrame(
|
| 65 |
st.session_state['words'],
|
| 66 |
+
columns=["word"] + ["Similarity for " + name for name in model_names]
|
| 67 |
+
).sort_values(by=["sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"], ascending=False)
|
| 68 |
st.dataframe(words_df, use_container_width=True)
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|