Spaces:
Sleeping
Sleeping
Commit
·
01a7a71
1
Parent(s):
20ed9e7
updated streamlit app
Browse files- .ipynb_checkpoints/Dockerfile-checkpoint +1 -1
- .ipynb_checkpoints/start-checkpoint.sh +1 -1
- .ipynb_checkpoints/streamlit_app-checkpoint.py +24 -2
- Dockerfile +1 -1
- start.sh +1 -1
- streamlit_app.py +23 -2
.ipynb_checkpoints/Dockerfile-checkpoint
CHANGED
|
@@ -30,7 +30,7 @@ RUN mkdir -p /app/cache && chmod -R 777 /app/cache
|
|
| 30 |
ENV HF_HOME=/app/cache
|
| 31 |
|
| 32 |
# Expose the necessary ports
|
| 33 |
-
EXPOSE
|
| 34 |
|
| 35 |
# Create a supervisor configuration file
|
| 36 |
RUN mkdir -p /etc/supervisor/conf.d/
|
|
|
|
| 30 |
ENV HF_HOME=/app/cache
|
| 31 |
|
| 32 |
# Expose the necessary ports
|
| 33 |
+
EXPOSE 7860 8502
|
| 34 |
|
| 35 |
# Create a supervisor configuration file
|
| 36 |
RUN mkdir -p /etc/supervisor/conf.d/
|
.ipynb_checkpoints/start-checkpoint.sh
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
# Start FastAPI
|
| 4 |
-
uvicorn app:app --host 0.0.0.0 --port 8502 &
|
| 5 |
|
| 6 |
# Start Streamlit
|
| 7 |
streamlit run streamlit_app.py --server.port=7860 --server.address=0.0.0.0
|
|
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
# Start FastAPI
|
| 4 |
+
# uvicorn app:app --host 0.0.0.0 --port 8502 &
|
| 5 |
|
| 6 |
# Start Streamlit
|
| 7 |
streamlit run streamlit_app.py --server.port=7860 --server.address=0.0.0.0
|
.ipynb_checkpoints/streamlit_app-checkpoint.py
CHANGED
|
@@ -1,6 +1,21 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import requests
|
| 3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
| 6 |
|
|
@@ -11,8 +26,15 @@ if uploaded_file is not None:
|
|
| 11 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 12 |
|
| 13 |
files = {"file": uploaded_file.getvalue()}
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
st.write("Generated Caption:")
|
| 18 |
st.write(f"**{caption}**")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import requests
|
| 3 |
from PIL import Image
|
| 4 |
+
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
| 5 |
+
import torch
|
| 6 |
+
import io
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def load_model():
|
| 11 |
+
model = Blip2ForConditionalGeneration.from_pretrained("ybelkada/blip2-opt-2.7b-fp16-sharded")
|
| 12 |
+
model.load_adapter('blip-cpu-model')
|
| 13 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
model.to(device)
|
| 16 |
+
return model, processor
|
| 17 |
+
|
| 18 |
+
model, processor = load_model()
|
| 19 |
|
| 20 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
| 21 |
|
|
|
|
| 26 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 27 |
|
| 28 |
files = {"file": uploaded_file.getvalue()}
|
| 29 |
+
print("Sending API request")
|
| 30 |
+
# response = requests.post("http://0.0.0.0:8502/generate-caption/", files=files)
|
| 31 |
+
# caption = response.json().get("caption")
|
| 32 |
+
|
| 33 |
+
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
| 34 |
+
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
caption_ids = model.generate(**inputs, max_length=128)
|
| 37 |
+
caption = processor.decode(caption_ids[0], skip_special_tokens=True)
|
| 38 |
|
| 39 |
st.write("Generated Caption:")
|
| 40 |
st.write(f"**{caption}**")
|
Dockerfile
CHANGED
|
@@ -30,7 +30,7 @@ RUN mkdir -p /app/cache && chmod -R 777 /app/cache
|
|
| 30 |
ENV HF_HOME=/app/cache
|
| 31 |
|
| 32 |
# Expose the necessary ports
|
| 33 |
-
EXPOSE
|
| 34 |
|
| 35 |
# Create a supervisor configuration file
|
| 36 |
RUN mkdir -p /etc/supervisor/conf.d/
|
|
|
|
| 30 |
ENV HF_HOME=/app/cache
|
| 31 |
|
| 32 |
# Expose the necessary ports
|
| 33 |
+
EXPOSE 7860 8502
|
| 34 |
|
| 35 |
# Create a supervisor configuration file
|
| 36 |
RUN mkdir -p /etc/supervisor/conf.d/
|
start.sh
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
# Start FastAPI
|
| 4 |
-
uvicorn app:app --host 0.0.0.0 --port 8502 &
|
| 5 |
|
| 6 |
# Start Streamlit
|
| 7 |
streamlit run streamlit_app.py --server.port=7860 --server.address=0.0.0.0
|
|
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
# Start FastAPI
|
| 4 |
+
# uvicorn app:app --host 0.0.0.0 --port 8502 &
|
| 5 |
|
| 6 |
# Start Streamlit
|
| 7 |
streamlit run streamlit_app.py --server.port=7860 --server.address=0.0.0.0
|
streamlit_app.py
CHANGED
|
@@ -1,6 +1,21 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import requests
|
| 3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
| 6 |
|
|
@@ -12,8 +27,14 @@ if uploaded_file is not None:
|
|
| 12 |
|
| 13 |
files = {"file": uploaded_file.getvalue()}
|
| 14 |
print("Sending API request")
|
| 15 |
-
response = requests.post("http://0.0.0.0:8502/generate-caption/", files=files)
|
| 16 |
-
caption = response.json().get("caption")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
st.write("Generated Caption:")
|
| 19 |
st.write(f"**{caption}**")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import requests
|
| 3 |
from PIL import Image
|
| 4 |
+
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
| 5 |
+
import torch
|
| 6 |
+
import io
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def load_model():
|
| 11 |
+
model = Blip2ForConditionalGeneration.from_pretrained("ybelkada/blip2-opt-2.7b-fp16-sharded")
|
| 12 |
+
model.load_adapter('blip-cpu-model')
|
| 13 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
model.to(device)
|
| 16 |
+
return model, processor
|
| 17 |
+
|
| 18 |
+
model, processor = load_model()
|
| 19 |
|
| 20 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
| 21 |
|
|
|
|
| 27 |
|
| 28 |
files = {"file": uploaded_file.getvalue()}
|
| 29 |
print("Sending API request")
|
| 30 |
+
# response = requests.post("http://0.0.0.0:8502/generate-caption/", files=files)
|
| 31 |
+
# caption = response.json().get("caption")
|
| 32 |
+
|
| 33 |
+
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
| 34 |
+
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
caption_ids = model.generate(**inputs, max_length=128)
|
| 37 |
+
caption = processor.decode(caption_ids[0], skip_special_tokens=True)
|
| 38 |
|
| 39 |
st.write("Generated Caption:")
|
| 40 |
st.write(f"**{caption}**")
|