Spaces:
Sleeping
Sleeping
Commit
·
e04674a
1
Parent(s):
8e1fc1a
added fast api again
Browse files- .ipynb_checkpoints/start-checkpoint.sh +1 -1
- .ipynb_checkpoints/streamlit_app-checkpoint.py +18 -18
- start.sh +1 -1
- streamlit_app.py +18 -18
.ipynb_checkpoints/start-checkpoint.sh
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
# Start FastAPI
|
| 4 |
-
|
| 5 |
|
| 6 |
# Start Streamlit
|
| 7 |
streamlit run streamlit_app.py \
|
|
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
# Start FastAPI
|
| 4 |
+
uvicorn app:app --host 0.0.0.0 --port 8502 &
|
| 5 |
|
| 6 |
# Start Streamlit
|
| 7 |
streamlit run streamlit_app.py \
|
.ipynb_checkpoints/streamlit_app-checkpoint.py
CHANGED
|
@@ -6,17 +6,17 @@ import torch
|
|
| 6 |
import io
|
| 7 |
|
| 8 |
|
| 9 |
-
@st.cache_resource
|
| 10 |
-
def load_model():
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
-
model, processor = load_model()
|
| 19 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
| 21 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
| 22 |
|
|
@@ -26,16 +26,16 @@ if uploaded_file is not None:
|
|
| 26 |
image = Image.open(uploaded_file)
|
| 27 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
st.write("Generated Caption:")
|
| 41 |
st.write(f"**{caption}**")
|
|
|
|
| 6 |
import io
|
| 7 |
|
| 8 |
|
| 9 |
+
# @st.cache_resource
|
| 10 |
+
# def load_model():
|
| 11 |
+
# model = Blip2ForConditionalGeneration.from_pretrained("ybelkada/blip2-opt-2.7b-fp16-sharded")
|
| 12 |
+
# model.load_adapter('blip-cpu-model')
|
| 13 |
+
# processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 14 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
# model.to(device)
|
| 16 |
+
# return model, processor
|
| 17 |
|
| 18 |
+
# model, processor = load_model()
|
| 19 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
| 21 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
| 22 |
|
|
|
|
| 26 |
image = Image.open(uploaded_file)
|
| 27 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 28 |
|
| 29 |
+
files = {"file": uploaded_file.getvalue()}
|
| 30 |
+
print("Sending API request")
|
| 31 |
+
response = requests.post("http://0.0.0.0:8502/generate-caption/", files=files)
|
| 32 |
+
caption = response.json().get("caption")
|
| 33 |
|
| 34 |
+
# inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
| 35 |
|
| 36 |
+
# with torch.no_grad():
|
| 37 |
+
# caption_ids = model.generate(**inputs, max_length=128)
|
| 38 |
+
# caption = processor.decode(caption_ids[0], skip_special_tokens=True)
|
| 39 |
|
| 40 |
st.write("Generated Caption:")
|
| 41 |
st.write(f"**{caption}**")
|
start.sh
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
# Start FastAPI
|
| 4 |
-
|
| 5 |
|
| 6 |
# Start Streamlit
|
| 7 |
streamlit run streamlit_app.py \
|
|
|
|
| 1 |
#!/bin/bash
|
| 2 |
|
| 3 |
# Start FastAPI
|
| 4 |
+
uvicorn app:app --host 0.0.0.0 --port 8502 &
|
| 5 |
|
| 6 |
# Start Streamlit
|
| 7 |
streamlit run streamlit_app.py \
|
streamlit_app.py
CHANGED
|
@@ -6,17 +6,17 @@ import torch
|
|
| 6 |
import io
|
| 7 |
|
| 8 |
|
| 9 |
-
@st.cache_resource
|
| 10 |
-
def load_model():
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
-
model, processor = load_model()
|
| 19 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
| 21 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
| 22 |
|
|
@@ -26,16 +26,16 @@ if uploaded_file is not None:
|
|
| 26 |
image = Image.open(uploaded_file)
|
| 27 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
st.write("Generated Caption:")
|
| 41 |
st.write(f"**{caption}**")
|
|
|
|
| 6 |
import io
|
| 7 |
|
| 8 |
|
| 9 |
+
# @st.cache_resource
|
| 10 |
+
# def load_model():
|
| 11 |
+
# model = Blip2ForConditionalGeneration.from_pretrained("ybelkada/blip2-opt-2.7b-fp16-sharded")
|
| 12 |
+
# model.load_adapter('blip-cpu-model')
|
| 13 |
+
# processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 14 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
# model.to(device)
|
| 16 |
+
# return model, processor
|
| 17 |
|
| 18 |
+
# model, processor = load_model()
|
| 19 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
| 21 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
| 22 |
|
|
|
|
| 26 |
image = Image.open(uploaded_file)
|
| 27 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 28 |
|
| 29 |
+
files = {"file": uploaded_file.getvalue()}
|
| 30 |
+
print("Sending API request")
|
| 31 |
+
response = requests.post("http://0.0.0.0:8502/generate-caption/", files=files)
|
| 32 |
+
caption = response.json().get("caption")
|
| 33 |
|
| 34 |
+
# inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
| 35 |
|
| 36 |
+
# with torch.no_grad():
|
| 37 |
+
# caption_ids = model.generate(**inputs, max_length=128)
|
| 38 |
+
# caption = processor.decode(caption_ids[0], skip_special_tokens=True)
|
| 39 |
|
| 40 |
st.write("Generated Caption:")
|
| 41 |
st.write(f"**{caption}**")
|