Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| from transformers import AlignProcessor, AlignModel | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| processor = AlignProcessor.from_pretrained("kakaobrain/align-base") | |
| model = AlignModel.from_pretrained("kakaobrain/align-base").to(device) | |
| model.eval() | |
| def predict(image, labels): | |
| labels = labels.split(', ') | |
| inputs = processor(images=image, text=labels, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits_per_image = outputs.logits_per_image | |
| probs = logits_per_image.softmax(dim=1).cpu().numpy() | |
| return {k: float(v) for k, v in zip(labels, probs[0])} | |
| description = """ | |
| """ | |
| gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.inputs.Image(label="Image to classify", type="pil"), | |
| gr.inputs.Textbox(lines=1, label="Comma separated candidate labels", placeholder="Enter labels separated by ', '",) | |
| ], | |
| outputs="label", | |
| examples=[ | |
| ["rafale.jpg", "Dassault Rafale, Lockheed Martin f35",], | |
| ], | |
| title="Images vs labels créé avec ALIGN et Huggingface", | |
| description=description | |
| ).launch() |