Update app.py
Browse files
app.py
CHANGED
|
@@ -1,603 +1,573 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
from datetime import datetime
|
| 4 |
from pathlib import Path
|
| 5 |
-
from typing import
|
| 6 |
-
from contextlib import contextmanager
|
| 7 |
-
import signal
|
| 8 |
-
from functools import wraps
|
| 9 |
|
| 10 |
import duckdb
|
| 11 |
import pandas as pd
|
| 12 |
import numpy as np
|
| 13 |
import matplotlib.pyplot as plt
|
| 14 |
import gradio as gr
|
| 15 |
-
from pydantic import BaseModel
|
| 16 |
from reportlab.lib.pagesizes import A4
|
| 17 |
from reportlab.lib.units import mm
|
| 18 |
from reportlab.pdfgen import canvas
|
| 19 |
|
| 20 |
-
# -------------------------------------------------------------------
|
| 21 |
-
# Logging Configuration
|
| 22 |
-
# -------------------------------------------------------------------
|
| 23 |
-
logging.basicConfig(
|
| 24 |
-
level=logging.INFO,
|
| 25 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 26 |
-
)
|
| 27 |
-
logger = logging.getLogger(__name__)
|
| 28 |
-
|
| 29 |
# -------------------------------------------------------------------
|
| 30 |
# Basic configuration
|
| 31 |
# -------------------------------------------------------------------
|
| 32 |
APP_TITLE = "ALCO Liquidity & Interest-Rate Risk Dashboard"
|
| 33 |
-
TABLE_FQN = "my_db.main.masterdataset_v"
|
| 34 |
-
VIEW_FQN = "my_db.main.positions_v"
|
| 35 |
EXPORT_DIR = Path("exports")
|
| 36 |
EXPORT_DIR.mkdir(exist_ok=True)
|
| 37 |
|
| 38 |
-
# Query timeout in seconds
|
| 39 |
-
QUERY_TIMEOUT_SECONDS = 30
|
| 40 |
|
| 41 |
# -------------------------------------------------------------------
|
| 42 |
-
#
|
| 43 |
# -------------------------------------------------------------------
|
| 44 |
-
|
| 45 |
-
""
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
def with_timeout(timeout_seconds: int = QUERY_TIMEOUT_SECONDS):
|
| 50 |
-
"""
|
| 51 |
-
Decorator to add timeout to query functions.
|
| 52 |
-
Note: This is a simplified version. For production, consider using
|
| 53 |
-
concurrent.futures or multiprocessing for better timeout handling.
|
| 54 |
-
|
| 55 |
-
Args:
|
| 56 |
-
timeout_seconds: Maximum execution time in seconds
|
| 57 |
-
"""
|
| 58 |
-
def decorator(func):
|
| 59 |
-
@wraps(func)
|
| 60 |
-
def wrapper(*args, **kwargs):
|
| 61 |
-
# For now, we'll log the timeout but not enforce it
|
| 62 |
-
# since signal.alarm doesn't work well with threads
|
| 63 |
-
# and DuckDB doesn't support native query timeouts
|
| 64 |
-
logger.debug(f"Starting {func.__name__} with {timeout_seconds}s timeout")
|
| 65 |
-
start_time = datetime.now()
|
| 66 |
-
|
| 67 |
-
try:
|
| 68 |
-
result = func(*args, **kwargs)
|
| 69 |
-
elapsed = (datetime.now() - start_time).total_seconds()
|
| 70 |
-
|
| 71 |
-
if elapsed > timeout_seconds:
|
| 72 |
-
logger.warning(
|
| 73 |
-
f"{func.__name__} exceeded timeout: {elapsed:.2f}s > {timeout_seconds}s"
|
| 74 |
-
)
|
| 75 |
-
else:
|
| 76 |
-
logger.debug(f"{func.__name__} completed in {elapsed:.2f}s")
|
| 77 |
-
|
| 78 |
-
return result
|
| 79 |
-
except Exception as e:
|
| 80 |
-
elapsed = (datetime.now() - start_time).total_seconds()
|
| 81 |
-
logger.error(f"{func.__name__} failed after {elapsed:.2f}s: {str(e)}")
|
| 82 |
-
raise
|
| 83 |
-
|
| 84 |
-
return wrapper
|
| 85 |
-
return decorator
|
| 86 |
|
| 87 |
# -------------------------------------------------------------------
|
| 88 |
-
#
|
| 89 |
# -------------------------------------------------------------------
|
| 90 |
-
|
| 91 |
-
""
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
""
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
| 110 |
"""
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
"""
|
| 120 |
-
conn = None
|
| 121 |
-
try:
|
| 122 |
-
token = os.environ.get("MOTHERDUCK_TOKEN", "")
|
| 123 |
-
if not token:
|
| 124 |
-
logger.error("MOTHERDUCK_TOKEN environment variable not set")
|
| 125 |
-
raise RuntimeError(
|
| 126 |
-
"MOTHERDUCK_TOKEN is not set. Please add it as a Space secret."
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
logger.info("Establishing MotherDuck connection")
|
| 130 |
-
conn = duckdb.connect(f"md:?motherduck_token={token}")
|
| 131 |
-
|
| 132 |
-
# Note: DuckDB/MotherDuck doesn't support statement_timeout like PostgreSQL
|
| 133 |
-
# Query timeouts should be handled at application level with threading/async
|
| 134 |
-
|
| 135 |
-
yield conn
|
| 136 |
-
|
| 137 |
-
except Exception as e:
|
| 138 |
-
logger.error(f"Database connection error: {str(e)}")
|
| 139 |
-
raise
|
| 140 |
-
finally:
|
| 141 |
-
if conn:
|
| 142 |
-
try:
|
| 143 |
-
conn.close()
|
| 144 |
-
logger.info("Database connection closed")
|
| 145 |
-
except Exception as e:
|
| 146 |
-
logger.warning(f"Error closing connection: {str(e)}")
|
| 147 |
|
| 148 |
|
| 149 |
-
def
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
Args:
|
| 155 |
-
conn: Database connection
|
| 156 |
-
query: SQL query to execute
|
| 157 |
-
description: Human-readable description for logging
|
| 158 |
-
|
| 159 |
-
Returns:
|
| 160 |
-
pd.DataFrame: Query results
|
| 161 |
-
|
| 162 |
-
Raises:
|
| 163 |
-
Exception: For query execution errors
|
| 164 |
-
"""
|
| 165 |
-
start_time = datetime.now()
|
| 166 |
-
try:
|
| 167 |
-
logger.info(f"Executing {description}")
|
| 168 |
-
result = conn.execute(query).df()
|
| 169 |
-
elapsed = (datetime.now() - start_time).total_seconds()
|
| 170 |
-
logger.info(f"{description} completed: {len(result)} rows in {elapsed:.2f}s")
|
| 171 |
-
|
| 172 |
-
# Warn if query is slow
|
| 173 |
-
if elapsed > QUERY_TIMEOUT_SECONDS:
|
| 174 |
-
logger.warning(f"{description} exceeded timeout threshold: {elapsed:.2f}s")
|
| 175 |
-
|
| 176 |
-
return result
|
| 177 |
-
except Exception as e:
|
| 178 |
-
elapsed = (datetime.now() - start_time).total_seconds()
|
| 179 |
-
logger.error(f"{description} failed after {elapsed:.2f}s: {str(e)}")
|
| 180 |
-
raise Exception(f"Query execution failed for {description}: {str(e)}")
|
| 181 |
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
FROM {
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
SELECT
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
)
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
WITH maxd AS (
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
""
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
SELECT
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
AND p.bucket IN ('Assets', 'SoF')
|
| 308 |
-
AND p.currency IS NOT NULL
|
| 309 |
-
GROUP BY p.bucket, p.currency
|
| 310 |
-
ORDER BY p.bucket, amount DESC;
|
| 311 |
-
"""
|
| 312 |
-
|
| 313 |
-
IRR_SQL = f"""
|
| 314 |
-
WITH maxd AS (
|
| 315 |
-
SELECT MAX(as_of_date) AS d FROM {VIEW_FQN}
|
| 316 |
-
),
|
| 317 |
base AS (
|
| 318 |
SELECT
|
| 319 |
p.bucket,
|
| 320 |
p.Portfolio_value AS pv,
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
WHEN p.months IS NOT NULL THEN p.months / 12.0
|
| 325 |
-
ELSE NULL
|
| 326 |
-
END AS T_years
|
| 327 |
-
FROM {VIEW_FQN} p
|
| 328 |
-
INNER JOIN maxd m ON p.as_of_date = m.d
|
| 329 |
WHERE p.Portfolio_value IS NOT NULL
|
| 330 |
-
AND p.bucket IN ('Assets', 'SoF')
|
| 331 |
),
|
| 332 |
metrics AS (
|
| 333 |
SELECT
|
| 334 |
bucket,
|
| 335 |
pv,
|
| 336 |
-
CASE
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
ELSE (T_years * (T_years + 1.0)) / NULLIF(POWER(1.0 + y, 2), 0)
|
| 345 |
-
END AS convexity_approx,
|
| 346 |
-
CASE
|
| 347 |
-
WHEN T_years IS NULL THEN NULL
|
| 348 |
-
WHEN y IS NULL THEN pv * T_years * 0.0001
|
| 349 |
-
ELSE pv * (T_years / NULLIF(1.0 + y, 0)) * 0.0001
|
| 350 |
-
END AS dv01
|
| 351 |
FROM base
|
| 352 |
),
|
| 353 |
agg AS (
|
| 354 |
SELECT
|
| 355 |
bucket,
|
| 356 |
SUM(pv) AS pv_sum,
|
| 357 |
-
SUM(pv * dur_mod) / NULLIF(SUM(pv),
|
| 358 |
SUM(dv01) AS dv01_sum
|
| 359 |
FROM metrics
|
| 360 |
GROUP BY bucket
|
| 361 |
)
|
| 362 |
SELECT
|
| 363 |
-
COALESCE(MAX(CASE WHEN bucket
|
| 364 |
-
COALESCE(MAX(CASE WHEN bucket
|
| 365 |
-
COALESCE(MAX(CASE WHEN bucket
|
| 366 |
-
COALESCE(MAX(CASE WHEN bucket
|
| 367 |
-
COALESCE(MAX(CASE WHEN bucket
|
| 368 |
-
|
| 369 |
-
COALESCE(MAX(CASE WHEN bucket
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
base AS (
|
| 380 |
SELECT
|
| 381 |
p.bucket,
|
| 382 |
p.Portfolio_value AS pv,
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
WHEN p.months IS NOT NULL THEN p.months / 12.0
|
| 387 |
-
ELSE NULL
|
| 388 |
-
END AS T_years
|
| 389 |
-
FROM {VIEW_FQN} p
|
| 390 |
-
INNER JOIN maxd m ON p.as_of_date = m.d
|
| 391 |
-
WHERE p.Portfolio_value IS NOT NULL
|
| 392 |
-
AND p.bucket IN ('Assets', 'SoF')
|
| 393 |
),
|
| 394 |
k AS (
|
| 395 |
SELECT
|
| 396 |
-
bucket,
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
CASE
|
| 404 |
-
WHEN T_years IS NULL THEN NULL
|
| 405 |
-
WHEN y IS NULL THEN T_years * (T_years + 1.0)
|
| 406 |
-
ELSE (T_years * (T_years + 1.0)) / NULLIF(POWER(1.0 + y, 2), 0)
|
| 407 |
-
END AS convexity_approx
|
| 408 |
FROM base
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
)
|
| 410 |
-
SELECT
|
| 411 |
-
bucket,
|
| 412 |
-
SUM((- pv * dur_mod * 0.01) + (0.5 * pv * convexity_approx * POWER(0.01, 2))) AS dPV_up_100bp,
|
| 413 |
-
SUM((+ pv * dur_mod * 0.01) + (0.5 * pv * convexity_approx * POWER(-0.01, 2))) AS dPV_dn_100bp
|
| 414 |
-
FROM k
|
| 415 |
-
WHERE dur_mod IS NOT NULL
|
| 416 |
-
GROUP BY bucket
|
| 417 |
-
ORDER BY bucket;
|
| 418 |
-
"""
|
| 419 |
-
|
| 420 |
-
# -------------------------------------------------------------------
|
| 421 |
-
# Initialize database view
|
| 422 |
-
# -------------------------------------------------------------------
|
| 423 |
-
def initialize_database():
|
| 424 |
-
"""
|
| 425 |
-
Initialize database view with error handling.
|
| 426 |
-
|
| 427 |
-
Raises:
|
| 428 |
-
Exception: If view creation fails
|
| 429 |
"""
|
| 430 |
-
try:
|
| 431 |
-
with get_db_connection() as conn:
|
| 432 |
-
execute_query(conn, CREATE_VIEW_SQL, "View creation")
|
| 433 |
-
logger.info(f"Successfully created/updated view: {VIEW_FQN}")
|
| 434 |
-
except Exception as e:
|
| 435 |
-
logger.error(f"Failed to initialize database: {str(e)}")
|
| 436 |
-
raise
|
| 437 |
|
| 438 |
|
| 439 |
# -------------------------------------------------------------------
|
| 440 |
-
# Data
|
| 441 |
# -------------------------------------------------------------------
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
bool: True if valid
|
| 454 |
-
|
| 455 |
-
Raises:
|
| 456 |
-
ValueError: If validation fails
|
| 457 |
-
"""
|
| 458 |
-
if df is None or df.empty:
|
| 459 |
-
if min_rows > 0:
|
| 460 |
-
raise ValueError("DataFrame is empty but data was expected")
|
| 461 |
-
return True
|
| 462 |
-
|
| 463 |
-
missing_cols = set(expected_columns) - set(df.columns)
|
| 464 |
-
if missing_cols:
|
| 465 |
-
raise ValueError(f"Missing required columns: {missing_cols}")
|
| 466 |
-
|
| 467 |
-
if len(df) < min_rows:
|
| 468 |
-
raise ValueError(f"Expected at least {min_rows} rows, got {len(df)}")
|
| 469 |
-
|
| 470 |
-
return True
|
| 471 |
|
| 472 |
|
| 473 |
# -------------------------------------------------------------------
|
| 474 |
-
#
|
| 475 |
# -------------------------------------------------------------------
|
| 476 |
-
def
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 492 |
|
| 493 |
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
return None
|
| 513 |
|
| 514 |
|
| 515 |
# -------------------------------------------------------------------
|
| 516 |
-
#
|
| 517 |
# -------------------------------------------------------------------
|
| 518 |
-
def
|
| 519 |
-
|
| 520 |
-
""
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
|
| 543 |
|
| 544 |
# -------------------------------------------------------------------
|
| 545 |
-
#
|
| 546 |
# -------------------------------------------------------------------
|
| 547 |
-
def
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 587 |
|
| 588 |
if __name__ == "__main__":
|
| 589 |
-
|
| 590 |
-
try:
|
| 591 |
-
logger.info("Starting ALCO Dashboard application")
|
| 592 |
-
initialize_database()
|
| 593 |
-
|
| 594 |
-
# Perform health check
|
| 595 |
-
health = health_check()
|
| 596 |
-
logger.info(f"Health check: {health}")
|
| 597 |
-
|
| 598 |
-
if health["status"] != "healthy":
|
| 599 |
-
logger.warning("Application health check failed")
|
| 600 |
-
|
| 601 |
-
except Exception as e:
|
| 602 |
-
logger.critical(f"Application startup failed: {str(e)}")
|
| 603 |
-
raise
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
| 3 |
from datetime import datetime
|
| 4 |
from pathlib import Path
|
| 5 |
+
from typing import Tuple, Any, Dict, List
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
import duckdb
|
| 8 |
import pandas as pd
|
| 9 |
import numpy as np
|
| 10 |
import matplotlib.pyplot as plt
|
| 11 |
import gradio as gr
|
| 12 |
+
from pydantic import BaseModel
|
| 13 |
from reportlab.lib.pagesizes import A4
|
| 14 |
from reportlab.lib.units import mm
|
| 15 |
from reportlab.pdfgen import canvas
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# -------------------------------------------------------------------
|
| 18 |
# Basic configuration
|
| 19 |
# -------------------------------------------------------------------
|
| 20 |
APP_TITLE = "ALCO Liquidity & Interest-Rate Risk Dashboard"
|
| 21 |
+
TABLE_FQN = "my_db.main.masterdataset_v" # <- your source
|
| 22 |
+
VIEW_FQN = "my_db.main.positions_v" # <- normalized view we create
|
| 23 |
EXPORT_DIR = Path("exports")
|
| 24 |
EXPORT_DIR.mkdir(exist_ok=True)
|
| 25 |
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# -------------------------------------------------------------------
|
| 28 |
+
# MotherDuck connection
|
| 29 |
# -------------------------------------------------------------------
|
| 30 |
+
def connect_md() -> duckdb.DuckDBPyConnection:
|
| 31 |
+
token = os.environ.get("MOTHERDUCK_TOKEN", "")
|
| 32 |
+
if not token:
|
| 33 |
+
raise RuntimeError("MOTHERDUCK_TOKEN is not set. Add it as a Space secret.")
|
| 34 |
+
try:
|
| 35 |
+
conn = duckdb.connect(f"md:?motherduck_token={token}")
|
| 36 |
+
return conn
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print("ERROR: Unable to connect to MotherDuck:", e, file=sys.stderr)
|
| 39 |
+
raise
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# -------------------------------------------------------------------
|
| 43 |
+
# Column discovery & dynamic SQL builders
|
| 44 |
# -------------------------------------------------------------------
|
| 45 |
+
WANTED_COLS = [
|
| 46 |
+
"as_of_date",
|
| 47 |
+
"product",
|
| 48 |
+
"months",
|
| 49 |
+
"segments",
|
| 50 |
+
"currency",
|
| 51 |
+
"Portfolio_value",
|
| 52 |
+
"Interest_rate",
|
| 53 |
+
"days_to_maturity",
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
PRODUCT_ASSETS = (
|
| 57 |
+
"loan", "overdraft", "advances", "bills", "bill", "tbond", "t-bond", "tbill",
|
| 58 |
+
"t-bill", "repo_asset", "assets"
|
| 59 |
+
)
|
| 60 |
+
PRODUCT_SOF = (
|
| 61 |
+
"fd", "term_deposit", "td", "savings", "current", "call", "repo_liab"
|
| 62 |
+
)
|
| 63 |
|
| 64 |
+
|
| 65 |
+
def discover_columns(conn: duckdb.DuckDBPyConnection, table_fqn: str) -> List[str]:
|
| 66 |
+
q = f"""
|
| 67 |
+
SELECT lower(column_name) AS col
|
| 68 |
+
FROM information_schema.columns
|
| 69 |
+
WHERE table_schema = split_part('{table_fqn}', '.', 2)
|
| 70 |
+
AND table_name = split_part('{table_fqn}', '.', 3)
|
| 71 |
"""
|
| 72 |
+
df = conn.execute(q).fetchdf()
|
| 73 |
+
return [c for c in df["col"].tolist()]
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def build_view_sql(existing_cols: List[str]) -> str:
|
| 77 |
+
# Build a SELECT list that only references columns that exist; others are NULLs.
|
| 78 |
+
parts = []
|
| 79 |
+
for c in WANTED_COLS:
|
| 80 |
+
if c.lower() in existing_cols:
|
| 81 |
+
parts.append(c)
|
| 82 |
+
else:
|
| 83 |
+
# use sensible defaults for types
|
| 84 |
+
if c in ("Portfolio_value", "Interest_rate", "days_to_maturity", "months"):
|
| 85 |
+
parts.append(f"CAST(NULL AS DOUBLE) AS {c}")
|
| 86 |
+
else:
|
| 87 |
+
parts.append(f"CAST(NULL AS VARCHAR) AS {c}")
|
| 88 |
+
|
| 89 |
+
# Add bucket derived from product (which must exist; we hard-require product & Portfolio_value & days_to_maturity)
|
| 90 |
+
# If 'product' doesn't exist, the app can't work; guard above (we will assert later).
|
| 91 |
+
bucket_case = (
|
| 92 |
+
"CASE "
|
| 93 |
+
f"WHEN lower(product) IN ({','.join([f\"'{p}'\" for p in PRODUCT_SOF])}) THEN 'SoF' "
|
| 94 |
+
f"WHEN lower(product) IN ({','.join([f\"'{p}'\" for p in PRODUCT_ASSETS])}) THEN 'Assets' "
|
| 95 |
+
"ELSE 'Unknown' END AS bucket"
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
select_list = ",\n ".join(parts + [bucket_case])
|
| 99 |
+
return f"""
|
| 100 |
+
CREATE OR REPLACE VIEW {VIEW_FQN} AS
|
| 101 |
+
SELECT
|
| 102 |
+
{select_list}
|
| 103 |
+
FROM {TABLE_FQN};
|
| 104 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
|
| 107 |
+
def make_max_date_sql(has_asof: bool) -> str:
|
| 108 |
+
if not has_asof:
|
| 109 |
+
# No as_of_date column -> return N/A row
|
| 110 |
+
return "SELECT 'N/A'::VARCHAR AS d;"
|
| 111 |
+
return f"WITH maxd AS (SELECT max(as_of_date) AS d FROM {VIEW_FQN}) SELECT d FROM maxd;"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
|
| 114 |
+
def wrap_latest_date(sql_body: str, has_asof: bool) -> str:
|
| 115 |
+
"""
|
| 116 |
+
If as_of_date exists, pin to latest date using a CTE and JOIN.
|
| 117 |
+
Otherwise, return the body directly from VIEW_FQN (no date pinning).
|
| 118 |
+
The sql_body must reference the view as 'p'.
|
| 119 |
+
"""
|
| 120 |
+
if not has_asof:
|
| 121 |
+
# Remove any JOIN to maxd; just select from the view
|
| 122 |
+
return f"SELECT * FROM ({sql_body})"
|
| 123 |
+
else:
|
| 124 |
+
return f"SELECT * FROM ({sql_body})"
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def build_kpi_sql(has_asof: bool) -> str:
|
| 128 |
+
if has_asof:
|
| 129 |
+
return f"""
|
| 130 |
+
WITH maxd AS (SELECT max(as_of_date) AS d FROM {VIEW_FQN}),
|
| 131 |
+
t1 AS (
|
| 132 |
+
SELECT p.bucket, SUM(p.Portfolio_value) AS amt
|
| 133 |
+
FROM {VIEW_FQN} p
|
| 134 |
+
JOIN maxd m ON p.as_of_date = m.d
|
| 135 |
+
WHERE p.days_to_maturity <= 1
|
| 136 |
+
GROUP BY p.bucket
|
| 137 |
+
)
|
| 138 |
+
SELECT
|
| 139 |
+
COALESCE(SUM(CASE WHEN bucket='Assets' THEN amt END),0) AS assets_t1,
|
| 140 |
+
COALESCE(SUM(CASE WHEN bucket='SoF' THEN amt END),0) AS sof_t1,
|
| 141 |
+
COALESCE(SUM(CASE WHEN bucket='Assets' THEN amt END),0)
|
| 142 |
+
- COALESCE(SUM(CASE WHEN bucket='SoF' THEN amt END),0) AS net_gap_t1
|
| 143 |
+
FROM t1;
|
| 144 |
+
"""
|
| 145 |
+
else:
|
| 146 |
+
return f"""
|
| 147 |
+
WITH t1 AS (
|
| 148 |
+
SELECT p.bucket, SUM(p.Portfolio_value) AS amt
|
| 149 |
+
FROM {VIEW_FQN} p
|
| 150 |
+
WHERE p.days_to_maturity <= 1
|
| 151 |
+
GROUP BY p.bucket
|
| 152 |
+
)
|
| 153 |
+
SELECT
|
| 154 |
+
COALESCE(SUM(CASE WHEN bucket='Assets' THEN amt END),0) AS assets_t1,
|
| 155 |
+
COALESCE(SUM(CASE WHEN bucket='SoF' THEN amt END),0) AS sof_t1,
|
| 156 |
+
COALESCE(SUM(CASE WHEN bucket='Assets' THEN amt END),0)
|
| 157 |
+
- COALESCE(SUM(CASE WHEN bucket='SoF' THEN amt END),0) AS net_gap_t1
|
| 158 |
+
FROM t1;
|
| 159 |
+
"""
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def build_ladder_sql(has_asof: bool) -> str:
|
| 163 |
+
if has_asof:
|
| 164 |
+
return f"""
|
| 165 |
+
WITH maxd AS (SELECT max(as_of_date) AS d FROM {VIEW_FQN})
|
| 166 |
+
SELECT
|
| 167 |
+
CASE
|
| 168 |
+
WHEN p.days_to_maturity <= 1 THEN 'T+1'
|
| 169 |
+
WHEN p.days_to_maturity BETWEEN 2 AND 7 THEN 'T+2..7'
|
| 170 |
+
WHEN p.days_to_maturity BETWEEN 8 AND 30 THEN 'T+8..30'
|
| 171 |
+
ELSE 'T+31+'
|
| 172 |
+
END AS time_bucket,
|
| 173 |
+
p.bucket,
|
| 174 |
+
SUM(p.Portfolio_value) AS amount
|
| 175 |
+
FROM {VIEW_FQN} p
|
| 176 |
+
JOIN maxd m ON p.as_of_date = m.d
|
| 177 |
+
GROUP BY 1,2
|
| 178 |
+
ORDER BY CASE time_bucket WHEN 'T+1' THEN 1 WHEN 'T+2..7' THEN 2 WHEN 'T+8..30' THEN 3 ELSE 4 END, p.bucket;
|
| 179 |
+
"""
|
| 180 |
+
else:
|
| 181 |
+
return f"""
|
| 182 |
+
SELECT
|
| 183 |
+
CASE
|
| 184 |
+
WHEN p.days_to_maturity <= 1 THEN 'T+1'
|
| 185 |
+
WHEN p.days_to_maturity BETWEEN 2 AND 7 THEN 'T+2..7'
|
| 186 |
+
WHEN p.days_to_maturity BETWEEN 8 AND 30 THEN 'T+8..30'
|
| 187 |
+
ELSE 'T+31+'
|
| 188 |
+
END AS time_bucket,
|
| 189 |
+
p.bucket,
|
| 190 |
+
SUM(p.Portfolio_value) AS amount
|
| 191 |
+
FROM {VIEW_FQN} p
|
| 192 |
+
GROUP BY 1,2
|
| 193 |
+
ORDER BY CASE time_bucket WHEN 'T+1' THEN 1 WHEN 'T+2..7' THEN 2 WHEN 'T+8..30' THEN 3 ELSE 4 END, p.bucket;
|
| 194 |
+
"""
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def build_t1_group_sql(group_col: str, has_asof: bool) -> str:
|
| 198 |
+
if has_asof:
|
| 199 |
+
return f"""
|
| 200 |
+
WITH maxd AS (SELECT max(as_of_date) AS d FROM {VIEW_FQN})
|
| 201 |
+
SELECT p.bucket, p.{group_col} AS grp, SUM(p.Portfolio_value) AS amount
|
| 202 |
+
FROM {VIEW_FQN} p
|
| 203 |
+
JOIN maxd m ON p.as_of_date = m.d
|
| 204 |
+
WHERE p.days_to_maturity <= 1
|
| 205 |
+
GROUP BY 1,2
|
| 206 |
+
ORDER BY p.bucket, amount DESC
|
| 207 |
+
LIMIT 50;
|
| 208 |
+
"""
|
| 209 |
+
else:
|
| 210 |
+
return f"""
|
| 211 |
+
SELECT p.bucket, p.{group_col} AS grp, SUM(p.Portfolio_value) AS amount
|
| 212 |
+
FROM {VIEW_FQN} p
|
| 213 |
+
WHERE p.days_to_maturity <= 1
|
| 214 |
+
GROUP BY 1,2
|
| 215 |
+
ORDER BY p.bucket, amount DESC
|
| 216 |
+
LIMIT 50;
|
| 217 |
+
"""
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def build_irr_sql(has_asof: bool, has_months: bool, has_ir: bool) -> str:
|
| 221 |
+
# T_years uses days_to_maturity OR months (if present). y uses Interest_rate (if present).
|
| 222 |
+
t_years_expr = "CASE WHEN p.days_to_maturity IS NOT NULL THEN p.days_to_maturity/365.0"
|
| 223 |
+
if has_months:
|
| 224 |
+
t_years_expr += " WHEN p.months IS NOT NULL THEN p.months/12.0"
|
| 225 |
+
t_years_expr += " ELSE NULL END"
|
| 226 |
+
|
| 227 |
+
y_expr = "(p.Interest_rate / 100.0)" if has_ir else "NULL"
|
| 228 |
+
|
| 229 |
+
if has_asof:
|
| 230 |
+
base_from = f"FROM {VIEW_FQN} p JOIN maxd m ON p.as_of_date = m.d"
|
| 231 |
+
max_cte = f"WITH maxd AS (SELECT max(as_of_date) AS d FROM {VIEW_FQN}),"
|
| 232 |
+
else:
|
| 233 |
+
base_from = f"FROM {VIEW_FQN} p"
|
| 234 |
+
max_cte = "WITH"
|
| 235 |
+
|
| 236 |
+
return f"""
|
| 237 |
+
{max_cte}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
base AS (
|
| 239 |
SELECT
|
| 240 |
p.bucket,
|
| 241 |
p.Portfolio_value AS pv,
|
| 242 |
+
{y_expr} AS y,
|
| 243 |
+
{t_years_expr} AS T_years
|
| 244 |
+
{base_from}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
WHERE p.Portfolio_value IS NOT NULL
|
|
|
|
| 246 |
),
|
| 247 |
metrics AS (
|
| 248 |
SELECT
|
| 249 |
bucket,
|
| 250 |
pv,
|
| 251 |
+
CASE WHEN T_years IS NULL THEN NULL
|
| 252 |
+
WHEN y IS NULL THEN T_years
|
| 253 |
+
ELSE T_years/(1.0+y) END AS dur_mod,
|
| 254 |
+
CASE WHEN T_years IS NULL THEN NULL
|
| 255 |
+
WHEN y IS NULL THEN T_years*(T_years+1.0)
|
| 256 |
+
ELSE (T_years*(T_years+1.0))/POWER(1.0+y,2) END AS convexity_approx,
|
| 257 |
+
CASE WHEN T_years IS NULL THEN NULL
|
| 258 |
+
ELSE pv * (CASE WHEN y IS NULL THEN T_years ELSE T_years/(1.0+y) END) * 0.0001 END AS dv01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
FROM base
|
| 260 |
),
|
| 261 |
agg AS (
|
| 262 |
SELECT
|
| 263 |
bucket,
|
| 264 |
SUM(pv) AS pv_sum,
|
| 265 |
+
SUM(pv * dur_mod) / NULLIF(SUM(pv),0) AS dur_mod_port,
|
| 266 |
SUM(dv01) AS dv01_sum
|
| 267 |
FROM metrics
|
| 268 |
GROUP BY bucket
|
| 269 |
)
|
| 270 |
SELECT
|
| 271 |
+
COALESCE(MAX(CASE WHEN bucket='Assets' THEN pv_sum END),0) AS assets_pv,
|
| 272 |
+
COALESCE(MAX(CASE WHEN bucket='SoF' THEN pv_sum END),0) AS sof_pv,
|
| 273 |
+
COALESCE(MAX(CASE WHEN bucket='Assets' THEN dur_mod_port END),0) AS assets_dur_mod,
|
| 274 |
+
COALESCE(MAX(CASE WHEN bucket='SoF' THEN dur_mod_port END),0) AS sof_dur_mod,
|
| 275 |
+
COALESCE(MAX(CASE WHEN bucket='Assets' THEN dur_mod_port END),0)
|
| 276 |
+
- COALESCE(MAX(CASE WHEN bucket='SoF' THEN dur_mod_port END),0) AS duration_gap,
|
| 277 |
+
COALESCE(MAX(CASE WHEN bucket='Assets' THEN dv01_sum END),0)
|
| 278 |
+
- COALESCE(MAX(CASE WHEN bucket='SoF' THEN dv01_sum END),0) AS net_dv01;
|
| 279 |
+
"""
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
def build_shock_sql(has_asof: bool, has_months: bool, has_ir: bool) -> str:
|
| 283 |
+
t_years_expr = "CASE WHEN p.days_to_maturity IS NOT NULL THEN p.days_to_maturity/365.0"
|
| 284 |
+
if has_months:
|
| 285 |
+
t_years_expr += " WHEN p.months IS NOT NULL THEN p.months/12.0"
|
| 286 |
+
t_years_expr += " ELSE NULL END"
|
| 287 |
+
|
| 288 |
+
y_expr = "(p.Interest_rate / 100.0)" if has_ir else "NULL"
|
| 289 |
+
|
| 290 |
+
if has_asof:
|
| 291 |
+
base_from = f"FROM {VIEW_FQN} p JOIN maxd m ON p.as_of_date = m.d"
|
| 292 |
+
max_cte = f"WITH maxd AS (SELECT max(as_of_date) AS d FROM {VIEW_FQN}),"
|
| 293 |
+
else:
|
| 294 |
+
base_from = f"FROM {VIEW_FQN} p"
|
| 295 |
+
max_cte = "WITH"
|
| 296 |
+
|
| 297 |
+
return f"""
|
| 298 |
+
{max_cte}
|
| 299 |
base AS (
|
| 300 |
SELECT
|
| 301 |
p.bucket,
|
| 302 |
p.Portfolio_value AS pv,
|
| 303 |
+
{y_expr} AS y,
|
| 304 |
+
{t_years_expr} AS T_years
|
| 305 |
+
{base_from}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
),
|
| 307 |
k AS (
|
| 308 |
SELECT
|
| 309 |
+
bucket, pv,
|
| 310 |
+
CASE WHEN T_years IS NULL THEN NULL
|
| 311 |
+
WHEN y IS NULL THEN T_years
|
| 312 |
+
ELSE T_years/(1.0+y) END AS dur_mod,
|
| 313 |
+
CASE WHEN T_years IS NULL THEN NULL
|
| 314 |
+
WHEN y IS NULL THEN T_years*(T_years+1.0)
|
| 315 |
+
ELSE (T_years*(T_years+1.0))/POWER(1.0+y,2) END AS convexity_approx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
FROM base
|
| 317 |
+
),
|
| 318 |
+
shock AS (
|
| 319 |
+
SELECT
|
| 320 |
+
bucket,
|
| 321 |
+
SUM((- pv * dur_mod * 0.01) + (0.5 * pv * convexity_approx * POWER(0.01,2))) AS dPV_up_100bp,
|
| 322 |
+
SUM((+ pv * dur_mod * 0.01) + (0.5 * pv * convexity_approx * POWER(-0.01,2))) AS dPV_dn_100bp
|
| 323 |
+
FROM k
|
| 324 |
+
GROUP BY bucket
|
| 325 |
)
|
| 326 |
+
SELECT * FROM shock ORDER BY bucket;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
|
| 330 |
# -------------------------------------------------------------------
|
| 331 |
+
# Data class
|
| 332 |
# -------------------------------------------------------------------
|
| 333 |
+
class DashboardResult(BaseModel):
|
| 334 |
+
as_of_date: str
|
| 335 |
+
assets_t1: float
|
| 336 |
+
sof_t1: float
|
| 337 |
+
net_gap_t1: float
|
| 338 |
+
ladder: pd.DataFrame
|
| 339 |
+
t1_by_month: pd.DataFrame
|
| 340 |
+
t1_by_segment: pd.DataFrame
|
| 341 |
+
t1_by_ccy: pd.DataFrame
|
| 342 |
+
irr: pd.DataFrame
|
| 343 |
+
shocks: pd.DataFrame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
|
| 345 |
|
| 346 |
# -------------------------------------------------------------------
|
| 347 |
+
# Query helpers
|
| 348 |
# -------------------------------------------------------------------
|
| 349 |
+
def ensure_view(conn: duckdb.DuckDBPyConnection, existing_cols: List[str]) -> None:
|
| 350 |
+
# sanity: ensure mandatory columns exist in source table
|
| 351 |
+
mandatory = {"product", "portfolio_value", "days_to_maturity"}
|
| 352 |
+
if not mandatory.issubset(set(existing_cols)):
|
| 353 |
+
raise RuntimeError(
|
| 354 |
+
f"Source table {TABLE_FQN} must contain {mandatory}, "
|
| 355 |
+
f"found only: {existing_cols}"
|
| 356 |
+
)
|
| 357 |
+
conn.execute(build_view_sql(existing_cols))
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def fetch_all(conn: duckdb.DuckDBPyConnection) -> DashboardResult:
|
| 361 |
+
existing = discover_columns(conn, TABLE_FQN)
|
| 362 |
+
ensure_view(conn, existing)
|
| 363 |
+
|
| 364 |
+
has_asof = "as_of_date" in existing
|
| 365 |
+
has_months = "months" in existing
|
| 366 |
+
has_segments = "segments" in existing
|
| 367 |
+
has_currency = "currency" in existing
|
| 368 |
+
has_ir = "interest_rate" in existing
|
| 369 |
+
|
| 370 |
+
# As-of date (or N/A)
|
| 371 |
+
asof_df = conn.execute(make_max_date_sql(has_asof)).fetchdf()
|
| 372 |
+
as_of = asof_df["d"].iloc[0]
|
| 373 |
+
as_of_str = (
|
| 374 |
+
pd.to_datetime(as_of).strftime("%Y-%m-%d")
|
| 375 |
+
if has_asof and not pd.isna(as_of)
|
| 376 |
+
else "N/A"
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
# KPIs & ladder
|
| 380 |
+
kpis = conn.execute(build_kpi_sql(has_asof)).fetchdf()
|
| 381 |
+
ladder = conn.execute(build_ladder_sql(has_asof)).fetchdf()
|
| 382 |
+
|
| 383 |
+
# Contributors (only if columns exist)
|
| 384 |
+
if has_months:
|
| 385 |
+
t1_m = conn.execute(build_t1_group_sql("months", has_asof)).fetchdf()
|
| 386 |
+
t1_m = t1_m.rename(columns={"grp": "months"})
|
| 387 |
+
else:
|
| 388 |
+
t1_m = pd.DataFrame(columns=["bucket", "months", "amount"])
|
| 389 |
+
|
| 390 |
+
if has_segments:
|
| 391 |
+
t1_s = conn.execute(build_t1_group_sql("segments", has_asof)).fetchdf()
|
| 392 |
+
t1_s = t1_s.rename(columns={"grp": "segments"})
|
| 393 |
+
else:
|
| 394 |
+
t1_s = pd.DataFrame(columns=["bucket", "segments", "amount"])
|
| 395 |
+
|
| 396 |
+
if has_currency:
|
| 397 |
+
t1_c = conn.execute(build_t1_group_sql("currency", has_asof)).fetchdf()
|
| 398 |
+
t1_c = t1_c.rename(columns={"grp": "currency"})
|
| 399 |
+
else:
|
| 400 |
+
t1_c = pd.DataFrame(columns=["bucket", "currency", "amount"])
|
| 401 |
+
|
| 402 |
+
# IRR & shocks (works even if Interest_rate/months are missing)
|
| 403 |
+
irr = conn.execute(build_irr_sql(has_asof, has_months, has_ir)).fetchdf()
|
| 404 |
+
shocks = conn.execute(build_shock_sql(has_asof, has_months, has_ir)).fetchdf()
|
| 405 |
+
|
| 406 |
+
return DashboardResult(
|
| 407 |
+
as_of_date=as_of_str,
|
| 408 |
+
assets_t1=float(kpis["assets_t1"].iloc[0]),
|
| 409 |
+
sof_t1=float(kpis["sof_t1"].iloc[0]),
|
| 410 |
+
net_gap_t1=float(kpis["net_gap_t1"].iloc[0]),
|
| 411 |
+
ladder=ladder,
|
| 412 |
+
t1_by_month=t1_m,
|
| 413 |
+
t1_by_segment=t1_s,
|
| 414 |
+
t1_by_ccy=t1_c,
|
| 415 |
+
irr=irr,
|
| 416 |
+
shocks=shocks,
|
| 417 |
+
)
|
| 418 |
|
| 419 |
|
| 420 |
+
# -------------------------------------------------------------------
|
| 421 |
+
# Plotting
|
| 422 |
+
# -------------------------------------------------------------------
|
| 423 |
+
def plot_ladder(df: pd.DataFrame):
|
| 424 |
+
pivot = df.pivot(index="time_bucket", columns="bucket", values="amount").fillna(0)
|
| 425 |
+
order = ["T+1", "T+2..7", "T+8..30", "T+31+"]
|
| 426 |
+
pivot = pivot.reindex(order)
|
| 427 |
+
fig, ax = plt.subplots(figsize=(7, 4))
|
| 428 |
+
assets = pivot.get("Assets", pd.Series([0] * len(pivot), index=pivot.index))
|
| 429 |
+
sof = pivot.get("SoF", pd.Series([0] * len(pivot), index=pivot.index))
|
| 430 |
+
ax.bar(pivot.index, assets, label="Assets")
|
| 431 |
+
ax.bar(pivot.index, -sof, bottom=0, label="SoF")
|
| 432 |
+
ax.axhline(0, linewidth=1)
|
| 433 |
+
ax.set_ylabel("LKR")
|
| 434 |
+
ax.set_title("Maturity Ladder (Assets vs SoF)")
|
| 435 |
+
ax.legend()
|
| 436 |
+
fig.tight_layout()
|
| 437 |
+
return fig
|
|
|
|
| 438 |
|
| 439 |
|
| 440 |
# -------------------------------------------------------------------
|
| 441 |
+
# Exports
|
| 442 |
# -------------------------------------------------------------------
|
| 443 |
+
def export_excel(res: DashboardResult) -> Path:
|
| 444 |
+
out = EXPORT_DIR / f"alco_report_{res.as_of_date}.xlsx"
|
| 445 |
+
with pd.ExcelWriter(out, engine="xlsxwriter") as xw:
|
| 446 |
+
pd.DataFrame({
|
| 447 |
+
"as_of_date": [res.as_of_date],
|
| 448 |
+
"assets_t1": [res.assets_t1],
|
| 449 |
+
"sof_t1": [res.sof_t1],
|
| 450 |
+
"net_gap_t1": [res.net_gap_t1],
|
| 451 |
+
}).to_excel(xw, index=False, sheet_name="kpis")
|
| 452 |
+
res.ladder.to_excel(xw, index=False, sheet_name="ladder")
|
| 453 |
+
res.t1_by_month.to_excel(xw, index=False, sheet_name="t1_by_month")
|
| 454 |
+
res.t1_by_segment.to_excel(xw, index=False, sheet_name="t1_by_segment")
|
| 455 |
+
res.t1_by_ccy.to_excel(xw, index=False, sheet_name="t1_by_ccy")
|
| 456 |
+
res.irr.to_excel(xw, index=False, sheet_name="irr")
|
| 457 |
+
res.shocks.to_excel(xw, index=False, sheet_name="shocks")
|
| 458 |
+
return out
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
def export_pdf(res: DashboardResult) -> Path:
|
| 462 |
+
out = EXPORT_DIR / f"alco_report_{res.as_of_date}.pdf"
|
| 463 |
+
c = canvas.Canvas(str(out), pagesize=A4)
|
| 464 |
+
W, H = A4
|
| 465 |
+
y = H - 20 * mm
|
| 466 |
+
|
| 467 |
+
def line(txt, size=11, dy=6 * mm):
|
| 468 |
+
nonlocal y
|
| 469 |
+
c.setFont("Helvetica", size)
|
| 470 |
+
c.drawString(20 * mm, y, txt)
|
| 471 |
+
y -= dy
|
| 472 |
+
|
| 473 |
+
line(APP_TITLE, 14, dy=8 * mm)
|
| 474 |
+
line(f"As of: {res.as_of_date}")
|
| 475 |
+
line(f"Assets T+1: {res.assets_t1:,.0f} LKR")
|
| 476 |
+
line(f"SoF T+1: {res.sof_t1:,.0f} LKR")
|
| 477 |
+
line(f"Net Gap T+1: {res.net_gap_t1:,.0f} LKR (negative = shortfall)")
|
| 478 |
+
y -= 4 * mm
|
| 479 |
+
|
| 480 |
+
if not res.irr.empty:
|
| 481 |
+
irr = res.irr.iloc[0]
|
| 482 |
+
line("Interest-Rate Risk (approx)", 12, dy=7 * mm)
|
| 483 |
+
line(f"Assets ModDur: {irr['assets_dur_mod']:.2f} | SoF ModDur: {irr['sof_dur_mod']:.2f}")
|
| 484 |
+
line(f"Duration Gap: {irr['duration_gap']:.2f}")
|
| 485 |
+
line(f"Net DV01: {irr['net_dv01']:,.0f} LKR/bp")
|
| 486 |
+
|
| 487 |
+
if not res.shocks.empty:
|
| 488 |
+
net_up = res.shocks["dPV_up_100bp"].sum()
|
| 489 |
+
net_dn = res.shocks["dPV_dn_100bp"].sum()
|
| 490 |
+
y -= 2 * mm
|
| 491 |
+
line(f"+100bp net ΔPV: {net_up:,.0f} LKR | -100bp net ΔPV: {net_dn:,.0f} LKR")
|
| 492 |
+
|
| 493 |
+
c.showPage()
|
| 494 |
+
c.save()
|
| 495 |
+
return out
|
| 496 |
|
| 497 |
|
| 498 |
# -------------------------------------------------------------------
|
| 499 |
+
# Gradio UI
|
| 500 |
# -------------------------------------------------------------------
|
| 501 |
+
def run_dashboard() -> Tuple[str, float, float, float, Any, Any, Any, Any, Any, Any, Any]:
|
| 502 |
+
conn = connect_md()
|
| 503 |
+
res = fetch_all(conn)
|
| 504 |
+
fig = plot_ladder(res.ladder)
|
| 505 |
+
excel_path = export_excel(res)
|
| 506 |
+
pdf_path = export_pdf(res)
|
| 507 |
+
return (
|
| 508 |
+
res.as_of_date,
|
| 509 |
+
res.assets_t1,
|
| 510 |
+
res.sof_t1,
|
| 511 |
+
res.net_gap_t1,
|
| 512 |
+
fig,
|
| 513 |
+
res.t1_by_month,
|
| 514 |
+
res.t1_by_segment,
|
| 515 |
+
res.t1_by_ccy,
|
| 516 |
+
res.irr,
|
| 517 |
+
res.shocks,
|
| 518 |
+
str(excel_path),
|
| 519 |
+
str(pdf_path),
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
with gr.Blocks(title=APP_TITLE) as demo:
|
| 524 |
+
gr.Markdown(
|
| 525 |
+
f"# {APP_TITLE}\n"
|
| 526 |
+
"*Source:* `my_db.main.masterdataset_v` → `positions_v` | *Sign:* Assets=+ SoF=–"
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
with gr.Row():
|
| 530 |
+
btn = gr.Button("🔄 Refresh", variant="primary")
|
| 531 |
+
|
| 532 |
+
with gr.Row():
|
| 533 |
+
as_of = gr.Textbox(label="As of date", interactive=False)
|
| 534 |
+
|
| 535 |
+
with gr.Row():
|
| 536 |
+
k1 = gr.Number(label="Assets T+1 (LKR)", precision=0)
|
| 537 |
+
k2 = gr.Number(label="SoF T+1 (LKR)", precision=0)
|
| 538 |
+
k3 = gr.Number(label="Net Gap T+1 (LKR)", precision=0)
|
| 539 |
+
|
| 540 |
+
chart = gr.Plot(label="Maturity Ladder")
|
| 541 |
+
|
| 542 |
+
with gr.Row():
|
| 543 |
+
t1m = gr.Dataframe(label="T+1 by Tenor (months)")
|
| 544 |
+
t1s = gr.Dataframe(label="T+1 by Segment")
|
| 545 |
+
|
| 546 |
+
t1c = gr.Dataframe(label="T+1 by Currency")
|
| 547 |
+
irr = gr.Dataframe(label="Interest-Rate Risk (bucketed)")
|
| 548 |
+
shocks = gr.Dataframe(label="Parallel Shock ±100bp (bucketed)")
|
| 549 |
+
|
| 550 |
+
with gr.Row():
|
| 551 |
+
excel_file = gr.File(label="Excel export", interactive=False)
|
| 552 |
+
pdf_file = gr.File(label="PDF export", interactive=False)
|
| 553 |
+
|
| 554 |
+
btn.click(
|
| 555 |
+
fn=run_dashboard,
|
| 556 |
+
outputs=[
|
| 557 |
+
as_of,
|
| 558 |
+
k1,
|
| 559 |
+
k2,
|
| 560 |
+
k3,
|
| 561 |
+
chart,
|
| 562 |
+
t1m,
|
| 563 |
+
t1s,
|
| 564 |
+
t1c,
|
| 565 |
+
irr,
|
| 566 |
+
shocks,
|
| 567 |
+
excel_file,
|
| 568 |
+
pdf_file,
|
| 569 |
+
],
|
| 570 |
+
)
|
| 571 |
|
| 572 |
if __name__ == "__main__":
|
| 573 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|