Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| def create_chat_interface(): | |
| # Initialize model and tokenizer | |
| model_name = "Qwen/Qwen2.5-Coder-7B-Instruct" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map="auto", | |
| trust_remote_code=True | |
| ) | |
| # Chat function | |
| def chat(message, history): | |
| # Format input with chat template | |
| prompt = f"User: {message}\nAssistant:" | |
| # Generate response | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=512, | |
| temperature=0.7, | |
| num_return_sequences=1 | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| # Create Gradio interface | |
| interface = gr.ChatInterface( | |
| fn=chat, | |
| title="Code Assistant Chat", | |
| description="Ask coding questions or get help with programming tasks.", | |
| theme=gr.themes.Soft(), | |
| examples=[ | |
| "Write a Python function to sort a list", | |
| "How do I read a CSV file in pandas?", | |
| "Explain object-oriented programming concepts" | |
| ] | |
| ) | |
| return interface | |
| if __name__ == "__main__": | |
| # Launch the interface | |
| chat_app = create_chat_interface() | |
| chat_app.launch(share=True) |