File size: 17,443 Bytes
dda2db4
 
 
 
 
 
72a7de1
dda2db4
 
 
 
72a7de1
dda2db4
 
72a7de1
 
dda2db4
 
 
 
72a7de1
d67a424
dda2db4
 
 
72a7de1
dda2db4
 
72a7de1
dda2db4
72a7de1
dda2db4
 
 
 
72a7de1
dda2db4
 
72a7de1
 
dda2db4
 
 
72a7de1
dda2db4
 
 
 
 
 
 
 
 
 
 
72a7de1
 
 
dda2db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72a7de1
dda2db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b45868a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c72eb
 
 
dda2db4
b45868a
89c72eb
 
dda2db4
89c72eb
 
 
b45868a
 
89c72eb
dda2db4
89c72eb
b45868a
 
89c72eb
72a7de1
89c72eb
 
 
 
 
 
 
 
 
72a7de1
b45868a
89c72eb
72a7de1
b45868a
 
 
 
89c72eb
72a7de1
89c72eb
b45868a
 
89c72eb
72a7de1
 
b45868a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50b4e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda2db4
72a7de1
50b4e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # Suppress TF logging
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"  # Disable GPU
import urllib.request 
import fitz 
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
from sklearn.neighbors import NearestNeighbors

def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)


def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text


def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list


def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []
    
    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks


class SemanticSearch:
    
    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False
    
    
    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True
    
    
    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
        
        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors
    
    
    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings



def load_recommender(path, start_page=1):
    global recommender
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    return 'Corpus Loaded.'

def generate_text(openAI_key, prompt, model="gpt-3.5-turbo"):
    openai.api_key = openAI_key
    temperature = 0.1
    max_tokens = 256
    top_p = 1
    frequency_penalty = 0
    presence_penalty = 0

    if model == "text-davinci-003":
        completions = openai.Completion.create(
            engine=model,
            prompt=prompt,
            max_tokens=max_tokens,
            n=1,
            stop=None,
            temperature=temperature,
        )
        message = completions.choices[0].text
    else:
        response = openai.ChatCompletion.create(
            model=model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ],
            temperature=temperature,
            max_tokens=max_tokens,
            top_p=top_p,
            frequency_penalty=frequency_penalty,
            presence_penalty=presence_penalty,
        )
        message = response['choices'][0]['message']['content']
    return message

  
def generate_answer(question, openAI_key, model):
    topn_chunks = recommender(question)
    prompt = 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'
        
    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation. "\
              "Only answer what is asked. The answer should be short and concise. \n\nQuery: "
    
    prompt += f"{question}\nAnswer:"
    answer = generate_text(openAI_key, prompt, model)
    return answer


def question_answer(chat_history, url, file, question, openAI_key, model):
    try:
        if openAI_key.strip()=='':
            return '[ERROR]: Please enter your Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
        if url.strip() == '' and file is None:
            return '[ERROR]: Both URL and PDF is empty. Provide at least one.'
        if url.strip() != '' and file is not None:
            return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'
        if model is None or model =='':
            return '[ERROR]: You have not selected any model. Please choose an LLM model.'
        if url.strip() != '':
            glob_url = url
            download_pdf(glob_url, 'corpus.pdf')
            load_recommender('corpus.pdf')
        else:
            old_file_name = file.name
            file_name = file.name
            file_name = file_name[:-12] + file_name[-4:]
            os.rename(old_file_name, file_name)
            load_recommender(file_name)
        if question.strip() == '':
            return '[ERROR]: Question field is empty'
        if model == "text-davinci-003" or model == "gpt-4" or model == "gpt-4-32k":
            answer = generate_answer_text_davinci_003(question, openAI_key)
        else:
            answer = generate_answer(question, openAI_key, model)
        chat_history.append([question, answer])
        return chat_history
    except openai.error.InvalidRequestError as e:
        return f'[ERROR]: Either you do not have access to GPT4 or you have exhausted your quota!'



def generate_text_text_davinci_003(openAI_key,prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message


def generate_answer_text_davinci_003(question,openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'
        
    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
              "with the same name, create separate answers for each. Only include information found in the results and "\
              "don't add any additional information. Make sure the answer is correct and don't output false content. "\
              "If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\
              "search results which has nothing to do with the question. Only answer what is asked. The "\
              "answer should be short and concise. \n\nQuery: {question}\nAnswer: "
    
    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text_text_davinci_003(openAI_key, prompt,"text-davinci-003")
    return answer

# pre-defined questions
questions = [
    "What did the study investigate?",
    "Can you provide a summary of this paper?",
    "what are the methodologies used in this study?",
    "what are the data intervals used in this study? Give me the start dates and end dates?",
    "what are the main limitations of this study?",
    "what are the main shortcomings of this study?",
    "what are the main findings of the study?",
    "what are the main results of the study?",
    "what are the main contributions of this study?",
    "what is the conclusion of this paper?",
    "what are the input features used in this study?",
    "what is the dependent variable in this study?",
]


recommender = SemanticSearch()

title = 'PDF GPT Turbo'
description = """ PDF GPT Turbo allows you to chat with your PDF files. It uses Google's Universal Sentence Encoder with Deep averaging network (DAN) to give hallucination free response by improving the embedding quality of OpenAI. It cites the page number in square brackets([Page No.]) and shows where the information is located, adding credibility to the responses."""

# def respond(message, chat_history, url_value, file_value, key_value, model_value):
#     if message.strip() == "":
#         return "", chat_history  # nothing to do

#     # Initialize chat_history as a list of [user, assistant] pairs
#     if chat_history is None:
#         chat_history = []

#     try:
#         # Basic validations
#         if key_value.strip() == '':
#             chat_history.append([message, '[ERROR]: Please enter your OpenAI API key'])
#             return "", chat_history

#         if url_value.strip() == '' and file_value is None:
#             chat_history.append([message, '[ERROR]: Both URL and PDF are empty. Provide at least one'])
#             return "", chat_history

#         # Prepare corpus (URL or uploaded file)
#         if url_value.strip() != '':
#             download_pdf(url_value, 'corpus.pdf')
#             load_recommender('corpus.pdf')
#         else:
#             old_file_name = file_value.name
#             file_name = old_file_name[:-12] + old_file_name[-4:]
#             os.rename(old_file_name, file_name)
#             load_recommender(file_name)

#         # Generate answer
#         answer = generate_answer(message, key_value, model_value)

#         # Append pair [user, assistant]
#         chat_history.append([message, answer])
#         return "", chat_history

#     except Exception as e:
#         chat_history.append([message, f'[ERROR]: {str(e)}'])
#         return "", chat_history
def respond(message, chat_history, url_value, file_value, key_value, model_value):
    if message.strip() == "":
        return "", chat_history  # nothing to do

    # Chat history is a list of dicts: {"role": "...", "content": "..."}
    if chat_history is None:
        chat_history = []

    try:
        # Basic validations
        if key_value.strip() == '':
            chat_history.append({"role": "user", "content": message})
            chat_history.append({"role": "assistant", "content": "[ERROR]: Please enter your OpenAI API key"})
            return "", chat_history

        if url_value.strip() == '' and file_value is None:
            chat_history.append({"role": "user", "content": message})
            chat_history.append({"role": "assistant", "content": "[ERROR]: Both URL and PDF are empty. Provide at least one"})
            return "", chat_history

        # Prepare corpus (URL or uploaded file)
        if url_value.strip() != '':
            download_pdf(url_value, 'corpus.pdf')
            load_recommender('corpus.pdf')
        else:
            old_file_name = file_value.name
            file_name = old_file_name[:-12] + old_file_name[-4:]
            os.rename(old_file_name, file_name)
            load_recommender(file_name)

        # Generate answer with OpenAI
        answer = generate_answer(message, key_value, model_value)

        # Append messages in {role, content} format
        chat_history.append({"role": "user", "content": message})
        chat_history.append({"role": "assistant", "content": answer})

        return "", chat_history

    except Exception as e:
        chat_history.append({"role": "user", "content": message})
        chat_history.append({"role": "assistant", "content": f"[ERROR]: {str(e)}"})
        return "", chat_history


# with gr.Blocks() as demo:
#     gr.Markdown(f'<center><h3>{title}</h3></center>')
#     gr.Markdown(description)

#     with gr.Row():
#         with gr.Column():
#             with gr.Accordion("API Key and PDF"):
#                 openAI_key = gr.Textbox(label='Enter your OpenAI API key here', type='password')
#                 url = gr.Textbox(label='Enter PDF URL here (Example: https://arxiv.org/pdf/1706.03762.pdf ; https://link.springer.com/content/pdf/10.1007/s10614-022-10325-8.pdf)')
#                 gr.Markdown("<center><h4>OR<h4></center>")
#                 file = gr.File(label='Upload your PDF/Research Paper/Book here', file_types=['.pdf'])

#             model = gr.Radio(
#                 choices=['gpt-4o-mini', 'gpt-4o', 'gpt-4'],
#                 label='Select Model',
#                 value='gpt-4o-mini'
#             )

#             chatbot = gr.Chatbot(label="Chat History")
#             msg = gr.Textbox(label="Enter your question here", lines=2)
#             submit_btn = gr.Button("Submit")
#             clear = gr.ClearButton([msg, chatbot])

#             gr.Examples(
#                 [[q] for q in questions],
#                 inputs=[msg],
#                 label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box",
#             )

#     # 🔗 Wire events HERE, still inside `with gr.Blocks()`
#     submit_btn.click(
#         respond,
#         [msg, chatbot, url, file, openAI_key, model],
#         [msg, chatbot],
#     )

#     msg.submit(
#         respond,
#         [msg, chatbot, url, file, openAI_key, model],
#         [msg, chatbot],
#     )
with gr.Blocks() as demo:
    gr.Markdown(f'<center><h3>{title}</h3></center>')
    gr.Markdown(description)

    with gr.Row():
        with gr.Column():
            with gr.Accordion("API Key and PDF"):
                openAI_key = gr.Textbox(label='Enter your OpenAI API key here', type='password')
                url = gr.Textbox(label='Enter PDF URL here (Example: https://arxiv.org/pdf/1706.03762.pdf ; https://link.springer.com/content/pdf/10.1007/s10614-022-10325-8.pdf)')
                gr.Markdown("<center><h4>OR<h4></center>")
                file = gr.File(label='Upload your PDF/Research Paper/Book here', file_types=['.pdf'])

            model = gr.Radio(
                choices=['gpt-4o-mini', 'gpt-4o', 'gpt-4'],
                label='Select Model',
                value='gpt-4o-mini'
            )

            chatbot = gr.Chatbot(label="Chat History")
            msg = gr.Textbox(label="Enter your question here", lines=2)
            submit_btn = gr.Button("Submit")
            clear = gr.ClearButton([msg, chatbot])

            gr.Examples(
                [[q] for q in questions],
                inputs=[msg],
                label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box",
            )

    submit_btn.click(
        respond,
        [msg, chatbot, url, file, openAI_key, model],
        [msg, chatbot],
    )

    msg.submit(
        respond,
        [msg, chatbot, url, file, openAI_key, model],
        [msg, chatbot],
    )

demo.launch()


# #with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo:
# with gr.Blocks() as demo:
#     gr.Markdown(f'<center><h3>{title}</h3></center>')
#     gr.Markdown(description)

#     with gr.Row():
#         with gr.Column():
#             # API Key and File Inputs
#             with gr.Accordion("API Key and PDF"):
#                 openAI_key = gr.Textbox(label='Enter your OpenAI API key here', type='password')
#                 url = gr.Textbox(label='Enter PDF URL here (Example: https://arxiv.org/pdf/1706.03762.pdf ; https://link.springer.com/content/pdf/10.1007/s10614-022-10325-8.pdf)')
#                 gr.Markdown("<center><h4>OR<h4></center>")
#                 file = gr.File(label='Upload your PDF/Research Paper/Book here', file_types=['.pdf'])
            
#             # Model Selection
#             model = gr.Radio(
#                 choices=[
#                     'gpt-4o-mini',
#                     'gpt-4o',
#                     'gpt-4',
#                 ], 
#                 label='Select Model', 
#                 value='gpt-4o-mini'
#             )
            
#             # Chat Interface
#             chatbot = gr.Chatbot(label="Chat History")  # default: list of [user, bot] pairs
#             msg = gr.Textbox(label="Enter your question here", lines=2)
#             submit_btn = gr.Button("Submit")
#             clear = gr.ClearButton([msg, chatbot])
#             #chatbot = gr.Chatbot(label="Chat History", type="messages")
#             #msg = gr.Textbox(label="Enter your question here", lines=2)
#             #submit_btn = gr.Button("Submit")
#             #clear = gr.ClearButton([msg, chatbot])

#             # Example Questions
#             gr.Examples(
#                 [[q] for q in questions],
#                 inputs=[msg],
#                 label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box",
#             )



# submit_btn.click(
#     respond, 
#     [msg, chatbot, url, file, openAI_key, model], 
#     [msg, chatbot]
# )

# msg.submit(
#     respond, 
#     [msg, chatbot, url, file, openAI_key, model], 
#     [msg, chatbot]
#     )

# demo.launch()