Spaces:
Sleeping
Sleeping
File size: 17,443 Bytes
dda2db4 72a7de1 dda2db4 72a7de1 dda2db4 72a7de1 dda2db4 72a7de1 d67a424 dda2db4 72a7de1 dda2db4 72a7de1 dda2db4 72a7de1 dda2db4 72a7de1 dda2db4 72a7de1 dda2db4 72a7de1 dda2db4 72a7de1 dda2db4 72a7de1 dda2db4 b45868a 89c72eb dda2db4 b45868a 89c72eb dda2db4 89c72eb b45868a 89c72eb dda2db4 89c72eb b45868a 89c72eb 72a7de1 89c72eb 72a7de1 b45868a 89c72eb 72a7de1 b45868a 89c72eb 72a7de1 89c72eb b45868a 89c72eb 72a7de1 b45868a 50b4e4a dda2db4 72a7de1 50b4e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TF logging
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
from sklearn.neighbors import NearestNeighbors
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page-1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
page_nums = []
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i:i+word_length]
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
len(text_toks) != (idx+1)):
text_toks[idx+1] = chunk + text_toks[idx+1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self):
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
self.fitted = False
def fit(self, data, batch=1000, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
def __call__(self, text, return_data=True):
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i:(i+batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
def load_recommender(path, start_page=1):
global recommender
texts = pdf_to_text(path, start_page=start_page)
chunks = text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return 'Corpus Loaded.'
def generate_text(openAI_key, prompt, model="gpt-3.5-turbo"):
openai.api_key = openAI_key
temperature = 0.1
max_tokens = 256
top_p = 1
frequency_penalty = 0
presence_penalty = 0
if model == "text-davinci-003":
completions = openai.Completion.create(
engine=model,
prompt=prompt,
max_tokens=max_tokens,
n=1,
stop=None,
temperature=temperature,
)
message = completions.choices[0].text
else:
response = openai.ChatCompletion.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
],
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
)
message = response['choices'][0]['message']['content']
return message
def generate_answer(question, openAI_key, model):
topn_chunks = recommender(question)
prompt = 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
"Cite each reference using [ Page Number] notation. "\
"Only answer what is asked. The answer should be short and concise. \n\nQuery: "
prompt += f"{question}\nAnswer:"
answer = generate_text(openAI_key, prompt, model)
return answer
def question_answer(chat_history, url, file, question, openAI_key, model):
try:
if openAI_key.strip()=='':
return '[ERROR]: Please enter your Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
if url.strip() == '' and file is None:
return '[ERROR]: Both URL and PDF is empty. Provide at least one.'
if url.strip() != '' and file is not None:
return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'
if model is None or model =='':
return '[ERROR]: You have not selected any model. Please choose an LLM model.'
if url.strip() != '':
glob_url = url
download_pdf(glob_url, 'corpus.pdf')
load_recommender('corpus.pdf')
else:
old_file_name = file.name
file_name = file.name
file_name = file_name[:-12] + file_name[-4:]
os.rename(old_file_name, file_name)
load_recommender(file_name)
if question.strip() == '':
return '[ERROR]: Question field is empty'
if model == "text-davinci-003" or model == "gpt-4" or model == "gpt-4-32k":
answer = generate_answer_text_davinci_003(question, openAI_key)
else:
answer = generate_answer(question, openAI_key, model)
chat_history.append([question, answer])
return chat_history
except openai.error.InvalidRequestError as e:
return f'[ERROR]: Either you do not have access to GPT4 or you have exhausted your quota!'
def generate_text_text_davinci_003(openAI_key,prompt, engine="text-davinci-003"):
openai.api_key = openAI_key
completions = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = completions.choices[0].text
return message
def generate_answer_text_davinci_003(question,openAI_key):
topn_chunks = recommender(question)
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
"with the same name, create separate answers for each. Only include information found in the results and "\
"don't add any additional information. Make sure the answer is correct and don't output false content. "\
"If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\
"search results which has nothing to do with the question. Only answer what is asked. The "\
"answer should be short and concise. \n\nQuery: {question}\nAnswer: "
prompt += f"Query: {question}\nAnswer:"
answer = generate_text_text_davinci_003(openAI_key, prompt,"text-davinci-003")
return answer
# pre-defined questions
questions = [
"What did the study investigate?",
"Can you provide a summary of this paper?",
"what are the methodologies used in this study?",
"what are the data intervals used in this study? Give me the start dates and end dates?",
"what are the main limitations of this study?",
"what are the main shortcomings of this study?",
"what are the main findings of the study?",
"what are the main results of the study?",
"what are the main contributions of this study?",
"what is the conclusion of this paper?",
"what are the input features used in this study?",
"what is the dependent variable in this study?",
]
recommender = SemanticSearch()
title = 'PDF GPT Turbo'
description = """ PDF GPT Turbo allows you to chat with your PDF files. It uses Google's Universal Sentence Encoder with Deep averaging network (DAN) to give hallucination free response by improving the embedding quality of OpenAI. It cites the page number in square brackets([Page No.]) and shows where the information is located, adding credibility to the responses."""
# def respond(message, chat_history, url_value, file_value, key_value, model_value):
# if message.strip() == "":
# return "", chat_history # nothing to do
# # Initialize chat_history as a list of [user, assistant] pairs
# if chat_history is None:
# chat_history = []
# try:
# # Basic validations
# if key_value.strip() == '':
# chat_history.append([message, '[ERROR]: Please enter your OpenAI API key'])
# return "", chat_history
# if url_value.strip() == '' and file_value is None:
# chat_history.append([message, '[ERROR]: Both URL and PDF are empty. Provide at least one'])
# return "", chat_history
# # Prepare corpus (URL or uploaded file)
# if url_value.strip() != '':
# download_pdf(url_value, 'corpus.pdf')
# load_recommender('corpus.pdf')
# else:
# old_file_name = file_value.name
# file_name = old_file_name[:-12] + old_file_name[-4:]
# os.rename(old_file_name, file_name)
# load_recommender(file_name)
# # Generate answer
# answer = generate_answer(message, key_value, model_value)
# # Append pair [user, assistant]
# chat_history.append([message, answer])
# return "", chat_history
# except Exception as e:
# chat_history.append([message, f'[ERROR]: {str(e)}'])
# return "", chat_history
def respond(message, chat_history, url_value, file_value, key_value, model_value):
if message.strip() == "":
return "", chat_history # nothing to do
# Chat history is a list of dicts: {"role": "...", "content": "..."}
if chat_history is None:
chat_history = []
try:
# Basic validations
if key_value.strip() == '':
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": "[ERROR]: Please enter your OpenAI API key"})
return "", chat_history
if url_value.strip() == '' and file_value is None:
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": "[ERROR]: Both URL and PDF are empty. Provide at least one"})
return "", chat_history
# Prepare corpus (URL or uploaded file)
if url_value.strip() != '':
download_pdf(url_value, 'corpus.pdf')
load_recommender('corpus.pdf')
else:
old_file_name = file_value.name
file_name = old_file_name[:-12] + old_file_name[-4:]
os.rename(old_file_name, file_name)
load_recommender(file_name)
# Generate answer with OpenAI
answer = generate_answer(message, key_value, model_value)
# Append messages in {role, content} format
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": answer})
return "", chat_history
except Exception as e:
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": f"[ERROR]: {str(e)}"})
return "", chat_history
# with gr.Blocks() as demo:
# gr.Markdown(f'<center><h3>{title}</h3></center>')
# gr.Markdown(description)
# with gr.Row():
# with gr.Column():
# with gr.Accordion("API Key and PDF"):
# openAI_key = gr.Textbox(label='Enter your OpenAI API key here', type='password')
# url = gr.Textbox(label='Enter PDF URL here (Example: https://arxiv.org/pdf/1706.03762.pdf ; https://link.springer.com/content/pdf/10.1007/s10614-022-10325-8.pdf)')
# gr.Markdown("<center><h4>OR<h4></center>")
# file = gr.File(label='Upload your PDF/Research Paper/Book here', file_types=['.pdf'])
# model = gr.Radio(
# choices=['gpt-4o-mini', 'gpt-4o', 'gpt-4'],
# label='Select Model',
# value='gpt-4o-mini'
# )
# chatbot = gr.Chatbot(label="Chat History")
# msg = gr.Textbox(label="Enter your question here", lines=2)
# submit_btn = gr.Button("Submit")
# clear = gr.ClearButton([msg, chatbot])
# gr.Examples(
# [[q] for q in questions],
# inputs=[msg],
# label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box",
# )
# # 🔗 Wire events HERE, still inside `with gr.Blocks()`
# submit_btn.click(
# respond,
# [msg, chatbot, url, file, openAI_key, model],
# [msg, chatbot],
# )
# msg.submit(
# respond,
# [msg, chatbot, url, file, openAI_key, model],
# [msg, chatbot],
# )
with gr.Blocks() as demo:
gr.Markdown(f'<center><h3>{title}</h3></center>')
gr.Markdown(description)
with gr.Row():
with gr.Column():
with gr.Accordion("API Key and PDF"):
openAI_key = gr.Textbox(label='Enter your OpenAI API key here', type='password')
url = gr.Textbox(label='Enter PDF URL here (Example: https://arxiv.org/pdf/1706.03762.pdf ; https://link.springer.com/content/pdf/10.1007/s10614-022-10325-8.pdf)')
gr.Markdown("<center><h4>OR<h4></center>")
file = gr.File(label='Upload your PDF/Research Paper/Book here', file_types=['.pdf'])
model = gr.Radio(
choices=['gpt-4o-mini', 'gpt-4o', 'gpt-4'],
label='Select Model',
value='gpt-4o-mini'
)
chatbot = gr.Chatbot(label="Chat History")
msg = gr.Textbox(label="Enter your question here", lines=2)
submit_btn = gr.Button("Submit")
clear = gr.ClearButton([msg, chatbot])
gr.Examples(
[[q] for q in questions],
inputs=[msg],
label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box",
)
submit_btn.click(
respond,
[msg, chatbot, url, file, openAI_key, model],
[msg, chatbot],
)
msg.submit(
respond,
[msg, chatbot, url, file, openAI_key, model],
[msg, chatbot],
)
demo.launch()
# #with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo:
# with gr.Blocks() as demo:
# gr.Markdown(f'<center><h3>{title}</h3></center>')
# gr.Markdown(description)
# with gr.Row():
# with gr.Column():
# # API Key and File Inputs
# with gr.Accordion("API Key and PDF"):
# openAI_key = gr.Textbox(label='Enter your OpenAI API key here', type='password')
# url = gr.Textbox(label='Enter PDF URL here (Example: https://arxiv.org/pdf/1706.03762.pdf ; https://link.springer.com/content/pdf/10.1007/s10614-022-10325-8.pdf)')
# gr.Markdown("<center><h4>OR<h4></center>")
# file = gr.File(label='Upload your PDF/Research Paper/Book here', file_types=['.pdf'])
# # Model Selection
# model = gr.Radio(
# choices=[
# 'gpt-4o-mini',
# 'gpt-4o',
# 'gpt-4',
# ],
# label='Select Model',
# value='gpt-4o-mini'
# )
# # Chat Interface
# chatbot = gr.Chatbot(label="Chat History") # default: list of [user, bot] pairs
# msg = gr.Textbox(label="Enter your question here", lines=2)
# submit_btn = gr.Button("Submit")
# clear = gr.ClearButton([msg, chatbot])
# #chatbot = gr.Chatbot(label="Chat History", type="messages")
# #msg = gr.Textbox(label="Enter your question here", lines=2)
# #submit_btn = gr.Button("Submit")
# #clear = gr.ClearButton([msg, chatbot])
# # Example Questions
# gr.Examples(
# [[q] for q in questions],
# inputs=[msg],
# label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box",
# )
# submit_btn.click(
# respond,
# [msg, chatbot, url, file, openAI_key, model],
# [msg, chatbot]
# )
# msg.submit(
# respond,
# [msg, chatbot, url, file, openAI_key, model],
# [msg, chatbot]
# )
# demo.launch() |