Spaces:
Build error
Build error
| """ | |
| Most of the code in this file is taken from https://github.com/waterljwant/SSC/blob/master/models/DDR.py | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class SimpleRB(nn.Module): | |
| def __init__(self, in_channel, norm_layer, bn_momentum): | |
| super(SimpleRB, self).__init__() | |
| self.path = nn.Sequential( | |
| nn.Conv3d(in_channel, in_channel, kernel_size=3, padding=1, bias=False), | |
| norm_layer(in_channel, momentum=bn_momentum), | |
| nn.ReLU(), | |
| nn.Conv3d(in_channel, in_channel, kernel_size=3, padding=1, bias=False), | |
| norm_layer(in_channel, momentum=bn_momentum), | |
| ) | |
| self.relu = nn.ReLU() | |
| def forward(self, x): | |
| residual = x | |
| conv_path = self.path(x) | |
| out = residual + conv_path | |
| out = self.relu(out) | |
| return out | |
| """ | |
| 3D Residual Block,3x3x3 conv ==> 3 smaller 3D conv, refered from DDRNet | |
| """ | |
| class Bottleneck3D(nn.Module): | |
| def __init__( | |
| self, | |
| inplanes, | |
| planes, | |
| norm_layer, | |
| stride=1, | |
| dilation=[1, 1, 1], | |
| expansion=4, | |
| downsample=None, | |
| fist_dilation=1, | |
| multi_grid=1, | |
| bn_momentum=0.0003, | |
| ): | |
| super(Bottleneck3D, self).__init__() | |
| # often,planes = inplanes // 4 | |
| self.expansion = expansion | |
| self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False) | |
| self.bn1 = norm_layer(planes, momentum=bn_momentum) | |
| self.conv2 = nn.Conv3d( | |
| planes, | |
| planes, | |
| kernel_size=(1, 1, 3), | |
| stride=(1, 1, stride), | |
| dilation=(1, 1, dilation[0]), | |
| padding=(0, 0, dilation[0]), | |
| bias=False, | |
| ) | |
| self.bn2 = norm_layer(planes, momentum=bn_momentum) | |
| self.conv3 = nn.Conv3d( | |
| planes, | |
| planes, | |
| kernel_size=(1, 3, 1), | |
| stride=(1, stride, 1), | |
| dilation=(1, dilation[1], 1), | |
| padding=(0, dilation[1], 0), | |
| bias=False, | |
| ) | |
| self.bn3 = norm_layer(planes, momentum=bn_momentum) | |
| self.conv4 = nn.Conv3d( | |
| planes, | |
| planes, | |
| kernel_size=(3, 1, 1), | |
| stride=(stride, 1, 1), | |
| dilation=(dilation[2], 1, 1), | |
| padding=(dilation[2], 0, 0), | |
| bias=False, | |
| ) | |
| self.bn4 = norm_layer(planes, momentum=bn_momentum) | |
| self.conv5 = nn.Conv3d( | |
| planes, planes * self.expansion, kernel_size=(1, 1, 1), bias=False | |
| ) | |
| self.bn5 = norm_layer(planes * self.expansion, momentum=bn_momentum) | |
| self.relu = nn.ReLU(inplace=False) | |
| self.relu_inplace = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.dilation = dilation | |
| self.stride = stride | |
| self.downsample2 = nn.Sequential( | |
| nn.AvgPool3d(kernel_size=(1, stride, 1), stride=(1, stride, 1)), | |
| nn.Conv3d(planes, planes, kernel_size=1, stride=1, bias=False), | |
| norm_layer(planes, momentum=bn_momentum), | |
| ) | |
| self.downsample3 = nn.Sequential( | |
| nn.AvgPool3d(kernel_size=(stride, 1, 1), stride=(stride, 1, 1)), | |
| nn.Conv3d(planes, planes, kernel_size=1, stride=1, bias=False), | |
| norm_layer(planes, momentum=bn_momentum), | |
| ) | |
| self.downsample4 = nn.Sequential( | |
| nn.AvgPool3d(kernel_size=(stride, 1, 1), stride=(stride, 1, 1)), | |
| nn.Conv3d(planes, planes, kernel_size=1, stride=1, bias=False), | |
| norm_layer(planes, momentum=bn_momentum), | |
| ) | |
| def forward(self, x): | |
| residual = x | |
| out1 = self.relu(self.bn1(self.conv1(x))) | |
| out2 = self.bn2(self.conv2(out1)) | |
| out2_relu = self.relu(out2) | |
| out3 = self.bn3(self.conv3(out2_relu)) | |
| if self.stride != 1: | |
| out2 = self.downsample2(out2) | |
| out3 = out3 + out2 | |
| out3_relu = self.relu(out3) | |
| out4 = self.bn4(self.conv4(out3_relu)) | |
| if self.stride != 1: | |
| out2 = self.downsample3(out2) | |
| out3 = self.downsample4(out3) | |
| out4 = out4 + out2 + out3 | |
| out4_relu = self.relu(out4) | |
| out5 = self.bn5(self.conv5(out4_relu)) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out = out5 + residual | |
| out_relu = self.relu(out) | |
| return out_relu | |