Spaces:
Runtime error
Runtime error
ncoop57
commited on
Commit
·
4c20fbb
1
Parent(s):
82935d8
Have initial setup of layout and fake data
Browse files- app.py +231 -20
- requirements.txt +2 -0
app.py
CHANGED
|
@@ -1,27 +1,238 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
gr.
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
if __name__ == "__main__":
|
| 27 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
|
| 5 |
+
# ai4code_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/AI4Code")
|
| 6 |
+
# amps_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/AMPS")
|
| 7 |
+
# apache_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/ASFPublicMail")
|
| 8 |
+
# books3_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/Books3")
|
| 9 |
+
# cp_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/CPDataset")
|
| 10 |
+
# dmmath_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/DMMath")
|
| 11 |
+
# discourse_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/Discourse")
|
| 12 |
+
# wiki_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/Enwiki")
|
| 13 |
+
# euro_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/EuroParliamentProceedings")
|
| 14 |
+
# freelaw_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/FreeLaw_Options")
|
| 15 |
+
# ghdiffs_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/GitHubDiff")
|
| 16 |
+
# ghissues_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/GitHubIssues")
|
| 17 |
+
# gutenberg_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/Gutenberg")
|
| 18 |
+
# leet_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/LeetCode")
|
| 19 |
+
# pileoflaw_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/PileOfLaw")
|
| 20 |
+
# pubmed_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/PubMed")
|
| 21 |
+
# s2orc_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/S2ORC")
|
| 22 |
+
# se_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/StackExchange")
|
| 23 |
+
# usenet_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/USENET")
|
| 24 |
+
# uspto_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/USPTO")
|
| 25 |
+
# ubuntuirc_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/UbuntuIRC")
|
| 26 |
+
# arxiv_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/arXiv")
|
| 27 |
|
| 28 |
+
dataset_data = {
|
| 29 |
+
"AI4Code": {
|
| 30 |
+
# create fake data for the different ratios
|
| 31 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 32 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 33 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 34 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 35 |
+
},
|
| 36 |
+
"AMPS": {
|
| 37 |
+
# create fake data for the different ratios
|
| 38 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 39 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 40 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 41 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 42 |
+
},
|
| 43 |
+
"ASFPublicMail": {
|
| 44 |
+
# create fake data for the different ratios
|
| 45 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 46 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 47 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 48 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 49 |
+
},
|
| 50 |
+
"Books3": {
|
| 51 |
+
# create fake data for the different ratios
|
| 52 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 53 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 54 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 55 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 56 |
+
},
|
| 57 |
+
"CPDataset": {
|
| 58 |
+
# create fake data for the different ratios
|
| 59 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 60 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 61 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 62 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 63 |
+
},
|
| 64 |
+
"DMMath": {
|
| 65 |
+
# create fake data for the different ratios
|
| 66 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 67 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 68 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 69 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 70 |
+
},
|
| 71 |
+
"Discourse": {
|
| 72 |
+
# create fake data for the different ratios
|
| 73 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 74 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 75 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 76 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 77 |
+
},
|
| 78 |
+
"Enwiki": {
|
| 79 |
+
# create fake data for the different ratios
|
| 80 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 81 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 82 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 83 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 84 |
+
},
|
| 85 |
+
"EuroParliamentProceedings": {
|
| 86 |
+
# create fake data for the different ratios
|
| 87 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 88 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 89 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 90 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 91 |
+
},
|
| 92 |
+
"FreeLaw_Options": {
|
| 93 |
+
# create fake data for the different ratios
|
| 94 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 95 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 96 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 97 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 98 |
+
},
|
| 99 |
+
"GitHubDiff": {
|
| 100 |
+
# create fake data for the different ratios
|
| 101 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 102 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 103 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 104 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 105 |
+
},
|
| 106 |
+
"GitHubIssues": {
|
| 107 |
+
# create fake data for the different ratios
|
| 108 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 109 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 110 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 111 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 112 |
+
},
|
| 113 |
+
"Gutenberg": {
|
| 114 |
+
# create fake data for the different ratios
|
| 115 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 116 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 117 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 118 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 119 |
+
},
|
| 120 |
+
"LeetCode": {
|
| 121 |
+
# create fake data for the different ratios
|
| 122 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 123 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 124 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 125 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 126 |
+
},
|
| 127 |
+
"PileOfLaw": {
|
| 128 |
+
# create fake data for the different ratios
|
| 129 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 130 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 131 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 132 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 133 |
+
},
|
| 134 |
+
"PubMed": {
|
| 135 |
+
# create fake data for the different ratios
|
| 136 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 137 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 138 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 139 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 140 |
+
},
|
| 141 |
+
"S2ORC": {
|
| 142 |
+
# create fake data for the different ratios
|
| 143 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 144 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 145 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 146 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 147 |
+
},
|
| 148 |
+
"StackExchange": {
|
| 149 |
+
# create fake data for the different ratios
|
| 150 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 151 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 152 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 153 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 154 |
+
},
|
| 155 |
+
"USENET": {
|
| 156 |
+
# create fake data for the different ratios
|
| 157 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 158 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 159 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 160 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 161 |
+
},
|
| 162 |
+
"USPTO": {
|
| 163 |
+
# create fake data for the different ratios
|
| 164 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 165 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 166 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 167 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 168 |
+
},
|
| 169 |
+
"UbuntuIRC": {
|
| 170 |
+
# create fake data for the different ratios
|
| 171 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 172 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 173 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 174 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 175 |
+
},
|
| 176 |
+
"arXiv": {
|
| 177 |
+
# create fake data for the different ratios
|
| 178 |
+
"word_rep_ratios": np.random.randn(1000),
|
| 179 |
+
"char_rep_ratios": np.random.randn(1000),
|
| 180 |
+
"flagged_word_ratios": np.random.randn(1000),
|
| 181 |
+
"num_words": np.random.randint(0, 1000, 1000),
|
| 182 |
+
},
|
| 183 |
+
}
|
| 184 |
|
| 185 |
+
def plt_plot(threshold, x):
|
| 186 |
+
# prepare some data for a histogram
|
| 187 |
+
# x = np.random.randn(1000)
|
| 188 |
+
# create a figure
|
| 189 |
+
fig = plt.figure()
|
| 190 |
+
# add a subplot
|
| 191 |
+
ax = fig.add_subplot(111)
|
| 192 |
+
# plot some data
|
| 193 |
+
ax.hist(x, bins=50)
|
| 194 |
+
# plot red dashed line at threshold
|
| 195 |
+
ax.axvline(threshold, color='r', linestyle='dashed', linewidth=2)
|
| 196 |
+
plt.title("Histogram of random data")
|
| 197 |
+
plt.xlabel("Value")
|
| 198 |
+
plt.ylabel("Frequency")
|
| 199 |
+
return fig
|
| 200 |
+
# x = ["Math", "Business", "Statistics", "IT", "Commerce"]
|
| 201 |
+
# y = [68, 73, 82, 74, 85]
|
| 202 |
+
# # create a new plot
|
| 203 |
+
# plt.rcParams['figure.figsize'] = 6,4
|
| 204 |
+
# fig = plt.figure()
|
| 205 |
+
# ax = fig.add_axes([0,0,1,1])
|
| 206 |
+
# ax.bar(x, y)
|
| 207 |
+
# plot red dashed line at threshold
|
| 208 |
+
# plt.axhline(y=threshold, color='r', linestyle='--')
|
| 209 |
+
# plt.title("Marks per subject")
|
| 210 |
+
# plt.xlabel("Subject")
|
| 211 |
+
# plt.ylabel("Score")
|
| 212 |
|
| 213 |
+
# return fig
|
| 214 |
+
|
| 215 |
+
with gr.Blocks() as demo:
|
| 216 |
+
dataset = gr.Radio(list(dataset_data.keys()), label="Dataset")
|
| 217 |
+
|
| 218 |
+
with gr.Tab("Character Repetition Ratio"):
|
| 219 |
+
# plot some random data
|
| 220 |
+
plot = gr.Plot()
|
| 221 |
+
threshold = gr.Slider(minimum=0, maximum=100, label="Threshold")
|
| 222 |
+
calculate = gr.Button("Calculate")
|
| 223 |
+
calculate.click(plt_plot, [threshold, dataset_data[dataset].char_rep_ratios], plot)
|
| 224 |
+
|
| 225 |
+
with gr.Tab("Word Repetition Ratio"):# plot some random data
|
| 226 |
+
plot = gr.Plot()
|
| 227 |
+
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 228 |
+
calculate = gr.Button("Calculate")
|
| 229 |
+
calculate.click(plt_plot, [threshold, dataset_data[dataset].word_rep_ratios], plot)
|
| 230 |
+
|
| 231 |
+
with gr.Tab("Flagged Word Ratio"):# plot some random data
|
| 232 |
+
plot = gr.Plot()
|
| 233 |
+
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 234 |
+
calculate = gr.Button("Calculate")
|
| 235 |
+
calculate.click(plt_plot, [threshold, dataset_data[dataset].flagged_word_ratios], plot)
|
| 236 |
|
| 237 |
if __name__ == "__main__":
|
| 238 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scrubadub
|
| 2 |
+
squeakily
|