Spaces:
Runtime error
Runtime error
ncoop57
commited on
Commit
·
e0be252
1
Parent(s):
4671e61
Add ability to check examples that would be filtered
Browse files
app.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import numpy as np
|
| 5 |
from functools import partial
|
| 6 |
from datasets import load_dataset
|
| 7 |
-
from pathlib import Path
|
| 8 |
|
| 9 |
dataset_names = [
|
| 10 |
"AI4Code",
|
|
@@ -43,13 +43,13 @@ for name in dataset_names:
|
|
| 43 |
dataset_data[name] = {
|
| 44 |
"ds": ds,
|
| 45 |
"word_rep_ratios": np.random.randn(len(ds)),
|
| 46 |
-
"
|
| 47 |
-
"
|
| 48 |
}
|
| 49 |
|
| 50 |
-
def plt_plot(
|
| 51 |
plt.close("all")
|
| 52 |
-
x = dataset_data[dataset][
|
| 53 |
# calculate percentage of data that will be removed given threshold
|
| 54 |
perc = np.sum(x > threshold) / len(x)
|
| 55 |
# create a figure
|
|
@@ -69,35 +69,53 @@ def plt_plot(ratio, dataset, threshold):
|
|
| 69 |
plt.tight_layout()
|
| 70 |
return fig
|
| 71 |
|
| 72 |
-
def check_filtered():
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
with gr.Blocks() as demo:
|
| 76 |
dataset = gr.Radio(dataset_names, label="Dataset", value="arXiv")
|
| 77 |
-
print(dataset.value)
|
| 78 |
|
| 79 |
-
with gr.Tab("Character Repetition
|
| 80 |
# plot some random data
|
| 81 |
plot = gr.Plot()
|
| 82 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 83 |
calculate = gr.Button("Calculate")
|
| 84 |
check = gr.Button("Check Filtered Data")
|
| 85 |
-
|
|
|
|
| 86 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
with gr.Tab("Word Repetition
|
| 89 |
plot = gr.Plot()
|
| 90 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 91 |
calculate = gr.Button("Calculate")
|
|
|
|
|
|
|
| 92 |
plot_fn = partial(plt_plot, "word_rep_ratios")
|
| 93 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
with gr.Tab("Flagged Word
|
| 96 |
plot = gr.Plot()
|
| 97 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 98 |
calculate = gr.Button("Calculate")
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
|
|
|
|
|
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
| 103 |
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import random
|
| 3 |
import gradio as gr
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
| 6 |
from functools import partial
|
| 7 |
from datasets import load_dataset
|
|
|
|
| 8 |
|
| 9 |
dataset_names = [
|
| 10 |
"AI4Code",
|
|
|
|
| 43 |
dataset_data[name] = {
|
| 44 |
"ds": ds,
|
| 45 |
"word_rep_ratios": np.random.randn(len(ds)),
|
| 46 |
+
"check_char_repetition_criteria": np.array(ds["check_char_repetition_criteria"]),
|
| 47 |
+
"check_flagged_words_criteria": np.array(ds["check_flagged_words_criteria"]),
|
| 48 |
}
|
| 49 |
|
| 50 |
+
def plt_plot(criteria, dataset, threshold):
|
| 51 |
plt.close("all")
|
| 52 |
+
x = dataset_data[dataset][criteria]
|
| 53 |
# calculate percentage of data that will be removed given threshold
|
| 54 |
perc = np.sum(x > threshold) / len(x)
|
| 55 |
# create a figure
|
|
|
|
| 69 |
plt.tight_layout()
|
| 70 |
return fig
|
| 71 |
|
| 72 |
+
def check_filtered(criteria, dataset, threshold):
|
| 73 |
+
ds = dataset_data[dataset]["ds"]
|
| 74 |
+
|
| 75 |
+
filtered_ds = ds.filter(lambda x: x[criteria] > threshold)
|
| 76 |
+
if len(filtered_ds) == 0:
|
| 77 |
+
return "No examples found"
|
| 78 |
+
# get random sample of 1
|
| 79 |
+
sample = filtered_ds.select([random.randint(0, len(filtered_ds) - 1)])["text"][0]
|
| 80 |
+
|
| 81 |
+
return sample
|
| 82 |
|
| 83 |
with gr.Blocks() as demo:
|
| 84 |
dataset = gr.Radio(dataset_names, label="Dataset", value="arXiv")
|
|
|
|
| 85 |
|
| 86 |
+
with gr.Tab("Character Repetition Criteria"):
|
| 87 |
# plot some random data
|
| 88 |
plot = gr.Plot()
|
| 89 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 90 |
calculate = gr.Button("Calculate")
|
| 91 |
check = gr.Button("Check Filtered Data")
|
| 92 |
+
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
|
| 93 |
+
plot_fn = partial(plt_plot, "check_char_repetition_criteria")
|
| 94 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
| 95 |
+
check_fn = partial(check_filtered, "check_char_repetition_criteria")
|
| 96 |
+
check.click(check_fn, [dataset, threshold], filtered_data)
|
| 97 |
|
| 98 |
+
with gr.Tab("Word Repetition Criteria"):# plot some random data
|
| 99 |
plot = gr.Plot()
|
| 100 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 101 |
calculate = gr.Button("Calculate")
|
| 102 |
+
check = gr.Button("Check Filtered Data")
|
| 103 |
+
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
|
| 104 |
plot_fn = partial(plt_plot, "word_rep_ratios")
|
| 105 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
| 106 |
+
check_fn = partial(check_filtered, "word_rep_ratios")
|
| 107 |
+
check.click(check_fn, [dataset, threshold], filtered_data)
|
| 108 |
|
| 109 |
+
with gr.Tab("Flagged Word Criteria"):# plot some random data
|
| 110 |
plot = gr.Plot()
|
| 111 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 112 |
calculate = gr.Button("Calculate")
|
| 113 |
+
check = gr.Button("Check Filtered Data")
|
| 114 |
+
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
|
| 115 |
+
plot_fn = partial(plt_plot, "check_flagged_words_criteria")
|
| 116 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
| 117 |
+
check_fn = partial(check_filtered, "check_flagged_words_criteria")
|
| 118 |
+
check.click(check_fn, [dataset, threshold], filtered_data)
|
| 119 |
|
| 120 |
if __name__ == "__main__":
|
| 121 |
demo.launch()
|