from typing import Any from smolagents import TransformersModel, ChatMessage class QwenModelWithAttention(TransformersModel): def _prepare_completion_args( self, messages: list[ChatMessage | dict], stop_sequences: list[str] | None = None, tools_to_call_from: list[Tool] | None = None, **kwargs, ) -> dict[str, Any]: completion_kwargs = self._prepare_completion_kwargs( messages=messages, stop_sequences=stop_sequences, tools_to_call_from=tools_to_call_from, tool_choice=None, **kwargs, ) messages = completion_kwargs.pop("messages") stop_sequences = completion_kwargs.pop("stop", None) tools = completion_kwargs.pop("tools", None) max_new_tokens = ( kwargs.get("max_new_tokens") or kwargs.get("max_tokens") or self.kwargs.get("max_new_tokens") or self.kwargs.get("max_tokens") or 1024 ) prompt_tensor = (self.processor if hasattr(self, "processor") else self.tokenizer).apply_chat_template( messages, tools=tools, return_tensors="pt", add_generation_prompt=True, tokenize=True, return_dict=True, return_attention_mask=True ) prompt_tensor = prompt_tensor.to(self.model.device) # type: ignore if hasattr(prompt_tensor, "input_ids"): attention_mask = prompt_tensor["attention_mask"] prompt_tensor = prompt_tensor["input_ids"] model_tokenizer = self.processor.tokenizer if hasattr(self, "processor") else self.tokenizer stopping_criteria = ( self.make_stopping_criteria(stop_sequences, tokenizer=model_tokenizer) if stop_sequences else None ) completion_kwargs["max_new_tokens"] = max_new_tokens return dict( inputs=prompt_tensor, attention_mask=attention_mask, use_cache=True, stopping_criteria=stopping_criteria, **completion_kwargs, )