import streamlit as st import pandas as pd import pickle # Load the fitted model model = pickle.load(open('model (10).pkl', 'rb')) # Mapping antara kelas dan nama tipe almond class_mapping = { 0: 'Sanora', 1: 'Mamra', 2: 'Regular', # tambahkan kelas lainnya sesuai kebutuhan } st.title('Almond Classification') st.write('This web app classifies almonds based on your input features.') # Input untuk setiap fitur length_major_axis = st.number_input('Length (major axis)', min_value=269.356903, max_value=279.879883) width_minor_axis = st.number_input('Width (minor axis)', min_value=176.023636, max_value=227.940628) thickness_depth = st.number_input('Thickness (depth)', min_value=107.253448, max_value=127.795132) area = st.number_input('Area', min_value=18471.5, max_value=36683.0) perimeter = st.number_input('Perimeter', min_value=551.688379, max_value=887.310743) roundness = st.slider('Roundness', min_value=0.472718, max_value=0.643761, step=0.01) solidity = st.slider('Solidity', min_value=0.931800, max_value=0.973384, step=0.01) compactness = st.slider('Compactness', min_value=1.383965, max_value=1.764701, step=0.01) aspect_ratio = st.slider('Aspect Ratio', min_value=1.530231, max_value=1.705716, step=0.01) eccentricity = st.slider('Eccentricity', min_value=0.75693, max_value=0.81012, step=0.01) extent = st.slider('Extent', min_value=0.656535, max_value=0.725739, step=0.01) convex_area = st.number_input('Convex hull (convex area)', min_value=18068.0, max_value=36683.0, step=0.01) # Tombol untuk memprediksi if st.button('Predict'): # Muat scaler scaler = pickle.load(open('scaler.pkl', 'rb')) # Input dari pengguna input_features = [[length_major_axis, width_minor_axis, thickness_depth, area, perimeter, roundness, solidity, compactness, aspect_ratio, eccentricity, extent, convex_area]] # Lakukan scaling pada input input_features_scaled = scaler.transform(input_features) # Prediksi menggunakan model prediction = model.predict(input_features_scaled) # Menggunakan mapping untuk mendapatkan nama tipe almond predicted_class_name = class_mapping[prediction[0]] st.write(f'The predicted class is: {predicted_class_name}')