Spaces:
Running
Running
File size: 13,979 Bytes
359fa44 6b2bb63 359fa44 2d8ca87 359fa44 6b2bb63 359fa44 2d8ca87 359fa44 2d8ca87 359fa44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
import torch
from comfy.model_management import CPUState # Импорт из того же файла
# Отключаем CUDA, чтобы избежать инициализации
os.environ["CUDA_VISIBLE_DEVICES"] = ""
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = ""
# Принудительно устанавливаем CPU режим
import comfy.model_management
comfy.model_management.cpu_state = CPUState.CPU
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
import spaces
import subprocess, sys
import gradio
import gradio_client
import gradio as gr
print("gradio version:", gradio.__version__)
print("gradio_client version:", gradio_client.__version__)
hf_hub_download(repo_id="facefusion/models-3.3.0", filename="hyperswap_1a_256.onnx", local_dir="models/hyperswap")
hf_hub_download(repo_id="facefusion/models-3.3.0", filename="hyperswap_1b_256.onnx", local_dir="models/hyperswap")
hf_hub_download(repo_id="facefusion/models-3.3.0", filename="hyperswap_1c_256.onnx", local_dir="models/hyperswap")
hf_hub_download(repo_id="martintomov/comfy", filename="facedetection/yolov5l-face.pth", local_dir="models")
###hf_hub_download(repo_id="darkeril/collection", filename="detection_Resnet50_Final.pth", local_dir="models/facedetection")
hf_hub_download(repo_id="gmk123/GFPGAN", filename="parsing_parsenet.pth", local_dir="models/facedetection")
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="1k3d68.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="2d106det.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="maze/faceX", filename="det_10g.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="typhoon01/aux_models", filename="genderage.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="maze/faceX", filename="w600k_r50.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="vladmandic/insightface-faceanalysis", filename="buffalo_l.zip", local_dir="models/insightface/models/buffalo_l")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
# Запускаем корутину и ждём её завершения
loop.run_until_complete(init_extra_nodes())
import_custom_nodes()
from nodes import NODE_CLASS_MAPPINGS
# --- Глобальная загрузка моделей (один раз при старте) ---
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
vhs_loadvideo = NODE_CLASS_MAPPINGS["VHS_LoadVideo"]()
reactoroptions = NODE_CLASS_MAPPINGS["ReActorOptions"]()
vhs_videoinfoloaded = NODE_CLASS_MAPPINGS["VHS_VideoInfoLoaded"]()
reactorfaceswapopt = NODE_CLASS_MAPPINGS["ReActorFaceSwapOpt"]()
vhs_videocombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]()
# @spaces.GPU(duration=60)
def generate_image(source_image, input_video, input_index, input_faces_order, swap_model, pingpong, loop_count, select_every_nth, use_audio):
with torch.inference_mode():
loadimage_29 = loadimage.load_image(image=source_image)
vhs_loadvideo_51 = vhs_loadvideo.load_video(
video=input_video,
force_rate=0,
custom_width=0,
custom_height=0,
frame_load_cap=0,
skip_first_frames=0,
select_every_nth=select_every_nth,
format="AnimateDiff",
unique_id=17765013700631265033,
)
reactoroptions_107 = reactoroptions.execute(
input_faces_order=input_faces_order,
input_faces_index=str(input_index), # Преобразуем в строку
detect_gender_input="no",
source_faces_order="large-small",
source_faces_index="0",
detect_gender_source="no",
console_log_level=1,
)
for q in range(1):
vhs_videoinfoloaded_105 = vhs_videoinfoloaded.get_video_info(
video_info=get_value_at_index(vhs_loadvideo_51, 3)
)
reactorfaceswapopt_106 = reactorfaceswapopt.execute(
enabled=True,
swap_model=swap_model, # Используем выбранную модель
facedetection="YOLOv5l",
face_restore_model="none",
face_restore_visibility=1,
codeformer_weight=0.5,
input_image=get_value_at_index(vhs_loadvideo_51, 0),
source_image=get_value_at_index(loadimage_29, 0),
options=get_value_at_index(reactoroptions_107, 0),
)
# Формируем аргументы для combine_video
combine_kwargs = dict(
frame_rate=get_value_at_index(vhs_videoinfoloaded_105, 0),
loop_count=loop_count,
filename_prefix="vidswap",
format="video/h264-mp4",
pix_fmt="yuv420p",
crf=20,
save_metadata=False,
trim_to_audio=False,
pingpong=pingpong,
save_output=True,
images=get_value_at_index(reactorfaceswapopt_106, 0),
unique_id=17889577966051683261,
)
if use_audio:
combine_kwargs["audio"] = get_value_at_index(vhs_loadvideo_51, 2)
vhs_videocombine_28 = vhs_videocombine.combine_video(**combine_kwargs)
saved_path = f"output/{vhs_videocombine_28['ui']['gifs'][0]['filename']}"
return saved_path
if __name__ == "__main__":
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
# Вложенный Row для групп
with gr.Row():
# Первая группа
with gr.Group():
source_image = gr.Image(label="Source Image (Face)", type="filepath")
swap_model = gr.Dropdown(
choices=["hyperswap_1a_256.onnx", "hyperswap_1b_256.onnx", "hyperswap_1c_256.onnx"],
value="hyperswap_1b_256.onnx",
label="Swap Model"
)
input_index = gr.Dropdown(choices=[0, 1, 2, 3, 4], value=0, label="Target Face Index")
input_faces_order_dropdown = gr.Dropdown(
choices=[
"left-right",
"right-left",
"top-bottom",
"bottom-top",
"large-small"
],
value="large-small", # значение по умолчанию
label="Target Faces Order")
# Вторая группа (обратите внимание — она должна быть на том же уровне, что и первая)
with gr.Group():
input_video = gr.Video(label="Target Video (Body)")
select_every_nth = gr.Dropdown(choices=[1, 2], value=1, label='"1" = choose every frame, "2" - every second frame')
loop_count = gr.Dropdown(choices=[0, 1, 2, 3, 4], value=0, label='"Loop_Count" = repeat loop append to your video')
pingpong_checkbox = gr.Checkbox(label='"Pingpong" = reverse append to your video', value=False)
audio_checkbox = gr.Checkbox(label='"Audio" = enable audio', value=False)
# Кнопка генерации
generate_btn = gr.Button("Check: Audio? Loop Count? Pingpong? Generate!")
with gr.Column():
# Вывод результата
output_video = gr.Video(label="Generated Video")
# with gr.Accordion("Notes (click to open)", open=False):
# gr.Markdown("Added text here")
with gr.Row():
with gr.Column(scale=1):
text = """
***Hyperswap_1b_256.onnx is the best (in most cases) - but model has inner bug - sometimes they produce "FAIL" swap (working, but do not do any swapping - on SOME faces. So, for stability - do test image to image face swap on one screenshot from your video first). Most stable version is Hyperswap_1a_256.onnx.
***Target_Face_Index: Index_0 = First Face. To switch for another target face - switch to Index_1, Index_2, e.t.c.
***Note: "1" or "2" - 'every frame' or 'every second frame' - if you have video 60fps or 48 fps - you can choose "2" to select every 2nd frame - for two time reduce total number of frames in video (got 30 fps and 24 fps video, accordingly).
***Video 05 sec * 24 fps = 120 frames/720p = takes 275 sec (4.5 min) for generating. Overall: SECONDS --> MINUTES.
***To cancel job - just close your browser's page.
***If needed, use AdvancedLivePortrait to correct faces on video before swapping. Here is [workflow](https://openart.ai/workflows/ocelot_vibrant_0/advanced-liveportrait-for-video-as-source/hV07PExjpK3JEd6kNnkr) for ComfyUI.
***Use Avidemux - simple but powerful freeware video editor. [Download](https://www.avidemux.org/nightly/) - choose win64 v2.8.2 for Windows 10.
***Use MediaInfo (freeware) to get information about video file - [Download](https://mediaarea.net/en/MediaInfo)
***Free and easy hosting for short mp4 files - [https://sendvid.com/](https://sendvid.com/)
***"ComfyUI Reactor Video Face Swap Hyperswap running directly on Gradio. - [How to convert your any ComfyUI workflow to Gradio](https://huggingface.co/blog/run-comfyui-workflows-on-spaces)
"""
gr.Markdown(text)
# Связываем клик кнопки с функцией
generate_btn.click(
fn=generate_image,
inputs=[source_image, input_video, input_index, input_faces_order_dropdown, swap_model, pingpong_checkbox, loop_count, select_every_nth, audio_checkbox],
outputs=[output_video]
)
app.launch(share=True)
|