Spaces:
Running
Running
File size: 20,811 Bytes
359fa44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
"""
API Nodes for Gemini Multimodal LLM Usage via Remote API
See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
"""
from __future__ import annotations
import base64
import json
import os
import time
import uuid
from enum import Enum
from io import BytesIO
from typing import Literal, Optional
import torch
from typing_extensions import override
import folder_paths
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api.util import VideoCodec, VideoContainer
from comfy_api_nodes.apis import (
GeminiContent,
GeminiGenerateContentRequest,
GeminiGenerateContentResponse,
GeminiInlineData,
GeminiMimeType,
GeminiPart,
)
from comfy_api_nodes.apis.gemini_api import (
GeminiImageConfig,
GeminiImageGenerateContentRequest,
GeminiImageGenerationConfig,
)
from comfy_api_nodes.util import (
ApiEndpoint,
audio_to_base64_string,
bytesio_to_image_tensor,
sync_op,
tensor_to_base64_string,
validate_string,
video_to_base64_string,
)
from server import PromptServer
GEMINI_BASE_ENDPOINT = "/proxy/vertexai/gemini"
GEMINI_MAX_INPUT_FILE_SIZE = 20 * 1024 * 1024 # 20 MB
class GeminiModel(str, Enum):
"""
Gemini Model Names allowed by comfy-api
"""
gemini_2_5_pro_preview_05_06 = "gemini-2.5-pro-preview-05-06"
gemini_2_5_flash_preview_04_17 = "gemini-2.5-flash-preview-04-17"
gemini_2_5_pro = "gemini-2.5-pro"
gemini_2_5_flash = "gemini-2.5-flash"
class GeminiImageModel(str, Enum):
"""
Gemini Image Model Names allowed by comfy-api
"""
gemini_2_5_flash_image_preview = "gemini-2.5-flash-image-preview"
gemini_2_5_flash_image = "gemini-2.5-flash-image"
def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]:
"""
Convert image tensor input to Gemini API compatible parts.
Args:
image_input: Batch of image tensors from ComfyUI.
Returns:
List of GeminiPart objects containing the encoded images.
"""
image_parts: list[GeminiPart] = []
for image_index in range(image_input.shape[0]):
image_as_b64 = tensor_to_base64_string(image_input[image_index].unsqueeze(0))
image_parts.append(
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.image_png,
data=image_as_b64,
)
)
)
return image_parts
def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Literal["text"] | str) -> list[GeminiPart]:
"""
Filter response parts by their type.
Args:
response: The API response from Gemini.
part_type: Type of parts to extract ("text" or a MIME type).
Returns:
List of response parts matching the requested type.
"""
parts = []
for part in response.candidates[0].content.parts:
if part_type == "text" and hasattr(part, "text") and part.text:
parts.append(part)
elif hasattr(part, "inlineData") and part.inlineData and part.inlineData.mimeType == part_type:
parts.append(part)
# Skip parts that don't match the requested type
return parts
def get_text_from_response(response: GeminiGenerateContentResponse) -> str:
"""
Extract and concatenate all text parts from the response.
Args:
response: The API response from Gemini.
Returns:
Combined text from all text parts in the response.
"""
parts = get_parts_by_type(response, "text")
return "\n".join([part.text for part in parts])
def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Tensor:
image_tensors: list[torch.Tensor] = []
parts = get_parts_by_type(response, "image/png")
for part in parts:
image_data = base64.b64decode(part.inlineData.data)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
image_tensors.append(returned_image)
if len(image_tensors) == 0:
return torch.zeros((1, 1024, 1024, 4))
return torch.cat(image_tensors, dim=0)
class GeminiNode(IO.ComfyNode):
"""
Node to generate text responses from a Gemini model.
This node allows users to interact with Google's Gemini AI models, providing
multimodal inputs (text, images, audio, video, files) to generate coherent
text responses. The node works with the latest Gemini models, handling the
API communication and response parsing.
"""
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="GeminiNode",
display_name="Google Gemini",
category="api node/text/Gemini",
description="Generate text responses with Google's Gemini AI model. "
"You can provide multiple types of inputs (text, images, audio, video) "
"as context for generating more relevant and meaningful responses.",
inputs=[
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text inputs to the model, used to generate a response. "
"You can include detailed instructions, questions, or context for the model.",
),
IO.Combo.Input(
"model",
options=GeminiModel,
default=GeminiModel.gemini_2_5_pro,
tooltip="The Gemini model to use for generating responses.",
),
IO.Int.Input(
"seed",
default=42,
min=0,
max=0xFFFFFFFFFFFFFFFF,
control_after_generate=True,
tooltip="When seed is fixed to a specific value, the model makes a best effort to provide "
"the same response for repeated requests. Deterministic output isn't guaranteed. "
"Also, changing the model or parameter settings, such as the temperature, "
"can cause variations in the response even when you use the same seed value. "
"By default, a random seed value is used.",
),
IO.Image.Input(
"images",
optional=True,
tooltip="Optional image(s) to use as context for the model. "
"To include multiple images, you can use the Batch Images node.",
),
IO.Audio.Input(
"audio",
optional=True,
tooltip="Optional audio to use as context for the model.",
),
IO.Video.Input(
"video",
optional=True,
tooltip="Optional video to use as context for the model.",
),
IO.Custom("GEMINI_INPUT_FILES").Input(
"files",
optional=True,
tooltip="Optional file(s) to use as context for the model. "
"Accepts inputs from the Gemini Generate Content Input Files node.",
),
],
outputs=[
IO.String.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
def create_video_parts(cls, video_input: Input.Video) -> list[GeminiPart]:
"""Convert video input to Gemini API compatible parts."""
base_64_string = video_to_base64_string(video_input, container_format=VideoContainer.MP4, codec=VideoCodec.H264)
return [
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.video_mp4,
data=base_64_string,
)
)
]
@classmethod
def create_audio_parts(cls, audio_input: Input.Audio) -> list[GeminiPart]:
"""
Convert audio input to Gemini API compatible parts.
Args:
audio_input: Audio input from ComfyUI, containing waveform tensor and sample rate.
Returns:
List of GeminiPart objects containing the encoded audio.
"""
audio_parts: list[GeminiPart] = []
for batch_index in range(audio_input["waveform"].shape[0]):
# Recreate an IO.AUDIO object for the given batch dimension index
audio_at_index = Input.Audio(
waveform=audio_input["waveform"][batch_index].unsqueeze(0),
sample_rate=audio_input["sample_rate"],
)
# Convert to MP3 format for compatibility with Gemini API
audio_bytes = audio_to_base64_string(
audio_at_index,
container_format="mp3",
codec_name="libmp3lame",
)
audio_parts.append(
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.audio_mp3,
data=audio_bytes,
)
)
)
return audio_parts
@classmethod
async def execute(
cls,
prompt: str,
model: str,
seed: int,
images: Optional[torch.Tensor] = None,
audio: Optional[Input.Audio] = None,
video: Optional[Input.Video] = None,
files: Optional[list[GeminiPart]] = None,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=False)
# Create parts list with text prompt as the first part
parts: list[GeminiPart] = [GeminiPart(text=prompt)]
# Add other modal parts
if images is not None:
image_parts = create_image_parts(images)
parts.extend(image_parts)
if audio is not None:
parts.extend(cls.create_audio_parts(audio))
if video is not None:
parts.extend(cls.create_video_parts(video))
if files is not None:
parts.extend(files)
# Create response
response = await sync_op(
cls,
endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
data=GeminiGenerateContentRequest(
contents=[
GeminiContent(
role="user",
parts=parts,
)
]
),
response_model=GeminiGenerateContentResponse,
)
# Get result output
output_text = get_text_from_response(response)
if output_text:
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
render_spec = {
"node_id": cls.hidden.unique_id,
"component": "ChatHistoryWidget",
"props": {
"history": json.dumps(
[
{
"prompt": prompt,
"response": output_text,
"response_id": str(uuid.uuid4()),
"timestamp": time.time(),
}
]
),
},
}
PromptServer.instance.send_sync(
"display_component",
render_spec,
)
return IO.NodeOutput(output_text or "Empty response from Gemini model...")
class GeminiInputFiles(IO.ComfyNode):
"""
Loads and formats input files for use with the Gemini API.
This node allows users to include text (.txt) and PDF (.pdf) files as input
context for the Gemini model. Files are converted to the appropriate format
required by the API and can be chained together to include multiple files
in a single request.
"""
@classmethod
def define_schema(cls):
"""
For details about the supported file input types, see:
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
"""
input_dir = folder_paths.get_input_directory()
input_files = [
f
for f in os.scandir(input_dir)
if f.is_file()
and (f.name.endswith(".txt") or f.name.endswith(".pdf"))
and f.stat().st_size < GEMINI_MAX_INPUT_FILE_SIZE
]
input_files = sorted(input_files, key=lambda x: x.name)
input_files = [f.name for f in input_files]
return IO.Schema(
node_id="GeminiInputFiles",
display_name="Gemini Input Files",
category="api node/text/Gemini",
description="Loads and prepares input files to include as inputs for Gemini LLM nodes. "
"The files will be read by the Gemini model when generating a response. "
"The contents of the text file count toward the token limit. "
"🛈 TIP: Can be chained together with other Gemini Input File nodes.",
inputs=[
IO.Combo.Input(
"file",
options=input_files,
default=input_files[0] if input_files else None,
tooltip="Input files to include as context for the model. "
"Only accepts text (.txt) and PDF (.pdf) files for now.",
),
IO.Custom("GEMINI_INPUT_FILES").Input(
"GEMINI_INPUT_FILES",
optional=True,
tooltip="An optional additional file(s) to batch together with the file loaded from this node. "
"Allows chaining of input files so that a single message can include multiple input files.",
),
],
outputs=[
IO.Custom("GEMINI_INPUT_FILES").Output(),
],
)
@classmethod
def create_file_part(cls, file_path: str) -> GeminiPart:
mime_type = GeminiMimeType.application_pdf if file_path.endswith(".pdf") else GeminiMimeType.text_plain
# Use base64 string directly, not the data URI
with open(file_path, "rb") as f:
file_content = f.read()
base64_str = base64.b64encode(file_content).decode("utf-8")
return GeminiPart(
inlineData=GeminiInlineData(
mimeType=mime_type,
data=base64_str,
)
)
@classmethod
def execute(cls, file: str, GEMINI_INPUT_FILES: Optional[list[GeminiPart]] = None) -> IO.NodeOutput:
"""Loads and formats input files for Gemini API."""
if GEMINI_INPUT_FILES is None:
GEMINI_INPUT_FILES = []
file_path = folder_paths.get_annotated_filepath(file)
input_file_content = cls.create_file_part(file_path)
return IO.NodeOutput([input_file_content] + GEMINI_INPUT_FILES)
class GeminiImage(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="GeminiImageNode",
display_name="Google Gemini Image",
category="api node/image/Gemini",
description="Edit images synchronously via Google API.",
inputs=[
IO.String.Input(
"prompt",
multiline=True,
tooltip="Text prompt for generation",
default="",
),
IO.Combo.Input(
"model",
options=GeminiImageModel,
default=GeminiImageModel.gemini_2_5_flash_image,
tooltip="The Gemini model to use for generating responses.",
),
IO.Int.Input(
"seed",
default=42,
min=0,
max=0xFFFFFFFFFFFFFFFF,
control_after_generate=True,
tooltip="When seed is fixed to a specific value, the model makes a best effort to provide "
"the same response for repeated requests. Deterministic output isn't guaranteed. "
"Also, changing the model or parameter settings, such as the temperature, "
"can cause variations in the response even when you use the same seed value. "
"By default, a random seed value is used.",
),
IO.Image.Input(
"images",
optional=True,
tooltip="Optional image(s) to use as context for the model. "
"To include multiple images, you can use the Batch Images node.",
),
IO.Custom("GEMINI_INPUT_FILES").Input(
"files",
optional=True,
tooltip="Optional file(s) to use as context for the model. "
"Accepts inputs from the Gemini Generate Content Input Files node.",
),
IO.Combo.Input(
"aspect_ratio",
options=["auto", "1:1", "2:3", "3:2", "3:4", "4:3", "4:5", "5:4", "9:16", "16:9", "21:9"],
default="auto",
tooltip="Defaults to matching the output image size to that of your input image, "
"or otherwise generates 1:1 squares.",
optional=True,
),
],
outputs=[
IO.Image.Output(),
IO.String.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
prompt: str,
model: str,
seed: int,
images: Optional[torch.Tensor] = None,
files: Optional[list[GeminiPart]] = None,
aspect_ratio: str = "auto",
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
parts: list[GeminiPart] = [GeminiPart(text=prompt)]
if not aspect_ratio:
aspect_ratio = "auto" # for backward compatability with old workflows; to-do remove this in December
image_config = GeminiImageConfig(aspectRatio=aspect_ratio)
if images is not None:
image_parts = create_image_parts(images)
parts.extend(image_parts)
if files is not None:
parts.extend(files)
response = await sync_op(
cls,
endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
data=GeminiImageGenerateContentRequest(
contents=[
GeminiContent(role="user", parts=parts),
],
generationConfig=GeminiImageGenerationConfig(
responseModalities=["TEXT", "IMAGE"],
imageConfig=None if aspect_ratio == "auto" else image_config,
),
),
response_model=GeminiGenerateContentResponse,
)
output_image = get_image_from_response(response)
output_text = get_text_from_response(response)
if output_text:
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
render_spec = {
"node_id": cls.hidden.unique_id,
"component": "ChatHistoryWidget",
"props": {
"history": json.dumps(
[
{
"prompt": prompt,
"response": output_text,
"response_id": str(uuid.uuid4()),
"timestamp": time.time(),
}
]
),
},
}
PromptServer.instance.send_sync(
"display_component",
render_spec,
)
output_text = output_text or "Empty response from Gemini model..."
return IO.NodeOutput(output_image, output_text)
class GeminiExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
GeminiNode,
GeminiImage,
GeminiInputFiles,
]
async def comfy_entrypoint() -> GeminiExtension:
return GeminiExtension()
|