Spaces:
Running
Running
| from __future__ import annotations | |
| from inspect import cleandoc | |
| from typing import Optional | |
| from typing_extensions import override | |
| from comfy_api.latest import ComfyExtension, IO | |
| from comfy_api.input_impl.video_types import VideoFromFile | |
| from comfy_api_nodes.apis.luma_api import ( | |
| LumaImageModel, | |
| LumaVideoModel, | |
| LumaVideoOutputResolution, | |
| LumaVideoModelOutputDuration, | |
| LumaAspectRatio, | |
| LumaState, | |
| LumaImageGenerationRequest, | |
| LumaGenerationRequest, | |
| LumaGeneration, | |
| LumaCharacterRef, | |
| LumaModifyImageRef, | |
| LumaImageIdentity, | |
| LumaReference, | |
| LumaReferenceChain, | |
| LumaImageReference, | |
| LumaKeyframes, | |
| LumaConceptChain, | |
| LumaIO, | |
| get_luma_concepts, | |
| ) | |
| from comfy_api_nodes.apis.client import ( | |
| ApiEndpoint, | |
| HttpMethod, | |
| SynchronousOperation, | |
| PollingOperation, | |
| EmptyRequest, | |
| ) | |
| from comfy_api_nodes.apinode_utils import ( | |
| upload_images_to_comfyapi, | |
| process_image_response, | |
| ) | |
| from server import PromptServer | |
| from comfy_api_nodes.util import validate_string | |
| import aiohttp | |
| import torch | |
| from io import BytesIO | |
| LUMA_T2V_AVERAGE_DURATION = 105 | |
| LUMA_I2V_AVERAGE_DURATION = 100 | |
| def image_result_url_extractor(response: LumaGeneration): | |
| return response.assets.image if hasattr(response, "assets") and hasattr(response.assets, "image") else None | |
| def video_result_url_extractor(response: LumaGeneration): | |
| return response.assets.video if hasattr(response, "assets") and hasattr(response.assets, "video") else None | |
| class LumaReferenceNode(IO.ComfyNode): | |
| """ | |
| Holds an image and weight for use with Luma Generate Image node. | |
| """ | |
| def define_schema(cls) -> IO.Schema: | |
| return IO.Schema( | |
| node_id="LumaReferenceNode", | |
| display_name="Luma Reference", | |
| category="api node/image/Luma", | |
| description=cleandoc(cls.__doc__ or ""), | |
| inputs=[ | |
| IO.Image.Input( | |
| "image", | |
| tooltip="Image to use as reference.", | |
| ), | |
| IO.Float.Input( | |
| "weight", | |
| default=1.0, | |
| min=0.0, | |
| max=1.0, | |
| step=0.01, | |
| tooltip="Weight of image reference.", | |
| ), | |
| IO.Custom(LumaIO.LUMA_REF).Input( | |
| "luma_ref", | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[IO.Custom(LumaIO.LUMA_REF).Output(display_name="luma_ref")], | |
| hidden=[ | |
| IO.Hidden.auth_token_comfy_org, | |
| IO.Hidden.api_key_comfy_org, | |
| IO.Hidden.unique_id, | |
| ], | |
| ) | |
| def execute( | |
| cls, image: torch.Tensor, weight: float, luma_ref: LumaReferenceChain = None | |
| ) -> IO.NodeOutput: | |
| if luma_ref is not None: | |
| luma_ref = luma_ref.clone() | |
| else: | |
| luma_ref = LumaReferenceChain() | |
| luma_ref.add(LumaReference(image=image, weight=round(weight, 2))) | |
| return IO.NodeOutput(luma_ref) | |
| class LumaConceptsNode(IO.ComfyNode): | |
| """ | |
| Holds one or more Camera Concepts for use with Luma Text to Video and Luma Image to Video nodes. | |
| """ | |
| def define_schema(cls) -> IO.Schema: | |
| return IO.Schema( | |
| node_id="LumaConceptsNode", | |
| display_name="Luma Concepts", | |
| category="api node/video/Luma", | |
| description=cleandoc(cls.__doc__ or ""), | |
| inputs=[ | |
| IO.Combo.Input( | |
| "concept1", | |
| options=get_luma_concepts(include_none=True), | |
| ), | |
| IO.Combo.Input( | |
| "concept2", | |
| options=get_luma_concepts(include_none=True), | |
| ), | |
| IO.Combo.Input( | |
| "concept3", | |
| options=get_luma_concepts(include_none=True), | |
| ), | |
| IO.Combo.Input( | |
| "concept4", | |
| options=get_luma_concepts(include_none=True), | |
| ), | |
| IO.Custom(LumaIO.LUMA_CONCEPTS).Input( | |
| "luma_concepts", | |
| tooltip="Optional Camera Concepts to add to the ones chosen here.", | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[IO.Custom(LumaIO.LUMA_CONCEPTS).Output(display_name="luma_concepts")], | |
| hidden=[ | |
| IO.Hidden.auth_token_comfy_org, | |
| IO.Hidden.api_key_comfy_org, | |
| IO.Hidden.unique_id, | |
| ], | |
| ) | |
| def execute( | |
| cls, | |
| concept1: str, | |
| concept2: str, | |
| concept3: str, | |
| concept4: str, | |
| luma_concepts: LumaConceptChain = None, | |
| ) -> IO.NodeOutput: | |
| chain = LumaConceptChain(str_list=[concept1, concept2, concept3, concept4]) | |
| if luma_concepts is not None: | |
| chain = luma_concepts.clone_and_merge(chain) | |
| return IO.NodeOutput(chain) | |
| class LumaImageGenerationNode(IO.ComfyNode): | |
| """ | |
| Generates images synchronously based on prompt and aspect ratio. | |
| """ | |
| def define_schema(cls) -> IO.Schema: | |
| return IO.Schema( | |
| node_id="LumaImageNode", | |
| display_name="Luma Text to Image", | |
| category="api node/image/Luma", | |
| description=cleandoc(cls.__doc__ or ""), | |
| inputs=[ | |
| IO.String.Input( | |
| "prompt", | |
| multiline=True, | |
| default="", | |
| tooltip="Prompt for the image generation", | |
| ), | |
| IO.Combo.Input( | |
| "model", | |
| options=LumaImageModel, | |
| ), | |
| IO.Combo.Input( | |
| "aspect_ratio", | |
| options=LumaAspectRatio, | |
| default=LumaAspectRatio.ratio_16_9, | |
| ), | |
| IO.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=0xFFFFFFFFFFFFFFFF, | |
| control_after_generate=True, | |
| tooltip="Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", | |
| ), | |
| IO.Float.Input( | |
| "style_image_weight", | |
| default=1.0, | |
| min=0.0, | |
| max=1.0, | |
| step=0.01, | |
| tooltip="Weight of style image. Ignored if no style_image provided.", | |
| ), | |
| IO.Custom(LumaIO.LUMA_REF).Input( | |
| "image_luma_ref", | |
| tooltip="Luma Reference node connection to influence generation with input images; up to 4 images can be considered.", | |
| optional=True, | |
| ), | |
| IO.Image.Input( | |
| "style_image", | |
| tooltip="Style reference image; only 1 image will be used.", | |
| optional=True, | |
| ), | |
| IO.Image.Input( | |
| "character_image", | |
| tooltip="Character reference images; can be a batch of multiple, up to 4 images can be considered.", | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[IO.Image.Output()], | |
| hidden=[ | |
| IO.Hidden.auth_token_comfy_org, | |
| IO.Hidden.api_key_comfy_org, | |
| IO.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| prompt: str, | |
| model: str, | |
| aspect_ratio: str, | |
| seed, | |
| style_image_weight: float, | |
| image_luma_ref: LumaReferenceChain = None, | |
| style_image: torch.Tensor = None, | |
| character_image: torch.Tensor = None, | |
| ) -> IO.NodeOutput: | |
| validate_string(prompt, strip_whitespace=True, min_length=3) | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| # handle image_luma_ref | |
| api_image_ref = None | |
| if image_luma_ref is not None: | |
| api_image_ref = await cls._convert_luma_refs( | |
| image_luma_ref, max_refs=4, auth_kwargs=auth_kwargs, | |
| ) | |
| # handle style_luma_ref | |
| api_style_ref = None | |
| if style_image is not None: | |
| api_style_ref = await cls._convert_style_image( | |
| style_image, weight=style_image_weight, auth_kwargs=auth_kwargs, | |
| ) | |
| # handle character_ref images | |
| character_ref = None | |
| if character_image is not None: | |
| download_urls = await upload_images_to_comfyapi( | |
| character_image, max_images=4, auth_kwargs=auth_kwargs, | |
| ) | |
| character_ref = LumaCharacterRef( | |
| identity0=LumaImageIdentity(images=download_urls) | |
| ) | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/proxy/luma/generations/image", | |
| method=HttpMethod.POST, | |
| request_model=LumaImageGenerationRequest, | |
| response_model=LumaGeneration, | |
| ), | |
| request=LumaImageGenerationRequest( | |
| prompt=prompt, | |
| model=model, | |
| aspect_ratio=aspect_ratio, | |
| image_ref=api_image_ref, | |
| style_ref=api_style_ref, | |
| character_ref=character_ref, | |
| ), | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response_api: LumaGeneration = await operation.execute() | |
| operation = PollingOperation( | |
| poll_endpoint=ApiEndpoint( | |
| path=f"/proxy/luma/generations/{response_api.id}", | |
| method=HttpMethod.GET, | |
| request_model=EmptyRequest, | |
| response_model=LumaGeneration, | |
| ), | |
| completed_statuses=[LumaState.completed], | |
| failed_statuses=[LumaState.failed], | |
| status_extractor=lambda x: x.state, | |
| result_url_extractor=image_result_url_extractor, | |
| node_id=cls.hidden.unique_id, | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response_poll = await operation.execute() | |
| async with aiohttp.ClientSession() as session: | |
| async with session.get(response_poll.assets.image) as img_response: | |
| img = process_image_response(await img_response.content.read()) | |
| return IO.NodeOutput(img) | |
| async def _convert_luma_refs( | |
| cls, luma_ref: LumaReferenceChain, max_refs: int, auth_kwargs: Optional[dict[str,str]] = None | |
| ): | |
| luma_urls = [] | |
| ref_count = 0 | |
| for ref in luma_ref.refs: | |
| download_urls = await upload_images_to_comfyapi( | |
| ref.image, max_images=1, auth_kwargs=auth_kwargs | |
| ) | |
| luma_urls.append(download_urls[0]) | |
| ref_count += 1 | |
| if ref_count >= max_refs: | |
| break | |
| return luma_ref.create_api_model(download_urls=luma_urls, max_refs=max_refs) | |
| async def _convert_style_image( | |
| cls, style_image: torch.Tensor, weight: float, auth_kwargs: Optional[dict[str,str]] = None | |
| ): | |
| chain = LumaReferenceChain( | |
| first_ref=LumaReference(image=style_image, weight=weight) | |
| ) | |
| return await cls._convert_luma_refs(chain, max_refs=1, auth_kwargs=auth_kwargs) | |
| class LumaImageModifyNode(IO.ComfyNode): | |
| """ | |
| Modifies images synchronously based on prompt and aspect ratio. | |
| """ | |
| def define_schema(cls) -> IO.Schema: | |
| return IO.Schema( | |
| node_id="LumaImageModifyNode", | |
| display_name="Luma Image to Image", | |
| category="api node/image/Luma", | |
| description=cleandoc(cls.__doc__ or ""), | |
| inputs=[ | |
| IO.Image.Input( | |
| "image", | |
| ), | |
| IO.String.Input( | |
| "prompt", | |
| multiline=True, | |
| default="", | |
| tooltip="Prompt for the image generation", | |
| ), | |
| IO.Float.Input( | |
| "image_weight", | |
| default=0.1, | |
| min=0.0, | |
| max=0.98, | |
| step=0.01, | |
| tooltip="Weight of the image; the closer to 1.0, the less the image will be modified.", | |
| ), | |
| IO.Combo.Input( | |
| "model", | |
| options=LumaImageModel, | |
| ), | |
| IO.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=0xFFFFFFFFFFFFFFFF, | |
| control_after_generate=True, | |
| tooltip="Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", | |
| ), | |
| ], | |
| outputs=[IO.Image.Output()], | |
| hidden=[ | |
| IO.Hidden.auth_token_comfy_org, | |
| IO.Hidden.api_key_comfy_org, | |
| IO.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| prompt: str, | |
| model: str, | |
| image: torch.Tensor, | |
| image_weight: float, | |
| seed, | |
| ) -> IO.NodeOutput: | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| # first, upload image | |
| download_urls = await upload_images_to_comfyapi( | |
| image, max_images=1, auth_kwargs=auth_kwargs, | |
| ) | |
| image_url = download_urls[0] | |
| # next, make Luma call with download url provided | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/proxy/luma/generations/image", | |
| method=HttpMethod.POST, | |
| request_model=LumaImageGenerationRequest, | |
| response_model=LumaGeneration, | |
| ), | |
| request=LumaImageGenerationRequest( | |
| prompt=prompt, | |
| model=model, | |
| modify_image_ref=LumaModifyImageRef( | |
| url=image_url, weight=round(max(min(1.0-image_weight, 0.98), 0.0), 2) | |
| ), | |
| ), | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response_api: LumaGeneration = await operation.execute() | |
| operation = PollingOperation( | |
| poll_endpoint=ApiEndpoint( | |
| path=f"/proxy/luma/generations/{response_api.id}", | |
| method=HttpMethod.GET, | |
| request_model=EmptyRequest, | |
| response_model=LumaGeneration, | |
| ), | |
| completed_statuses=[LumaState.completed], | |
| failed_statuses=[LumaState.failed], | |
| status_extractor=lambda x: x.state, | |
| result_url_extractor=image_result_url_extractor, | |
| node_id=cls.hidden.unique_id, | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response_poll = await operation.execute() | |
| async with aiohttp.ClientSession() as session: | |
| async with session.get(response_poll.assets.image) as img_response: | |
| img = process_image_response(await img_response.content.read()) | |
| return IO.NodeOutput(img) | |
| class LumaTextToVideoGenerationNode(IO.ComfyNode): | |
| """ | |
| Generates videos synchronously based on prompt and output_size. | |
| """ | |
| def define_schema(cls) -> IO.Schema: | |
| return IO.Schema( | |
| node_id="LumaVideoNode", | |
| display_name="Luma Text to Video", | |
| category="api node/video/Luma", | |
| description=cleandoc(cls.__doc__ or ""), | |
| inputs=[ | |
| IO.String.Input( | |
| "prompt", | |
| multiline=True, | |
| default="", | |
| tooltip="Prompt for the video generation", | |
| ), | |
| IO.Combo.Input( | |
| "model", | |
| options=LumaVideoModel, | |
| ), | |
| IO.Combo.Input( | |
| "aspect_ratio", | |
| options=LumaAspectRatio, | |
| default=LumaAspectRatio.ratio_16_9, | |
| ), | |
| IO.Combo.Input( | |
| "resolution", | |
| options=LumaVideoOutputResolution, | |
| default=LumaVideoOutputResolution.res_540p, | |
| ), | |
| IO.Combo.Input( | |
| "duration", | |
| options=LumaVideoModelOutputDuration, | |
| ), | |
| IO.Boolean.Input( | |
| "loop", | |
| default=False, | |
| ), | |
| IO.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=0xFFFFFFFFFFFFFFFF, | |
| control_after_generate=True, | |
| tooltip="Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", | |
| ), | |
| IO.Custom(LumaIO.LUMA_CONCEPTS).Input( | |
| "luma_concepts", | |
| tooltip="Optional Camera Concepts to dictate camera motion via the Luma Concepts node.", | |
| optional=True, | |
| ) | |
| ], | |
| outputs=[IO.Video.Output()], | |
| hidden=[ | |
| IO.Hidden.auth_token_comfy_org, | |
| IO.Hidden.api_key_comfy_org, | |
| IO.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| prompt: str, | |
| model: str, | |
| aspect_ratio: str, | |
| resolution: str, | |
| duration: str, | |
| loop: bool, | |
| seed, | |
| luma_concepts: LumaConceptChain = None, | |
| ) -> IO.NodeOutput: | |
| validate_string(prompt, strip_whitespace=False, min_length=3) | |
| duration = duration if model != LumaVideoModel.ray_1_6 else None | |
| resolution = resolution if model != LumaVideoModel.ray_1_6 else None | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/proxy/luma/generations", | |
| method=HttpMethod.POST, | |
| request_model=LumaGenerationRequest, | |
| response_model=LumaGeneration, | |
| ), | |
| request=LumaGenerationRequest( | |
| prompt=prompt, | |
| model=model, | |
| resolution=resolution, | |
| aspect_ratio=aspect_ratio, | |
| duration=duration, | |
| loop=loop, | |
| concepts=luma_concepts.create_api_model() if luma_concepts else None, | |
| ), | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response_api: LumaGeneration = await operation.execute() | |
| if cls.hidden.unique_id: | |
| PromptServer.instance.send_progress_text(f"Luma video generation started: {response_api.id}", cls.hidden.unique_id) | |
| operation = PollingOperation( | |
| poll_endpoint=ApiEndpoint( | |
| path=f"/proxy/luma/generations/{response_api.id}", | |
| method=HttpMethod.GET, | |
| request_model=EmptyRequest, | |
| response_model=LumaGeneration, | |
| ), | |
| completed_statuses=[LumaState.completed], | |
| failed_statuses=[LumaState.failed], | |
| status_extractor=lambda x: x.state, | |
| result_url_extractor=video_result_url_extractor, | |
| node_id=cls.hidden.unique_id, | |
| estimated_duration=LUMA_T2V_AVERAGE_DURATION, | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response_poll = await operation.execute() | |
| async with aiohttp.ClientSession() as session: | |
| async with session.get(response_poll.assets.video) as vid_response: | |
| return IO.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read()))) | |
| class LumaImageToVideoGenerationNode(IO.ComfyNode): | |
| """ | |
| Generates videos synchronously based on prompt, input images, and output_size. | |
| """ | |
| def define_schema(cls) -> IO.Schema: | |
| return IO.Schema( | |
| node_id="LumaImageToVideoNode", | |
| display_name="Luma Image to Video", | |
| category="api node/video/Luma", | |
| description=cleandoc(cls.__doc__ or ""), | |
| inputs=[ | |
| IO.String.Input( | |
| "prompt", | |
| multiline=True, | |
| default="", | |
| tooltip="Prompt for the video generation", | |
| ), | |
| IO.Combo.Input( | |
| "model", | |
| options=LumaVideoModel, | |
| ), | |
| # IO.Combo.Input( | |
| # "aspect_ratio", | |
| # options=[ratio.value for ratio in LumaAspectRatio], | |
| # default=LumaAspectRatio.ratio_16_9, | |
| # ), | |
| IO.Combo.Input( | |
| "resolution", | |
| options=LumaVideoOutputResolution, | |
| default=LumaVideoOutputResolution.res_540p, | |
| ), | |
| IO.Combo.Input( | |
| "duration", | |
| options=[dur.value for dur in LumaVideoModelOutputDuration], | |
| ), | |
| IO.Boolean.Input( | |
| "loop", | |
| default=False, | |
| ), | |
| IO.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=0xFFFFFFFFFFFFFFFF, | |
| control_after_generate=True, | |
| tooltip="Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", | |
| ), | |
| IO.Image.Input( | |
| "first_image", | |
| tooltip="First frame of generated video.", | |
| optional=True, | |
| ), | |
| IO.Image.Input( | |
| "last_image", | |
| tooltip="Last frame of generated video.", | |
| optional=True, | |
| ), | |
| IO.Custom(LumaIO.LUMA_CONCEPTS).Input( | |
| "luma_concepts", | |
| tooltip="Optional Camera Concepts to dictate camera motion via the Luma Concepts node.", | |
| optional=True, | |
| ) | |
| ], | |
| outputs=[IO.Video.Output()], | |
| hidden=[ | |
| IO.Hidden.auth_token_comfy_org, | |
| IO.Hidden.api_key_comfy_org, | |
| IO.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| prompt: str, | |
| model: str, | |
| resolution: str, | |
| duration: str, | |
| loop: bool, | |
| seed, | |
| first_image: torch.Tensor = None, | |
| last_image: torch.Tensor = None, | |
| luma_concepts: LumaConceptChain = None, | |
| ) -> IO.NodeOutput: | |
| if first_image is None and last_image is None: | |
| raise Exception( | |
| "At least one of first_image and last_image requires an input." | |
| ) | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| keyframes = await cls._convert_to_keyframes(first_image, last_image, auth_kwargs=auth_kwargs) | |
| duration = duration if model != LumaVideoModel.ray_1_6 else None | |
| resolution = resolution if model != LumaVideoModel.ray_1_6 else None | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/proxy/luma/generations", | |
| method=HttpMethod.POST, | |
| request_model=LumaGenerationRequest, | |
| response_model=LumaGeneration, | |
| ), | |
| request=LumaGenerationRequest( | |
| prompt=prompt, | |
| model=model, | |
| aspect_ratio=LumaAspectRatio.ratio_16_9, # ignored, but still needed by the API for some reason | |
| resolution=resolution, | |
| duration=duration, | |
| loop=loop, | |
| keyframes=keyframes, | |
| concepts=luma_concepts.create_api_model() if luma_concepts else None, | |
| ), | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response_api: LumaGeneration = await operation.execute() | |
| if cls.hidden.unique_id: | |
| PromptServer.instance.send_progress_text(f"Luma video generation started: {response_api.id}", cls.hidden.unique_id) | |
| operation = PollingOperation( | |
| poll_endpoint=ApiEndpoint( | |
| path=f"/proxy/luma/generations/{response_api.id}", | |
| method=HttpMethod.GET, | |
| request_model=EmptyRequest, | |
| response_model=LumaGeneration, | |
| ), | |
| completed_statuses=[LumaState.completed], | |
| failed_statuses=[LumaState.failed], | |
| status_extractor=lambda x: x.state, | |
| result_url_extractor=video_result_url_extractor, | |
| node_id=cls.hidden.unique_id, | |
| estimated_duration=LUMA_I2V_AVERAGE_DURATION, | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response_poll = await operation.execute() | |
| async with aiohttp.ClientSession() as session: | |
| async with session.get(response_poll.assets.video) as vid_response: | |
| return IO.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read()))) | |
| async def _convert_to_keyframes( | |
| cls, | |
| first_image: torch.Tensor = None, | |
| last_image: torch.Tensor = None, | |
| auth_kwargs: Optional[dict[str,str]] = None, | |
| ): | |
| if first_image is None and last_image is None: | |
| return None | |
| frame0 = None | |
| frame1 = None | |
| if first_image is not None: | |
| download_urls = await upload_images_to_comfyapi( | |
| first_image, max_images=1, auth_kwargs=auth_kwargs, | |
| ) | |
| frame0 = LumaImageReference(type="image", url=download_urls[0]) | |
| if last_image is not None: | |
| download_urls = await upload_images_to_comfyapi( | |
| last_image, max_images=1, auth_kwargs=auth_kwargs, | |
| ) | |
| frame1 = LumaImageReference(type="image", url=download_urls[0]) | |
| return LumaKeyframes(frame0=frame0, frame1=frame1) | |
| class LumaExtension(ComfyExtension): | |
| async def get_node_list(self) -> list[type[IO.ComfyNode]]: | |
| return [ | |
| LumaImageGenerationNode, | |
| LumaImageModifyNode, | |
| LumaTextToVideoGenerationNode, | |
| LumaImageToVideoGenerationNode, | |
| LumaReferenceNode, | |
| LumaConceptsNode, | |
| ] | |
| async def comfy_entrypoint() -> LumaExtension: | |
| return LumaExtension() | |