Spaces:
Running
Running
| # code adapted from https://github.com/exx8/differential-diffusion | |
| from typing_extensions import override | |
| import torch | |
| from comfy_api.latest import ComfyExtension, io | |
| class DifferentialDiffusion(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="DifferentialDiffusion", | |
| display_name="Differential Diffusion", | |
| category="_for_testing", | |
| inputs=[ | |
| io.Model.Input("model"), | |
| io.Float.Input( | |
| "strength", | |
| default=1.0, | |
| min=0.0, | |
| max=1.0, | |
| step=0.01, | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[io.Model.Output()], | |
| is_experimental=True, | |
| ) | |
| def execute(cls, model, strength=1.0) -> io.NodeOutput: | |
| model = model.clone() | |
| model.set_model_denoise_mask_function(lambda *args, **kwargs: cls.forward(*args, **kwargs, strength=strength)) | |
| return io.NodeOutput(model) | |
| def forward(cls, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict, strength: float): | |
| model = extra_options["model"] | |
| step_sigmas = extra_options["sigmas"] | |
| sigma_to = model.inner_model.model_sampling.sigma_min | |
| if step_sigmas[-1] > sigma_to: | |
| sigma_to = step_sigmas[-1] | |
| sigma_from = step_sigmas[0] | |
| ts_from = model.inner_model.model_sampling.timestep(sigma_from) | |
| ts_to = model.inner_model.model_sampling.timestep(sigma_to) | |
| current_ts = model.inner_model.model_sampling.timestep(sigma[0]) | |
| threshold = (current_ts - ts_to) / (ts_from - ts_to) | |
| # Generate the binary mask based on the threshold | |
| binary_mask = (denoise_mask >= threshold).to(denoise_mask.dtype) | |
| # Blend binary mask with the original denoise_mask using strength | |
| if strength and strength < 1: | |
| blended_mask = strength * binary_mask + (1 - strength) * denoise_mask | |
| return blended_mask | |
| else: | |
| return binary_mask | |
| class DifferentialDiffusionExtension(ComfyExtension): | |
| async def get_node_list(self) -> list[type[io.ComfyNode]]: | |
| return [ | |
| DifferentialDiffusion, | |
| ] | |
| async def comfy_entrypoint() -> DifferentialDiffusionExtension: | |
| return DifferentialDiffusionExtension() | |