Spaces:
Running
Running
| from typing_extensions import override | |
| import torch | |
| from comfy_api.latest import ComfyExtension, io | |
| # https://github.com/WeichenFan/CFG-Zero-star | |
| def optimized_scale(positive, negative): | |
| positive_flat = positive.reshape(positive.shape[0], -1) | |
| negative_flat = negative.reshape(negative.shape[0], -1) | |
| # Calculate dot production | |
| dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) | |
| # Squared norm of uncondition | |
| squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 | |
| # st_star = v_cond^T * v_uncond / ||v_uncond||^2 | |
| st_star = dot_product / squared_norm | |
| return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1)) | |
| class CFGZeroStar(io.ComfyNode): | |
| def define_schema(cls) -> io.Schema: | |
| return io.Schema( | |
| node_id="CFGZeroStar", | |
| category="advanced/guidance", | |
| inputs=[ | |
| io.Model.Input("model"), | |
| ], | |
| outputs=[io.Model.Output(display_name="patched_model")], | |
| ) | |
| def execute(cls, model) -> io.NodeOutput: | |
| m = model.clone() | |
| def cfg_zero_star(args): | |
| guidance_scale = args['cond_scale'] | |
| x = args['input'] | |
| cond_p = args['cond_denoised'] | |
| uncond_p = args['uncond_denoised'] | |
| out = args["denoised"] | |
| alpha = optimized_scale(x - cond_p, x - uncond_p) | |
| return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha) | |
| m.set_model_sampler_post_cfg_function(cfg_zero_star) | |
| return io.NodeOutput(m) | |
| class CFGNorm(io.ComfyNode): | |
| def define_schema(cls) -> io.Schema: | |
| return io.Schema( | |
| node_id="CFGNorm", | |
| category="advanced/guidance", | |
| inputs=[ | |
| io.Model.Input("model"), | |
| io.Float.Input("strength", default=1.0, min=0.0, max=100.0, step=0.01), | |
| ], | |
| outputs=[io.Model.Output(display_name="patched_model")], | |
| is_experimental=True, | |
| ) | |
| def execute(cls, model, strength) -> io.NodeOutput: | |
| m = model.clone() | |
| def cfg_norm(args): | |
| cond_p = args['cond_denoised'] | |
| pred_text_ = args["denoised"] | |
| norm_full_cond = torch.norm(cond_p, dim=1, keepdim=True) | |
| norm_pred_text = torch.norm(pred_text_, dim=1, keepdim=True) | |
| scale = (norm_full_cond / (norm_pred_text + 1e-8)).clamp(min=0.0, max=1.0) | |
| return pred_text_ * scale * strength | |
| m.set_model_sampler_post_cfg_function(cfg_norm) | |
| return io.NodeOutput(m) | |
| class CfgExtension(ComfyExtension): | |
| async def get_node_list(self) -> list[type[io.ComfyNode]]: | |
| return [ | |
| CFGZeroStar, | |
| CFGNorm, | |
| ] | |
| async def comfy_entrypoint() -> CfgExtension: | |
| return CfgExtension() | |