Spaces:
Running
Running
| import torch | |
| import comfy.model_management | |
| from typing_extensions import override | |
| from comfy_api.latest import ComfyExtension, io | |
| from kornia.morphology import dilation, erosion, opening, closing, gradient, top_hat, bottom_hat | |
| import kornia.color | |
| class Morphology(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="Morphology", | |
| display_name="ImageMorphology", | |
| category="image/postprocessing", | |
| inputs=[ | |
| io.Image.Input("image"), | |
| io.Combo.Input( | |
| "operation", | |
| options=["erode", "dilate", "open", "close", "gradient", "bottom_hat", "top_hat"], | |
| ), | |
| io.Int.Input("kernel_size", default=3, min=3, max=999, step=1), | |
| ], | |
| outputs=[ | |
| io.Image.Output(), | |
| ], | |
| ) | |
| def execute(cls, image, operation, kernel_size) -> io.NodeOutput: | |
| device = comfy.model_management.get_torch_device() | |
| kernel = torch.ones(kernel_size, kernel_size, device=device) | |
| image_k = image.to(device).movedim(-1, 1) | |
| if operation == "erode": | |
| output = erosion(image_k, kernel) | |
| elif operation == "dilate": | |
| output = dilation(image_k, kernel) | |
| elif operation == "open": | |
| output = opening(image_k, kernel) | |
| elif operation == "close": | |
| output = closing(image_k, kernel) | |
| elif operation == "gradient": | |
| output = gradient(image_k, kernel) | |
| elif operation == "top_hat": | |
| output = top_hat(image_k, kernel) | |
| elif operation == "bottom_hat": | |
| output = bottom_hat(image_k, kernel) | |
| else: | |
| raise ValueError(f"Invalid operation {operation} for morphology. Must be one of 'erode', 'dilate', 'open', 'close', 'gradient', 'tophat', 'bottomhat'") | |
| img_out = output.to(comfy.model_management.intermediate_device()).movedim(1, -1) | |
| return io.NodeOutput(img_out) | |
| class ImageRGBToYUV(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="ImageRGBToYUV", | |
| category="image/batch", | |
| inputs=[ | |
| io.Image.Input("image"), | |
| ], | |
| outputs=[ | |
| io.Image.Output(display_name="Y"), | |
| io.Image.Output(display_name="U"), | |
| io.Image.Output(display_name="V"), | |
| ], | |
| ) | |
| def execute(cls, image) -> io.NodeOutput: | |
| out = kornia.color.rgb_to_ycbcr(image.movedim(-1, 1)).movedim(1, -1) | |
| return io.NodeOutput(out[..., 0:1].expand_as(image), out[..., 1:2].expand_as(image), out[..., 2:3].expand_as(image)) | |
| class ImageYUVToRGB(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="ImageYUVToRGB", | |
| category="image/batch", | |
| inputs=[ | |
| io.Image.Input("Y"), | |
| io.Image.Input("U"), | |
| io.Image.Input("V"), | |
| ], | |
| outputs=[ | |
| io.Image.Output(), | |
| ], | |
| ) | |
| def execute(cls, Y, U, V) -> io.NodeOutput: | |
| image = torch.cat([torch.mean(Y, dim=-1, keepdim=True), torch.mean(U, dim=-1, keepdim=True), torch.mean(V, dim=-1, keepdim=True)], dim=-1) | |
| out = kornia.color.ycbcr_to_rgb(image.movedim(-1, 1)).movedim(1, -1) | |
| return io.NodeOutput(out) | |
| class MorphologyExtension(ComfyExtension): | |
| async def get_node_list(self) -> list[type[io.ComfyNode]]: | |
| return [ | |
| Morphology, | |
| ImageRGBToYUV, | |
| ImageYUVToRGB, | |
| ] | |
| async def comfy_entrypoint() -> MorphologyExtension: | |
| return MorphologyExtension() | |