Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
cf7f9c0
0
Parent(s):
Initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +38 -0
- .gitignore +81 -0
- README.md +14 -0
- app.py +690 -0
- dkt/__init__.py +4 -0
- dkt/configs/__init__.py +0 -0
- dkt/configs/model_config.py +68 -0
- dkt/lora/__init__.py +45 -0
- dkt/models/__init__.py +1 -0
- dkt/models/attention.py +89 -0
- dkt/models/downloader.py +111 -0
- dkt/models/lora.py +197 -0
- dkt/models/model_manager.py +421 -0
- dkt/models/tiler.py +234 -0
- dkt/models/utils.py +182 -0
- dkt/models/wan_video_camera_controller.py +202 -0
- dkt/models/wan_video_dit.py +719 -0
- dkt/models/wan_video_image_encoder.py +902 -0
- dkt/models/wan_video_motion_controller.py +44 -0
- dkt/models/wan_video_text_encoder.py +269 -0
- dkt/models/wan_video_vace.py +113 -0
- dkt/models/wan_video_vae.py +1376 -0
- dkt/pipelines/__init__.py +0 -0
- dkt/pipelines/wan_video_new.py +1486 -0
- dkt/prompters/__init__.py +13 -0
- dkt/prompters/base_prompter.py +70 -0
- dkt/prompters/wan_prompter.py +109 -0
- dkt/schedulers/__init__.py +1 -0
- dkt/schedulers/flow_match.py +126 -0
- dkt/utils/__init__.py +261 -0
- dkt/vram_management/__init__.py +2 -0
- dkt/vram_management/gradient_checkpointing.py +34 -0
- dkt/vram_management/layers.py +213 -0
- examples/1.mp4 +3 -0
- examples/10.mp4 +3 -0
- examples/178db6e89ab682bfc612a3290fec58dd.mp4 +3 -0
- examples/1b0daeb776471c7389b36cee53049417.mp4 +3 -0
- examples/2.mp4 +3 -0
- examples/3.mp4 +3 -0
- examples/30.mp4 +3 -0
- examples/31.mp4 +3 -0
- examples/32.mp4 +3 -0
- examples/33.mp4 +3 -0
- examples/35.mp4 +3 -0
- examples/36.mp4 +3 -0
- examples/39.mp4 +3 -0
- examples/40.mp4 +3 -0
- examples/5.mp4 +3 -0
- examples/69230f105ad8740e08d743a8ee11c651.mp4 +3 -0
- examples/7.mp4 +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.egg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
**/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
*mp4
|
| 6 |
+
!examples/*.mp4
|
| 7 |
+
data/*
|
| 8 |
+
logs/*
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
*pyc
|
| 13 |
+
|
| 14 |
+
checkpoints/*
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
*egg-info
|
| 21 |
+
|
| 22 |
+
frames
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
*png
|
| 28 |
+
|
| 29 |
+
*gif
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
*ipynb
|
| 33 |
+
daniel_tools
|
| 34 |
+
daniel_tools/*
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
*jpg
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
build
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
run*sh
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
.m*
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
scripts/*
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
*.sh
|
| 59 |
+
wandb
|
| 60 |
+
benchmark
|
| 61 |
+
*jsonl
|
| 62 |
+
*json
|
| 63 |
+
*npz
|
| 64 |
+
DKT_models
|
| 65 |
+
trash
|
| 66 |
+
gradio
|
| 67 |
+
tmp*
|
| 68 |
+
*.webp
|
| 69 |
+
*.ico
|
| 70 |
+
*.model
|
| 71 |
+
__pycache__/
|
| 72 |
+
*.pyc
|
| 73 |
+
**/tokenizer_configs/**/vocab.txt
|
| 74 |
+
**/tokenizer_configs/**/spiece.model
|
| 75 |
+
**/tokenizer_configs/**/tokenizer.model
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
dist
|
| 80 |
+
build
|
| 81 |
+
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: DKT 1
|
| 3 |
+
emoji: 🏃
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: gray
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 6.0.2
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
short_description: DKT-1
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,690 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import subprocess
|
| 6 |
+
|
| 7 |
+
def install(package):
|
| 8 |
+
subprocess.check_call([os.sys.executable, "-m", "pip", "install", package])
|
| 9 |
+
|
| 10 |
+
install("torchvision")
|
| 11 |
+
install("loguru")
|
| 12 |
+
install("imageio")
|
| 13 |
+
install("modelscope")
|
| 14 |
+
install("einops")
|
| 15 |
+
install("safetensors")
|
| 16 |
+
install("transformers")
|
| 17 |
+
install("ftfy")
|
| 18 |
+
install("accelerate")
|
| 19 |
+
install("sentencepiece")
|
| 20 |
+
install("spaces")
|
| 21 |
+
install("opencv-python")
|
| 22 |
+
install("trimesh")
|
| 23 |
+
install("gradio_litmodel3d")
|
| 24 |
+
install("open3d")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
import gradio as gr
|
| 31 |
+
import numpy as np
|
| 32 |
+
import torch
|
| 33 |
+
from PIL import Image
|
| 34 |
+
from loguru import logger
|
| 35 |
+
from tqdm import tqdm
|
| 36 |
+
from tools.common_utils import save_video
|
| 37 |
+
from dkt.pipelines.wan_video_new import WanVideoPipeline, ModelConfig
|
| 38 |
+
try:
|
| 39 |
+
import gradio_client.utils as _gc_utils
|
| 40 |
+
if hasattr(_gc_utils, "get_type"):
|
| 41 |
+
_orig_get_type = _gc_utils.get_type
|
| 42 |
+
def _get_type_safe(schema):
|
| 43 |
+
if not isinstance(schema, dict):
|
| 44 |
+
return "Any"
|
| 45 |
+
return _orig_get_type(schema)
|
| 46 |
+
_gc_utils.get_type = _get_type_safe
|
| 47 |
+
except Exception:
|
| 48 |
+
pass
|
| 49 |
+
|
| 50 |
+
# Additional guard: handle boolean JSON Schemas and parsing errors
|
| 51 |
+
try:
|
| 52 |
+
import gradio_client.utils as _gc_utils
|
| 53 |
+
# Wrap the internal _json_schema_to_python_type if present
|
| 54 |
+
if hasattr(_gc_utils, "_json_schema_to_python_type"):
|
| 55 |
+
_orig_internal = _gc_utils._json_schema_to_python_type
|
| 56 |
+
def _json_schema_to_python_type_safe(schema, defs=None):
|
| 57 |
+
if isinstance(schema, bool):
|
| 58 |
+
return "Any"
|
| 59 |
+
try:
|
| 60 |
+
return _orig_internal(schema, defs)
|
| 61 |
+
except Exception:
|
| 62 |
+
return "Any"
|
| 63 |
+
_gc_utils._json_schema_to_python_type = _json_schema_to_python_type_safe
|
| 64 |
+
|
| 65 |
+
# Also wrap the public json_schema_to_python_type to be extra defensive
|
| 66 |
+
if hasattr(_gc_utils, "json_schema_to_python_type"):
|
| 67 |
+
_orig_public = _gc_utils.json_schema_to_python_type
|
| 68 |
+
def json_schema_to_python_type_safe(schema):
|
| 69 |
+
try:
|
| 70 |
+
return _orig_public(schema)
|
| 71 |
+
except Exception:
|
| 72 |
+
return "Any"
|
| 73 |
+
_gc_utils.json_schema_to_python_type = json_schema_to_python_type_safe
|
| 74 |
+
except Exception:
|
| 75 |
+
pass
|
| 76 |
+
|
| 77 |
+
import cv2
|
| 78 |
+
import copy
|
| 79 |
+
import trimesh
|
| 80 |
+
from gradio_litmodel3d import LitModel3D
|
| 81 |
+
from os.path import join
|
| 82 |
+
from tools.depth2pcd import depth2pcd
|
| 83 |
+
|
| 84 |
+
try:
|
| 85 |
+
from moge.model.v2 import MoGeModel
|
| 86 |
+
|
| 87 |
+
except:
|
| 88 |
+
os.system('pip install git+https://github.com/microsoft/MoGe.git -i https://pypi.org/simple/ --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host files.pythonhosted.org')
|
| 89 |
+
from moge.model.v2 import MoGeModel
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
|
| 93 |
+
import glob
|
| 94 |
+
import datetime
|
| 95 |
+
import shutil
|
| 96 |
+
import tempfile
|
| 97 |
+
import spaces
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
PIPE_1_3B = None
|
| 101 |
+
MOGE_MODULE = None
|
| 102 |
+
#* better for bg: logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
|
| 103 |
+
PROMPT = 'depth'
|
| 104 |
+
NEGATIVE_PROMPT = ''
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def resize_frame(frame, height, width):
|
| 109 |
+
frame = np.array(frame)
|
| 110 |
+
frame = torch.from_numpy(frame).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
| 111 |
+
frame = torch.nn.functional.interpolate(frame, (height, width), mode="bicubic", align_corners=False, antialias=True)
|
| 112 |
+
frame = (frame.squeeze(0).permute(1, 2, 0).clamp(0, 1) * 255).byte().numpy()
|
| 113 |
+
frame = Image.fromarray(frame)
|
| 114 |
+
return frame
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def pmap_to_glb(point_map, valid_mask, frame) -> trimesh.Scene:
|
| 119 |
+
pts_3d = point_map[valid_mask] * np.array([-1, -1, 1])
|
| 120 |
+
pts_rgb = frame[valid_mask]
|
| 121 |
+
|
| 122 |
+
# Initialize a 3D scene
|
| 123 |
+
scene_3d = trimesh.Scene()
|
| 124 |
+
|
| 125 |
+
# Add point cloud data to the scene
|
| 126 |
+
point_cloud_data = trimesh.PointCloud(
|
| 127 |
+
vertices=pts_3d, colors=pts_rgb
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
scene_3d.add_geometry(point_cloud_data)
|
| 131 |
+
return scene_3d
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def create_simple_glb_from_pointcloud(points, colors, glb_filename):
|
| 136 |
+
try:
|
| 137 |
+
if len(points) == 0:
|
| 138 |
+
logger.warning(f"No valid points to create GLB for {glb_filename}")
|
| 139 |
+
return False
|
| 140 |
+
|
| 141 |
+
if colors is not None:
|
| 142 |
+
# logger.info(f"Adding colors to GLB: shape={colors.shape}, range=[{colors.min():.3f}, {colors.max():.3f}]")
|
| 143 |
+
pts_rgb = colors
|
| 144 |
+
else:
|
| 145 |
+
logger.info("No colors provided, adding default white colors")
|
| 146 |
+
pts_rgb = np.ones((len(points), 3))
|
| 147 |
+
|
| 148 |
+
valid_mask = np.ones(len(points), dtype=bool)
|
| 149 |
+
|
| 150 |
+
scene_3d = pmap_to_glb(points, valid_mask, pts_rgb)
|
| 151 |
+
|
| 152 |
+
scene_3d.export(glb_filename)
|
| 153 |
+
# logger.info(f"Saved GLB file using trimesh: {glb_filename}")
|
| 154 |
+
|
| 155 |
+
return True
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
logger.error(f"Error creating GLB from pointcloud using trimesh: {str(e)}")
|
| 159 |
+
return False
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def extract_frames_from_video_file(video_path):
|
| 166 |
+
try:
|
| 167 |
+
cap = cv2.VideoCapture(video_path)
|
| 168 |
+
frames = []
|
| 169 |
+
|
| 170 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 171 |
+
if fps <= 0:
|
| 172 |
+
fps = 15.0
|
| 173 |
+
|
| 174 |
+
while True:
|
| 175 |
+
ret, frame = cap.read()
|
| 176 |
+
if not ret:
|
| 177 |
+
break
|
| 178 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 179 |
+
frame_rgb = Image.fromarray(frame_rgb)
|
| 180 |
+
frames.append(frame_rgb)
|
| 181 |
+
|
| 182 |
+
cap.release()
|
| 183 |
+
return frames, fps
|
| 184 |
+
except Exception as e:
|
| 185 |
+
logger.error(f"Error extracting frames from {video_path}: {str(e)}")
|
| 186 |
+
return [], 15.0
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def load_moge_model(device="cuda:0"):
|
| 191 |
+
global MOGE_MODULE
|
| 192 |
+
if MOGE_MODULE is not None:
|
| 193 |
+
return MOGE_MODULE
|
| 194 |
+
logger.info(f"Loading MoGe model on {device}...")
|
| 195 |
+
MOGE_MODULE = MoGeModel.from_pretrained('Ruicheng/moge-2-vitl-normal').to(device)
|
| 196 |
+
return MOGE_MODULE
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def load_model_1_3b(device="cuda:0"):
|
| 200 |
+
global PIPE_1_3B
|
| 201 |
+
|
| 202 |
+
if PIPE_1_3B is not None:
|
| 203 |
+
return PIPE_1_3B
|
| 204 |
+
|
| 205 |
+
logger.info(f"Loading 1.3B model on {device}...")
|
| 206 |
+
|
| 207 |
+
pipe = WanVideoPipeline.from_pretrained(
|
| 208 |
+
torch_dtype=torch.bfloat16,
|
| 209 |
+
device=device,
|
| 210 |
+
model_configs=[
|
| 211 |
+
ModelConfig(
|
| 212 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 213 |
+
origin_file_pattern="diffusion_pytorch_model*.safetensors",
|
| 214 |
+
offload_device="cpu",
|
| 215 |
+
),
|
| 216 |
+
ModelConfig(
|
| 217 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 218 |
+
origin_file_pattern="models_t5_umt5-xxl-enc-bf16.pth",
|
| 219 |
+
offload_device="cpu",
|
| 220 |
+
),
|
| 221 |
+
ModelConfig(
|
| 222 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 223 |
+
origin_file_pattern="Wan2.1_VAE.pth",
|
| 224 |
+
offload_device="cpu",
|
| 225 |
+
),
|
| 226 |
+
ModelConfig(
|
| 227 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 228 |
+
origin_file_pattern="models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
|
| 229 |
+
offload_device="cpu",
|
| 230 |
+
),
|
| 231 |
+
],
|
| 232 |
+
training_strategy="origin",
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
lora_config = ModelConfig(
|
| 237 |
+
model_id="Daniellesry/DKT-Depth-1-3B",
|
| 238 |
+
origin_file_pattern="dkt-1-3B.safetensors",
|
| 239 |
+
offload_device="cpu",
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
lora_config.download_if_necessary(use_usp=False)
|
| 243 |
+
|
| 244 |
+
pipe.load_lora(pipe.dit, lora_config.path, alpha=1.0)#todo is it work?
|
| 245 |
+
pipe.enable_vram_management()
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
PIPE_1_3B = pipe
|
| 249 |
+
|
| 250 |
+
return pipe
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def get_model(model_size):
|
| 259 |
+
if model_size == "1.3B":
|
| 260 |
+
assert PIPE_1_3B is not None, "1.3B model not initialized"
|
| 261 |
+
return PIPE_1_3B
|
| 262 |
+
else:
|
| 263 |
+
raise ValueError(f"Unsupported model size: {model_size}")
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def process_video(
|
| 268 |
+
video_file,
|
| 269 |
+
model_size,
|
| 270 |
+
height,
|
| 271 |
+
width,
|
| 272 |
+
num_inference_steps,
|
| 273 |
+
window_size,
|
| 274 |
+
overlap
|
| 275 |
+
):
|
| 276 |
+
try:
|
| 277 |
+
pipe = get_model(model_size)
|
| 278 |
+
if pipe is None:
|
| 279 |
+
return None, f"Model {model_size} not initialized. Please restart the application."
|
| 280 |
+
|
| 281 |
+
tmp_video_path = video_file
|
| 282 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 283 |
+
|
| 284 |
+
# 使用临时目录存储所有文件
|
| 285 |
+
cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
original_filename = f"input_{timestamp}.mp4"
|
| 289 |
+
dst_path = os.path.join(cur_save_dir, original_filename)
|
| 290 |
+
shutil.copy2(tmp_video_path, dst_path)
|
| 291 |
+
origin_frames, input_fps = extract_frames_from_video_file(tmp_video_path)
|
| 292 |
+
|
| 293 |
+
if not origin_frames:
|
| 294 |
+
return None, "Failed to extract frames from video"
|
| 295 |
+
|
| 296 |
+
logger.info(f"Extracted {len(origin_frames)} frames from video")
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
original_width, original_height = origin_frames[0].size
|
| 300 |
+
ROTATE = False
|
| 301 |
+
if original_width < original_height:
|
| 302 |
+
ROTATE = True
|
| 303 |
+
origin_frames = [x.transpose(Image.ROTATE_90) for x in origin_frames]
|
| 304 |
+
tmp = original_width
|
| 305 |
+
original_width = original_height
|
| 306 |
+
original_height = tmp
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
frames = [resize_frame(frame, height, width) for frame in origin_frames]
|
| 311 |
+
frame_length = len(frames)
|
| 312 |
+
if (frame_length - 1) % 4 != 0:
|
| 313 |
+
new_len = ((frame_length - 1) // 4 + 1) * 4 + 1
|
| 314 |
+
frames = frames + [copy.deepcopy(frames[-1]) for _ in range(new_len - frame_length)]
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
control_video = frames
|
| 318 |
+
video, vae_outs = pipe(
|
| 319 |
+
prompt=PROMPT,
|
| 320 |
+
negative_prompt=NEGATIVE_PROMPT,
|
| 321 |
+
control_video=control_video,
|
| 322 |
+
height=height,
|
| 323 |
+
width=width,
|
| 324 |
+
num_frames=len(control_video),
|
| 325 |
+
seed=1,
|
| 326 |
+
tiled=False,
|
| 327 |
+
num_inference_steps=num_inference_steps,
|
| 328 |
+
sliding_window_size=window_size,
|
| 329 |
+
sliding_window_stride=window_size - overlap,
|
| 330 |
+
cfg_scale=1.0,
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
#* moge process
|
| 334 |
+
torch.cuda.empty_cache()
|
| 335 |
+
processed_video = video[:frame_length]
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
processed_video = [resize_frame(frame, original_height, original_width) for frame in processed_video]
|
| 339 |
+
if ROTATE:
|
| 340 |
+
processed_video = [x.transpose(Image.ROTATE_270) for x in processed_video]
|
| 341 |
+
origin_frames = [x.transpose(Image.ROTATE_270) for x in origin_frames]
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
output_filename = f"output_{timestamp}.mp4"
|
| 345 |
+
output_path = os.path.join(cur_save_dir, output_filename)
|
| 346 |
+
color_predictions = []
|
| 347 |
+
if PROMPT == 'depth':
|
| 348 |
+
prediced_depth_map_np = [np.array(item).astype(np.float32).mean(-1) for item in processed_video]
|
| 349 |
+
prediced_depth_map_np = np.stack(prediced_depth_map_np)
|
| 350 |
+
prediced_depth_map_np = prediced_depth_map_np/ 255.0
|
| 351 |
+
__min = prediced_depth_map_np.min()
|
| 352 |
+
__max = prediced_depth_map_np.max()
|
| 353 |
+
prediced_depth_map_np = (prediced_depth_map_np - __min) / (__max - __min)
|
| 354 |
+
color_predictions = [colorize_depth_map(item) for item in prediced_depth_map_np]
|
| 355 |
+
else:
|
| 356 |
+
color_predictions = processed_video
|
| 357 |
+
save_video(color_predictions, output_path, fps=input_fps, quality=5)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
frame_num = len(origin_frames)
|
| 362 |
+
resize_W,resize_H = origin_frames[0].size
|
| 363 |
+
|
| 364 |
+
vis_pc_num = 4
|
| 365 |
+
indices = np.linspace(0, frame_num-1, vis_pc_num)
|
| 366 |
+
indices = np.round(indices).astype(np.int32)
|
| 367 |
+
pc_save_dir = os.path.join(cur_save_dir, 'pointclouds')
|
| 368 |
+
os.makedirs(pc_save_dir, exist_ok=True)
|
| 369 |
+
|
| 370 |
+
glb_files = []
|
| 371 |
+
moge_device = MOGE_MODULE.device if MOGE_MODULE is not None else torch.device("cuda:0")
|
| 372 |
+
for idx in tqdm(indices):
|
| 373 |
+
orgin_rgb_frame = origin_frames[idx]
|
| 374 |
+
predicted_depth = processed_video[idx]
|
| 375 |
+
|
| 376 |
+
# Read the input image and convert to tensor (3, H, W) with RGB values normalized to [0, 1]
|
| 377 |
+
input_image_np = np.array(orgin_rgb_frame) # Convert PIL Image to numpy array
|
| 378 |
+
input_image = torch.tensor(input_image_np / 255, dtype=torch.float32, device=moge_device).permute(2, 0, 1)
|
| 379 |
+
|
| 380 |
+
output = MOGE_MODULE.infer(input_image)
|
| 381 |
+
#* "dict_keys(['points', 'intrinsics', 'depth', 'mask', 'normal'])"
|
| 382 |
+
moge_intrinsics = output['intrinsics'].cpu().numpy()
|
| 383 |
+
moge_mask = output['mask'].cpu().numpy()
|
| 384 |
+
moge_depth = output['depth'].cpu().numpy()
|
| 385 |
+
|
| 386 |
+
predicted_depth = np.array(predicted_depth)
|
| 387 |
+
predicted_depth = predicted_depth.mean(-1) / 255.0
|
| 388 |
+
|
| 389 |
+
metric_depth = transfer_pred_disp2depth(predicted_depth, moge_depth, moge_mask)
|
| 390 |
+
|
| 391 |
+
moge_intrinsics[0, 0] *= resize_W
|
| 392 |
+
moge_intrinsics[1, 1] *= resize_H
|
| 393 |
+
moge_intrinsics[0, 2] *= resize_W
|
| 394 |
+
moge_intrinsics[1, 2] *= resize_H
|
| 395 |
+
|
| 396 |
+
# pcd = depth2pcd(metric_depth, moge_intrinsics, color=cv2.cvtColor(input_image_np, cv2.COLOR_BGR2RGB), input_mask=moge_mask, ret_pcd=True)
|
| 397 |
+
pcd = depth2pcd(metric_depth, moge_intrinsics, color=input_image_np, input_mask=moge_mask, ret_pcd=True)
|
| 398 |
+
|
| 399 |
+
# pcd.points = o3d.utility.Vector3dVector(np.asarray(pcd.points) * np.array([1, -1, -1], dtype=np.float32))
|
| 400 |
+
|
| 401 |
+
apply_filter = True
|
| 402 |
+
if apply_filter:
|
| 403 |
+
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=3.0)
|
| 404 |
+
pcd = pcd.select_by_index(ind)
|
| 405 |
+
|
| 406 |
+
#* save pcd: o3d.io.write_point_cloud(f'{pc_save_dir}/{timestamp}_{idx:02d}.ply', pcd)
|
| 407 |
+
points = np.asarray(pcd.points)
|
| 408 |
+
colors = np.asarray(pcd.colors) if pcd.has_colors() else None
|
| 409 |
+
glb_filename = os.path.join(pc_save_dir, f'{timestamp}_{idx:02d}.glb')
|
| 410 |
+
success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
|
| 411 |
+
if not success:
|
| 412 |
+
logger.warning(f"Failed to save GLB file: {glb_filename}")
|
| 413 |
+
|
| 414 |
+
glb_files.append(glb_filename)
|
| 415 |
+
|
| 416 |
+
return output_path, glb_files
|
| 417 |
+
|
| 418 |
+
except Exception as e:
|
| 419 |
+
logger.error(f"Error processing video: {str(e)}")
|
| 420 |
+
return None, f"Error: {str(e)}"
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
def main():
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
#* gradio creation and initialization
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
css = """
|
| 433 |
+
#video-display-container {
|
| 434 |
+
max-height: 100vh;
|
| 435 |
+
}
|
| 436 |
+
#video-display-input {
|
| 437 |
+
max-height: 80vh;
|
| 438 |
+
}
|
| 439 |
+
#video-display-output {
|
| 440 |
+
max-height: 80vh;
|
| 441 |
+
}
|
| 442 |
+
#download {
|
| 443 |
+
height: 62px;
|
| 444 |
+
}
|
| 445 |
+
.title {
|
| 446 |
+
text-align: center;
|
| 447 |
+
}
|
| 448 |
+
.description {
|
| 449 |
+
text-align: center;
|
| 450 |
+
}
|
| 451 |
+
.gradio-examples {
|
| 452 |
+
max-height: 400px;
|
| 453 |
+
overflow-y: auto;
|
| 454 |
+
}
|
| 455 |
+
.gradio-examples .examples-container {
|
| 456 |
+
display: grid;
|
| 457 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
| 458 |
+
gap: 10px;
|
| 459 |
+
padding: 10px;
|
| 460 |
+
}
|
| 461 |
+
.gradio-container .gradio-examples .pagination,
|
| 462 |
+
.gradio-container .gradio-examples .pagination button,
|
| 463 |
+
div[data-testid="examples"] .pagination,
|
| 464 |
+
div[data-testid="examples"] .pagination button {
|
| 465 |
+
font-size: 28px !important;
|
| 466 |
+
font-weight: bold !important;
|
| 467 |
+
padding: 15px 20px !important;
|
| 468 |
+
min-width: 60px !important;
|
| 469 |
+
height: 60px !important;
|
| 470 |
+
border-radius: 10px !important;
|
| 471 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 472 |
+
color: white !important;
|
| 473 |
+
border: none !important;
|
| 474 |
+
cursor: pointer !important;
|
| 475 |
+
margin: 8px !important;
|
| 476 |
+
display: inline-block !important;
|
| 477 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
|
| 478 |
+
transition: all 0.3s ease !important;
|
| 479 |
+
}
|
| 480 |
+
|
| 481 |
+
div[data-testid="examples"] .pagination button:not(.active),
|
| 482 |
+
.gradio-container .gradio-examples .pagination button:not(.active) {
|
| 483 |
+
font-size: 32px !important;
|
| 484 |
+
font-weight: bold !important;
|
| 485 |
+
padding: 15px 20px !important;
|
| 486 |
+
min-width: 60px !important;
|
| 487 |
+
height: 60px !important;
|
| 488 |
+
background: linear-gradient(135deg, #8a9cf0 0%, #9a6bb2 100%) !important;
|
| 489 |
+
opacity: 0.8 !important;
|
| 490 |
+
}
|
| 491 |
+
|
| 492 |
+
div[data-testid="examples"] .pagination button:hover,
|
| 493 |
+
.gradio-container .gradio-examples .pagination button:hover {
|
| 494 |
+
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%) !important;
|
| 495 |
+
transform: translateY(-2px) !important;
|
| 496 |
+
box-shadow: 0 6px 12px rgba(0,0,0,0.3) !important;
|
| 497 |
+
opacity: 1 !important;
|
| 498 |
+
}
|
| 499 |
+
|
| 500 |
+
div[data-testid="examples"] .pagination button.active,
|
| 501 |
+
.gradio-container .gradio-examples .pagination button.active {
|
| 502 |
+
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%) !important;
|
| 503 |
+
box-shadow: 0 4px 8px rgba(17,153,142,0.4) !important;
|
| 504 |
+
opacity: 1 !important;
|
| 505 |
+
}
|
| 506 |
+
|
| 507 |
+
button[class*="pagination"],
|
| 508 |
+
button[class*="page"] {
|
| 509 |
+
font-size: 28px !important;
|
| 510 |
+
font-weight: bold !important;
|
| 511 |
+
padding: 15px 20px !important;
|
| 512 |
+
min-width: 60px !important;
|
| 513 |
+
height: 60px !important;
|
| 514 |
+
border-radius: 10px !important;
|
| 515 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 516 |
+
color: white !important;
|
| 517 |
+
border: none !important;
|
| 518 |
+
cursor: pointer !important;
|
| 519 |
+
margin: 8px !important;
|
| 520 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
|
| 521 |
+
transition: all 0.3s ease !important;
|
| 522 |
+
}
|
| 523 |
+
"""
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
head_html = """
|
| 528 |
+
<link rel="icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
|
| 529 |
+
<link rel="shortcut icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
|
| 530 |
+
<link rel="icon" type="image/png" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
|
| 531 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 532 |
+
"""
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
# title = "# Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation "
|
| 536 |
+
# description = """Official demo for **DKT **."""
|
| 537 |
+
|
| 538 |
+
# with gr.Blocks(css=css, title="DKT - Diffusion Knows Transparency", favicon_path="favicon.ico") as demo:
|
| 539 |
+
|
| 540 |
+
height = 480
|
| 541 |
+
width = 832
|
| 542 |
+
window_size = 21
|
| 543 |
+
with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
|
| 544 |
+
# gr.Markdown(title, elem_classes=["title"])
|
| 545 |
+
# gr.Markdown(description, elem_classes=["description"])
|
| 546 |
+
# gr.Markdown("### Video Processing Demo", elem_classes=["description"])
|
| 547 |
+
|
| 548 |
+
with gr.Row():
|
| 549 |
+
with gr.Column():
|
| 550 |
+
input_video = gr.Video(label="Input Video", elem_id='video-display-input')
|
| 551 |
+
|
| 552 |
+
model_size = gr.Radio(
|
| 553 |
+
choices=["1.3B", "14B"],
|
| 554 |
+
value="1.3B",
|
| 555 |
+
label="Model Size"
|
| 556 |
+
)
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
with gr.Accordion("Advanced Parameters", open=False):
|
| 560 |
+
num_inference_steps = gr.Slider(
|
| 561 |
+
minimum=1, maximum=50, value=5, step=1,
|
| 562 |
+
label="Number of Inference Steps"
|
| 563 |
+
)
|
| 564 |
+
overlap = gr.Slider(
|
| 565 |
+
minimum=1, maximum=20, value=3, step=1,
|
| 566 |
+
label="Overlap"
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
submit = gr.Button(value="Compute Depth", variant="primary")
|
| 570 |
+
|
| 571 |
+
with gr.Column():
|
| 572 |
+
output_video = gr.Video(
|
| 573 |
+
label="Depth Outputs",
|
| 574 |
+
elem_id='video-display-output',
|
| 575 |
+
autoplay=True
|
| 576 |
+
)
|
| 577 |
+
vis_video = gr.Video(
|
| 578 |
+
label="Visualization Video",
|
| 579 |
+
visible=False,
|
| 580 |
+
autoplay=True
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
with gr.Row():
|
| 584 |
+
gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
|
| 585 |
+
|
| 586 |
+
with gr.Row(equal_height=True):
|
| 587 |
+
with gr.Column(scale=1):
|
| 588 |
+
output_point_map0 = LitModel3D(
|
| 589 |
+
label="Point Cloud Key Frame 1",
|
| 590 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 591 |
+
interactive=False,
|
| 592 |
+
# height=400,
|
| 593 |
+
|
| 594 |
+
)
|
| 595 |
+
with gr.Column(scale=1):
|
| 596 |
+
output_point_map1 = LitModel3D(
|
| 597 |
+
label="Point Cloud Key Frame 2",
|
| 598 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 599 |
+
interactive=False
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
with gr.Row(equal_height=True):
|
| 604 |
+
|
| 605 |
+
with gr.Column(scale=1):
|
| 606 |
+
output_point_map2 = LitModel3D(
|
| 607 |
+
label="Point Cloud Key Frame 3",
|
| 608 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 609 |
+
interactive=False
|
| 610 |
+
)
|
| 611 |
+
with gr.Column(scale=1):
|
| 612 |
+
output_point_map3 = LitModel3D(
|
| 613 |
+
label="Point Cloud Key Frame 4",
|
| 614 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 615 |
+
interactive=False
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
def on_submit(video_file, model_size, num_inference_steps, overlap):
|
| 619 |
+
if video_file is None:
|
| 620 |
+
return None, None, None, None, None, None, "Please upload a video file"
|
| 621 |
+
|
| 622 |
+
try:
|
| 623 |
+
|
| 624 |
+
output_path, glb_files = process_video(
|
| 625 |
+
video_file, model_size, height, width, num_inference_steps, window_size, overlap
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
|
| 629 |
+
|
| 630 |
+
if output_path is None:
|
| 631 |
+
return None, None, None, None, None, None, glb_files
|
| 632 |
+
|
| 633 |
+
model3d_outputs = [None] * 4
|
| 634 |
+
if glb_files:
|
| 635 |
+
for i, glb_file in enumerate(glb_files[:4]):
|
| 636 |
+
if os.path.exists(glb_file):
|
| 637 |
+
model3d_outputs[i] = glb_file
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
return output_path, None, *model3d_outputs
|
| 642 |
+
|
| 643 |
+
except Exception as e:
|
| 644 |
+
return None, None, None, None, None, None, f"Error: {str(e)}"
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
submit.click(
|
| 648 |
+
on_submit,
|
| 649 |
+
inputs=[
|
| 650 |
+
input_video, model_size, num_inference_steps, overlap
|
| 651 |
+
],
|
| 652 |
+
outputs=[
|
| 653 |
+
output_video, vis_video,
|
| 654 |
+
output_point_map0, output_point_map1, output_point_map2, output_point_map3
|
| 655 |
+
]
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
example_files = glob.glob('examples/*')
|
| 661 |
+
if example_files:
|
| 662 |
+
example_inputs = []
|
| 663 |
+
for file_path in example_files:
|
| 664 |
+
example_inputs.append([file_path, "1.3B"])
|
| 665 |
+
|
| 666 |
+
examples = gr.Examples(
|
| 667 |
+
examples=example_inputs,
|
| 668 |
+
inputs=[input_video, model_size],
|
| 669 |
+
outputs=[
|
| 670 |
+
output_video, vis_video,
|
| 671 |
+
output_point_map0, output_point_map1, output_point_map2, output_point_map3
|
| 672 |
+
],
|
| 673 |
+
fn=on_submit,
|
| 674 |
+
examples_per_page=6
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
#* main code, model and moge model initialization
|
| 679 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 680 |
+
load_model_1_3b(device=device)
|
| 681 |
+
load_moge_model(device=device)
|
| 682 |
+
torch.cuda.empty_cache()
|
| 683 |
+
|
| 684 |
+
demo.queue().launch(share = True,server_name="0.0.0.0", server_port=7860)
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
if __name__ == '__main__':
|
| 688 |
+
process_video = spaces.GPU(process_video)
|
| 689 |
+
|
| 690 |
+
main()
|
dkt/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .models import *
|
| 2 |
+
from .prompters import *
|
| 3 |
+
from .schedulers import *
|
| 4 |
+
from .pipelines import *
|
dkt/configs/__init__.py
ADDED
|
File without changes
|
dkt/configs/model_config.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing_extensions import Literal, TypeAlias
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from ..models.wan_video_dit import WanModel
|
| 5 |
+
from ..models.wan_video_text_encoder import WanTextEncoder
|
| 6 |
+
from ..models.wan_video_image_encoder import WanImageEncoder
|
| 7 |
+
from ..models.wan_video_vae import WanVideoVAE, WanVideoVAE38
|
| 8 |
+
from ..models.wan_video_motion_controller import WanMotionControllerModel
|
| 9 |
+
from ..models.wan_video_vace import VaceWanModel
|
| 10 |
+
model_loader_configs = [
|
| 11 |
+
# These configs are provided for detecting model type automatically.
|
| 12 |
+
# The format is (state_dict_keys_hash, state_dict_keys_hash_with_shape, model_names, model_classes, model_resource)
|
| 13 |
+
(None, "9269f8db9040a9d860eaca435be61814", ["wan_video_dit"], [WanModel], "civitai"),
|
| 14 |
+
(None, "aafcfd9672c3a2456dc46e1cb6e52c70", ["wan_video_dit"], [WanModel], "civitai"),
|
| 15 |
+
(None, "6bfcfb3b342cb286ce886889d519a77e", ["wan_video_dit"], [WanModel], "civitai"),
|
| 16 |
+
(None, "6d6ccde6845b95ad9114ab993d917893", ["wan_video_dit"], [WanModel], "civitai"),
|
| 17 |
+
(None, "6bfcfb3b342cb286ce886889d519a77e", ["wan_video_dit"], [WanModel], "civitai"),
|
| 18 |
+
(None, "349723183fc063b2bfc10bb2835cf677", ["wan_video_dit"], [WanModel], "civitai"),
|
| 19 |
+
(None, "efa44cddf936c70abd0ea28b6cbe946c", ["wan_video_dit"], [WanModel], "civitai"),
|
| 20 |
+
(None, "3ef3b1f8e1dab83d5b71fd7b617f859f", ["wan_video_dit"], [WanModel], "civitai"),
|
| 21 |
+
(None, "70ddad9d3a133785da5ea371aae09504", ["wan_video_dit"], [WanModel], "civitai"),
|
| 22 |
+
(None, "26bde73488a92e64cc20b0a7485b9e5b", ["wan_video_dit"], [WanModel], "civitai"),
|
| 23 |
+
(None, "ac6a5aa74f4a0aab6f64eb9a72f19901", ["wan_video_dit"], [WanModel], "civitai"),
|
| 24 |
+
(None, "b61c605c2adbd23124d152ed28e049ae", ["wan_video_dit"], [WanModel], "civitai"),
|
| 25 |
+
(None, "1f5ab7703c6fc803fdded85ff040c316", ["wan_video_dit"], [WanModel], "civitai"),
|
| 26 |
+
(None, "5b013604280dd715f8457c6ed6d6a626", ["wan_video_dit"], [WanModel], "civitai"),
|
| 27 |
+
(None, "a61453409b67cd3246cf0c3bebad47ba", ["wan_video_dit", "wan_video_vace"], [WanModel, VaceWanModel], "civitai"),
|
| 28 |
+
(None, "7a513e1f257a861512b1afd387a8ecd9", ["wan_video_dit", "wan_video_vace"], [WanModel, VaceWanModel], "civitai"),
|
| 29 |
+
(None, "cb104773c6c2cb6df4f9529ad5c60d0b", ["wan_video_dit"], [WanModel], "diffusers"),
|
| 30 |
+
(None, "9c8818c2cbea55eca56c7b447df170da", ["wan_video_text_encoder"], [WanTextEncoder], "civitai"),
|
| 31 |
+
(None, "5941c53e207d62f20f9025686193c40b", ["wan_video_image_encoder"], [WanImageEncoder], "civitai"),
|
| 32 |
+
(None, "1378ea763357eea97acdef78e65d6d96", ["wan_video_vae"], [WanVideoVAE], "civitai"),
|
| 33 |
+
(None, "ccc42284ea13e1ad04693284c7a09be6", ["wan_video_vae"], [WanVideoVAE], "civitai"),
|
| 34 |
+
(None, "e1de6c02cdac79f8b739f4d3698cd216", ["wan_video_vae"], [WanVideoVAE38], "civitai"),
|
| 35 |
+
(None, "dbd5ec76bbf977983f972c151d545389", ["wan_video_motion_controller"], [WanMotionControllerModel], "civitai"),
|
| 36 |
+
]
|
| 37 |
+
huggingface_model_loader_configs = [
|
| 38 |
+
# These configs are provided for detecting model type automatically.
|
| 39 |
+
# The format is (architecture_in_huggingface_config, huggingface_lib, model_name, redirected_architecture)
|
| 40 |
+
("ChatGLMModel", "dkt.models.kolors_text_encoder", "kolors_text_encoder", None),
|
| 41 |
+
("MarianMTModel", "transformers.models.marian.modeling_marian", "translator", None),
|
| 42 |
+
("BloomForCausalLM", "transformers.models.bloom.modeling_bloom", "beautiful_prompt", None),
|
| 43 |
+
("Qwen2ForCausalLM", "transformers.models.qwen2.modeling_qwen2", "qwen_prompt", None),
|
| 44 |
+
# ("LlamaForCausalLM", "transformers.models.llama.modeling_llama", "omost_prompt", None),
|
| 45 |
+
("T5EncoderModel", "dkt.models.flux_text_encoder", "flux_text_encoder_2", "FluxTextEncoder2"),
|
| 46 |
+
("CogVideoXTransformer3DModel", "dkt.models.cog_dit", "cog_dit", "CogDiT"),
|
| 47 |
+
("SiglipModel", "transformers.models.siglip.modeling_siglip", "siglip_vision_model", "SiglipVisionModel"),
|
| 48 |
+
("LlamaForCausalLM", "dkt.models.hunyuan_video_text_encoder", "hunyuan_video_text_encoder_2", "HunyuanVideoLLMEncoder"),
|
| 49 |
+
("LlavaForConditionalGeneration", "dkt.models.hunyuan_video_text_encoder", "hunyuan_video_text_encoder_2", "HunyuanVideoMLLMEncoder"),
|
| 50 |
+
("Step1Model", "dkt.models.stepvideo_text_encoder", "stepvideo_text_encoder_2", "STEP1TextEncoder"),
|
| 51 |
+
("Qwen2_5_VLForConditionalGeneration", "dkt.models.qwenvl", "qwenvl", "Qwen25VL_7b_Embedder"),
|
| 52 |
+
]
|
| 53 |
+
patch_model_loader_configs = [
|
| 54 |
+
# These configs are provided for detecting model type automatically.
|
| 55 |
+
# The format is (state_dict_keys_hash_with_shape, model_name, model_class, extra_kwargs)
|
| 56 |
+
# ("9a4ab6869ac9b7d6e31f9854e397c867", ["svd_unet"], [SVDUNet], {"add_positional_conv": 128}),
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
preset_models_on_huggingface = {
|
| 60 |
+
|
| 61 |
+
}
|
| 62 |
+
preset_models_on_modelscope = {
|
| 63 |
+
|
| 64 |
+
}
|
| 65 |
+
Preset_model_id: TypeAlias = Literal[
|
| 66 |
+
...
|
| 67 |
+
|
| 68 |
+
]
|
dkt/lora/__init__.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class GeneralLoRALoader:
|
| 6 |
+
def __init__(self, device="cpu", torch_dtype=torch.float32):
|
| 7 |
+
self.device = device
|
| 8 |
+
self.torch_dtype = torch_dtype
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_name_dict(self, lora_state_dict):
|
| 12 |
+
lora_name_dict = {}
|
| 13 |
+
for key in lora_state_dict:
|
| 14 |
+
if ".lora_B." not in key:
|
| 15 |
+
continue
|
| 16 |
+
keys = key.split(".")
|
| 17 |
+
if len(keys) > keys.index("lora_B") + 2:
|
| 18 |
+
keys.pop(keys.index("lora_B") + 1)
|
| 19 |
+
keys.pop(keys.index("lora_B"))
|
| 20 |
+
if keys[0] == "diffusion_model":
|
| 21 |
+
keys.pop(0)
|
| 22 |
+
keys.pop(-1)
|
| 23 |
+
target_name = ".".join(keys)
|
| 24 |
+
lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A."))
|
| 25 |
+
return lora_name_dict
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load(self, model: torch.nn.Module, state_dict_lora, alpha=1.0):
|
| 29 |
+
updated_num = 0
|
| 30 |
+
lora_name_dict = self.get_name_dict(state_dict_lora)
|
| 31 |
+
for name, module in model.named_modules():
|
| 32 |
+
if name in lora_name_dict:
|
| 33 |
+
weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=self.device, dtype=self.torch_dtype)
|
| 34 |
+
weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=self.device, dtype=self.torch_dtype)
|
| 35 |
+
if len(weight_up.shape) == 4:
|
| 36 |
+
weight_up = weight_up.squeeze(3).squeeze(2)
|
| 37 |
+
weight_down = weight_down.squeeze(3).squeeze(2)
|
| 38 |
+
weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
| 39 |
+
else:
|
| 40 |
+
weight_lora = alpha * torch.mm(weight_up, weight_down)
|
| 41 |
+
state_dict = module.state_dict()
|
| 42 |
+
state_dict["weight"] = state_dict["weight"].to(device=self.device, dtype=self.torch_dtype) + weight_lora
|
| 43 |
+
module.load_state_dict(state_dict)
|
| 44 |
+
updated_num += 1
|
| 45 |
+
print(f"{updated_num} tensors are updated by LoRA.")
|
dkt/models/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .model_manager import *
|
dkt/models/attention.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from einops import rearrange
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def low_version_attention(query, key, value, attn_bias=None):
|
| 6 |
+
scale = 1 / query.shape[-1] ** 0.5
|
| 7 |
+
query = query * scale
|
| 8 |
+
attn = torch.matmul(query, key.transpose(-2, -1))
|
| 9 |
+
if attn_bias is not None:
|
| 10 |
+
attn = attn + attn_bias
|
| 11 |
+
attn = attn.softmax(-1)
|
| 12 |
+
return attn @ value
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class Attention(torch.nn.Module):
|
| 16 |
+
|
| 17 |
+
def __init__(self, q_dim, num_heads, head_dim, kv_dim=None, bias_q=False, bias_kv=False, bias_out=False):
|
| 18 |
+
super().__init__()
|
| 19 |
+
dim_inner = head_dim * num_heads
|
| 20 |
+
kv_dim = kv_dim if kv_dim is not None else q_dim
|
| 21 |
+
self.num_heads = num_heads
|
| 22 |
+
self.head_dim = head_dim
|
| 23 |
+
|
| 24 |
+
self.to_q = torch.nn.Linear(q_dim, dim_inner, bias=bias_q)
|
| 25 |
+
self.to_k = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv)
|
| 26 |
+
self.to_v = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv)
|
| 27 |
+
self.to_out = torch.nn.Linear(dim_inner, q_dim, bias=bias_out)
|
| 28 |
+
|
| 29 |
+
def interact_with_ipadapter(self, hidden_states, q, ip_k, ip_v, scale=1.0):
|
| 30 |
+
batch_size = q.shape[0]
|
| 31 |
+
ip_k = ip_k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
| 32 |
+
ip_v = ip_v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
| 33 |
+
ip_hidden_states = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v)
|
| 34 |
+
hidden_states = hidden_states + scale * ip_hidden_states
|
| 35 |
+
return hidden_states
|
| 36 |
+
|
| 37 |
+
def torch_forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None, ipadapter_kwargs=None, qkv_preprocessor=None):
|
| 38 |
+
if encoder_hidden_states is None:
|
| 39 |
+
encoder_hidden_states = hidden_states
|
| 40 |
+
|
| 41 |
+
batch_size = encoder_hidden_states.shape[0]
|
| 42 |
+
|
| 43 |
+
q = self.to_q(hidden_states)
|
| 44 |
+
k = self.to_k(encoder_hidden_states)
|
| 45 |
+
v = self.to_v(encoder_hidden_states)
|
| 46 |
+
|
| 47 |
+
q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
| 48 |
+
k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
| 49 |
+
v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
| 50 |
+
|
| 51 |
+
if qkv_preprocessor is not None:
|
| 52 |
+
q, k, v = qkv_preprocessor(q, k, v)
|
| 53 |
+
|
| 54 |
+
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
|
| 55 |
+
if ipadapter_kwargs is not None:
|
| 56 |
+
hidden_states = self.interact_with_ipadapter(hidden_states, q, **ipadapter_kwargs)
|
| 57 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
|
| 58 |
+
hidden_states = hidden_states.to(q.dtype)
|
| 59 |
+
|
| 60 |
+
hidden_states = self.to_out(hidden_states)
|
| 61 |
+
|
| 62 |
+
return hidden_states
|
| 63 |
+
|
| 64 |
+
def xformers_forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None):
|
| 65 |
+
if encoder_hidden_states is None:
|
| 66 |
+
encoder_hidden_states = hidden_states
|
| 67 |
+
|
| 68 |
+
q = self.to_q(hidden_states)
|
| 69 |
+
k = self.to_k(encoder_hidden_states)
|
| 70 |
+
v = self.to_v(encoder_hidden_states)
|
| 71 |
+
|
| 72 |
+
q = rearrange(q, "b f (n d) -> (b n) f d", n=self.num_heads)
|
| 73 |
+
k = rearrange(k, "b f (n d) -> (b n) f d", n=self.num_heads)
|
| 74 |
+
v = rearrange(v, "b f (n d) -> (b n) f d", n=self.num_heads)
|
| 75 |
+
|
| 76 |
+
if attn_mask is not None:
|
| 77 |
+
hidden_states = low_version_attention(q, k, v, attn_bias=attn_mask)
|
| 78 |
+
else:
|
| 79 |
+
import xformers.ops as xops
|
| 80 |
+
hidden_states = xops.memory_efficient_attention(q, k, v)
|
| 81 |
+
hidden_states = rearrange(hidden_states, "(b n) f d -> b f (n d)", n=self.num_heads)
|
| 82 |
+
|
| 83 |
+
hidden_states = hidden_states.to(q.dtype)
|
| 84 |
+
hidden_states = self.to_out(hidden_states)
|
| 85 |
+
|
| 86 |
+
return hidden_states
|
| 87 |
+
|
| 88 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None, ipadapter_kwargs=None, qkv_preprocessor=None):
|
| 89 |
+
return self.torch_forward(hidden_states, encoder_hidden_states=encoder_hidden_states, attn_mask=attn_mask, ipadapter_kwargs=ipadapter_kwargs, qkv_preprocessor=qkv_preprocessor)
|
dkt/models/downloader.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_download
|
| 2 |
+
from modelscope import snapshot_download
|
| 3 |
+
import os, shutil
|
| 4 |
+
from typing_extensions import Literal, TypeAlias
|
| 5 |
+
from typing import List
|
| 6 |
+
from ..configs.model_config import preset_models_on_huggingface, preset_models_on_modelscope, Preset_model_id
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def download_from_modelscope(model_id, origin_file_path, local_dir):
|
| 10 |
+
os.makedirs(local_dir, exist_ok=True)
|
| 11 |
+
file_name = os.path.basename(origin_file_path)
|
| 12 |
+
if file_name in os.listdir(local_dir):
|
| 13 |
+
print(f" {file_name} has been already in {local_dir}.")
|
| 14 |
+
else:
|
| 15 |
+
print(f" Start downloading {os.path.join(local_dir, file_name)}")
|
| 16 |
+
snapshot_download(model_id, allow_file_pattern=origin_file_path, local_dir=local_dir)
|
| 17 |
+
downloaded_file_path = os.path.join(local_dir, origin_file_path)
|
| 18 |
+
target_file_path = os.path.join(local_dir, os.path.split(origin_file_path)[-1])
|
| 19 |
+
if downloaded_file_path != target_file_path:
|
| 20 |
+
shutil.move(downloaded_file_path, target_file_path)
|
| 21 |
+
shutil.rmtree(os.path.join(local_dir, origin_file_path.split("/")[0]))
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def download_from_huggingface(model_id, origin_file_path, local_dir):
|
| 25 |
+
os.makedirs(local_dir, exist_ok=True)
|
| 26 |
+
file_name = os.path.basename(origin_file_path)
|
| 27 |
+
if file_name in os.listdir(local_dir):
|
| 28 |
+
print(f" {file_name} has been already in {local_dir}.")
|
| 29 |
+
else:
|
| 30 |
+
print(f" Start downloading {os.path.join(local_dir, file_name)}")
|
| 31 |
+
hf_hub_download(model_id, origin_file_path, local_dir=local_dir)
|
| 32 |
+
downloaded_file_path = os.path.join(local_dir, origin_file_path)
|
| 33 |
+
target_file_path = os.path.join(local_dir, file_name)
|
| 34 |
+
if downloaded_file_path != target_file_path:
|
| 35 |
+
shutil.move(downloaded_file_path, target_file_path)
|
| 36 |
+
shutil.rmtree(os.path.join(local_dir, origin_file_path.split("/")[0]))
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
Preset_model_website: TypeAlias = Literal[
|
| 40 |
+
"HuggingFace",
|
| 41 |
+
"ModelScope",
|
| 42 |
+
]
|
| 43 |
+
website_to_preset_models = {
|
| 44 |
+
"HuggingFace": preset_models_on_huggingface,
|
| 45 |
+
"ModelScope": preset_models_on_modelscope,
|
| 46 |
+
}
|
| 47 |
+
website_to_download_fn = {
|
| 48 |
+
"HuggingFace": download_from_huggingface,
|
| 49 |
+
"ModelScope": download_from_modelscope,
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def download_customized_models(
|
| 54 |
+
model_id,
|
| 55 |
+
origin_file_path,
|
| 56 |
+
local_dir,
|
| 57 |
+
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
|
| 58 |
+
):
|
| 59 |
+
downloaded_files = []
|
| 60 |
+
for website in downloading_priority:
|
| 61 |
+
# Check if the file is downloaded.
|
| 62 |
+
file_to_download = os.path.join(local_dir, os.path.basename(origin_file_path))
|
| 63 |
+
if file_to_download in downloaded_files:
|
| 64 |
+
continue
|
| 65 |
+
# Download
|
| 66 |
+
website_to_download_fn[website](model_id, origin_file_path, local_dir)
|
| 67 |
+
if os.path.basename(origin_file_path) in os.listdir(local_dir):
|
| 68 |
+
downloaded_files.append(file_to_download)
|
| 69 |
+
return downloaded_files
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def download_models(
|
| 73 |
+
model_id_list: List[Preset_model_id] = [],
|
| 74 |
+
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
|
| 75 |
+
):
|
| 76 |
+
print(f"Downloading models: {model_id_list}")
|
| 77 |
+
downloaded_files = []
|
| 78 |
+
load_files = []
|
| 79 |
+
|
| 80 |
+
for model_id in model_id_list:
|
| 81 |
+
for website in downloading_priority:
|
| 82 |
+
if model_id in website_to_preset_models[website]:
|
| 83 |
+
|
| 84 |
+
# Parse model metadata
|
| 85 |
+
model_metadata = website_to_preset_models[website][model_id]
|
| 86 |
+
if isinstance(model_metadata, list):
|
| 87 |
+
file_data = model_metadata
|
| 88 |
+
else:
|
| 89 |
+
file_data = model_metadata.get("file_list", [])
|
| 90 |
+
|
| 91 |
+
# Try downloading the model from this website.
|
| 92 |
+
model_files = []
|
| 93 |
+
for model_id, origin_file_path, local_dir in file_data:
|
| 94 |
+
# Check if the file is downloaded.
|
| 95 |
+
file_to_download = os.path.join(local_dir, os.path.basename(origin_file_path))
|
| 96 |
+
if file_to_download in downloaded_files:
|
| 97 |
+
continue
|
| 98 |
+
# Download
|
| 99 |
+
website_to_download_fn[website](model_id, origin_file_path, local_dir)
|
| 100 |
+
if os.path.basename(origin_file_path) in os.listdir(local_dir):
|
| 101 |
+
downloaded_files.append(file_to_download)
|
| 102 |
+
model_files.append(file_to_download)
|
| 103 |
+
|
| 104 |
+
# If the model is successfully downloaded, break.
|
| 105 |
+
if len(model_files) > 0:
|
| 106 |
+
if isinstance(model_metadata, dict) and "load_path" in model_metadata:
|
| 107 |
+
model_files = model_metadata["load_path"]
|
| 108 |
+
load_files.extend(model_files)
|
| 109 |
+
break
|
| 110 |
+
|
| 111 |
+
return load_files
|
dkt/models/lora.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from .wan_video_dit import WanModel
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class LoRAFromCivitai:
|
| 7 |
+
def __init__(self):
|
| 8 |
+
self.supported_model_classes = []
|
| 9 |
+
self.lora_prefix = []
|
| 10 |
+
self.renamed_lora_prefix = {}
|
| 11 |
+
self.special_keys = {}
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
|
| 15 |
+
for key in state_dict:
|
| 16 |
+
if ".lora_up" in key:
|
| 17 |
+
return self.convert_state_dict_up_down(state_dict, lora_prefix, alpha)
|
| 18 |
+
return self.convert_state_dict_AB(state_dict, lora_prefix, alpha)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def convert_state_dict_up_down(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
|
| 22 |
+
renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "")
|
| 23 |
+
state_dict_ = {}
|
| 24 |
+
for key in state_dict:
|
| 25 |
+
if ".lora_up" not in key:
|
| 26 |
+
continue
|
| 27 |
+
if not key.startswith(lora_prefix):
|
| 28 |
+
continue
|
| 29 |
+
weight_up = state_dict[key].to(device="cuda", dtype=torch.float16)
|
| 30 |
+
weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16)
|
| 31 |
+
if len(weight_up.shape) == 4:
|
| 32 |
+
weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32)
|
| 33 |
+
weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32)
|
| 34 |
+
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
| 35 |
+
else:
|
| 36 |
+
lora_weight = alpha * torch.mm(weight_up, weight_down)
|
| 37 |
+
target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight"
|
| 38 |
+
for special_key in self.special_keys:
|
| 39 |
+
target_name = target_name.replace(special_key, self.special_keys[special_key])
|
| 40 |
+
state_dict_[target_name] = lora_weight.cpu()
|
| 41 |
+
return state_dict_
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def convert_state_dict_AB(self, state_dict, lora_prefix="", alpha=1.0, device="cuda", torch_dtype=torch.float16):
|
| 45 |
+
state_dict_ = {}
|
| 46 |
+
for key in state_dict:
|
| 47 |
+
if ".lora_B." not in key:
|
| 48 |
+
continue
|
| 49 |
+
if not key.startswith(lora_prefix):
|
| 50 |
+
continue
|
| 51 |
+
weight_up = state_dict[key].to(device=device, dtype=torch_dtype)
|
| 52 |
+
weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype)
|
| 53 |
+
if len(weight_up.shape) == 4:
|
| 54 |
+
weight_up = weight_up.squeeze(3).squeeze(2)
|
| 55 |
+
weight_down = weight_down.squeeze(3).squeeze(2)
|
| 56 |
+
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
| 57 |
+
else:
|
| 58 |
+
lora_weight = alpha * torch.mm(weight_up, weight_down)
|
| 59 |
+
keys = key.split(".")
|
| 60 |
+
keys.pop(keys.index("lora_B"))
|
| 61 |
+
target_name = ".".join(keys)
|
| 62 |
+
target_name = target_name[len(lora_prefix):]
|
| 63 |
+
state_dict_[target_name] = lora_weight.cpu()
|
| 64 |
+
return state_dict_
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None):
|
| 68 |
+
state_dict_model = model.state_dict()
|
| 69 |
+
state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha)
|
| 70 |
+
if model_resource == "diffusers":
|
| 71 |
+
state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora)
|
| 72 |
+
elif model_resource == "civitai":
|
| 73 |
+
state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora)
|
| 74 |
+
if isinstance(state_dict_lora, tuple):
|
| 75 |
+
state_dict_lora = state_dict_lora[0]
|
| 76 |
+
if len(state_dict_lora) > 0:
|
| 77 |
+
print(f" {len(state_dict_lora)} tensors are updated.")
|
| 78 |
+
for name in state_dict_lora:
|
| 79 |
+
fp8=False
|
| 80 |
+
if state_dict_model[name].dtype == torch.float8_e4m3fn:
|
| 81 |
+
state_dict_model[name]= state_dict_model[name].to(state_dict_lora[name].dtype)
|
| 82 |
+
fp8=True
|
| 83 |
+
state_dict_model[name] += state_dict_lora[name].to(
|
| 84 |
+
dtype=state_dict_model[name].dtype, device=state_dict_model[name].device)
|
| 85 |
+
if fp8:
|
| 86 |
+
state_dict_model[name] = state_dict_model[name].to(torch.float8_e4m3fn)
|
| 87 |
+
model.load_state_dict(state_dict_model)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def match(self, model, state_dict_lora):
|
| 91 |
+
for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes):
|
| 92 |
+
if not isinstance(model, model_class):
|
| 93 |
+
continue
|
| 94 |
+
state_dict_model = model.state_dict()
|
| 95 |
+
for model_resource in ["diffusers", "civitai"]:
|
| 96 |
+
try:
|
| 97 |
+
state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0)
|
| 98 |
+
converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \
|
| 99 |
+
else model.__class__.state_dict_converter().from_civitai
|
| 100 |
+
state_dict_lora_ = converter_fn(state_dict_lora_)
|
| 101 |
+
if isinstance(state_dict_lora_, tuple):
|
| 102 |
+
state_dict_lora_ = state_dict_lora_[0]
|
| 103 |
+
if len(state_dict_lora_) == 0:
|
| 104 |
+
continue
|
| 105 |
+
for name in state_dict_lora_:
|
| 106 |
+
if name not in state_dict_model:
|
| 107 |
+
break
|
| 108 |
+
else:
|
| 109 |
+
return lora_prefix, model_resource
|
| 110 |
+
except:
|
| 111 |
+
pass
|
| 112 |
+
return None
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class GeneralLoRAFromPeft:
|
| 116 |
+
def __init__(self):
|
| 117 |
+
self.supported_model_classes = [ WanModel]
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def get_name_dict(self, lora_state_dict):
|
| 121 |
+
lora_name_dict = {}
|
| 122 |
+
for key in lora_state_dict:
|
| 123 |
+
if ".lora_B." not in key:
|
| 124 |
+
continue
|
| 125 |
+
keys = key.split(".")
|
| 126 |
+
if len(keys) > keys.index("lora_B") + 2:
|
| 127 |
+
keys.pop(keys.index("lora_B") + 1)
|
| 128 |
+
keys.pop(keys.index("lora_B"))
|
| 129 |
+
if keys[0] == "diffusion_model":
|
| 130 |
+
keys.pop(0)
|
| 131 |
+
target_name = ".".join(keys)
|
| 132 |
+
lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A."))
|
| 133 |
+
return lora_name_dict
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def match(self, model: torch.nn.Module, state_dict_lora):
|
| 137 |
+
lora_name_dict = self.get_name_dict(state_dict_lora)
|
| 138 |
+
model_name_dict = {name: None for name, _ in model.named_parameters()}
|
| 139 |
+
matched_num = sum([i in model_name_dict for i in lora_name_dict])
|
| 140 |
+
if matched_num == len(lora_name_dict):
|
| 141 |
+
return "", ""
|
| 142 |
+
else:
|
| 143 |
+
return None
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def fetch_device_and_dtype(self, state_dict):
|
| 147 |
+
device, dtype = None, None
|
| 148 |
+
for name, param in state_dict.items():
|
| 149 |
+
device, dtype = param.device, param.dtype
|
| 150 |
+
break
|
| 151 |
+
computation_device = device
|
| 152 |
+
computation_dtype = dtype
|
| 153 |
+
if computation_device == torch.device("cpu"):
|
| 154 |
+
if torch.cuda.is_available():
|
| 155 |
+
computation_device = torch.device("cuda")
|
| 156 |
+
if computation_dtype == torch.float8_e4m3fn:
|
| 157 |
+
computation_dtype = torch.float32
|
| 158 |
+
return device, dtype, computation_device, computation_dtype
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""):
|
| 162 |
+
state_dict_model = model.state_dict()
|
| 163 |
+
device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model)
|
| 164 |
+
lora_name_dict = self.get_name_dict(state_dict_lora)
|
| 165 |
+
for name in lora_name_dict:
|
| 166 |
+
weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype)
|
| 167 |
+
weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype)
|
| 168 |
+
if len(weight_up.shape) == 4:
|
| 169 |
+
weight_up = weight_up.squeeze(3).squeeze(2)
|
| 170 |
+
weight_down = weight_down.squeeze(3).squeeze(2)
|
| 171 |
+
weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
| 172 |
+
else:
|
| 173 |
+
weight_lora = alpha * torch.mm(weight_up, weight_down)
|
| 174 |
+
weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype)
|
| 175 |
+
weight_patched = weight_model + weight_lora
|
| 176 |
+
state_dict_model[name] = weight_patched.to(device=device, dtype=dtype)
|
| 177 |
+
print(f" {len(lora_name_dict)} tensors are updated.")
|
| 178 |
+
model.load_state_dict(state_dict_model)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class WanLoRAConverter:
|
| 183 |
+
def __init__(self):
|
| 184 |
+
pass
|
| 185 |
+
|
| 186 |
+
@staticmethod
|
| 187 |
+
def align_to_opensource_format(state_dict, **kwargs):
|
| 188 |
+
state_dict = {"diffusion_model." + name.replace(".default.", "."): param for name, param in state_dict.items()}
|
| 189 |
+
return state_dict
|
| 190 |
+
|
| 191 |
+
@staticmethod
|
| 192 |
+
def align_to_dkt_format(state_dict, **kwargs):
|
| 193 |
+
state_dict = {name.replace("diffusion_model.", "").replace(".lora_A.weight", ".lora_A.default.weight").replace(".lora_B.weight", ".lora_B.default.weight"): param for name, param in state_dict.items()}
|
| 194 |
+
return state_dict
|
| 195 |
+
|
| 196 |
+
def get_lora_loaders():
|
| 197 |
+
return [GeneralLoRAFromPeft()]
|
dkt/models/model_manager.py
ADDED
|
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, torch, json, importlib
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
from .downloader import download_models
|
| 5 |
+
from .lora import get_lora_loaders
|
| 6 |
+
|
| 7 |
+
from ..configs.model_config import model_loader_configs
|
| 8 |
+
from .utils import load_state_dict, init_weights_on_device, hash_state_dict_keys, split_state_dict_with_prefix
|
| 9 |
+
|
| 10 |
+
from .downloader import Preset_model_id, Preset_model_website
|
| 11 |
+
|
| 12 |
+
def load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device):
|
| 13 |
+
loaded_model_names, loaded_models = [], []
|
| 14 |
+
for model_name, model_class in zip(model_names, model_classes):
|
| 15 |
+
print(f" model_name: {model_name} model_class: {model_class.__name__}")
|
| 16 |
+
state_dict_converter = model_class.state_dict_converter()
|
| 17 |
+
if model_resource == "civitai":
|
| 18 |
+
state_dict_results = state_dict_converter.from_civitai(state_dict)
|
| 19 |
+
elif model_resource == "diffusers":
|
| 20 |
+
state_dict_results = state_dict_converter.from_diffusers(state_dict)
|
| 21 |
+
if isinstance(state_dict_results, tuple):
|
| 22 |
+
model_state_dict, extra_kwargs = state_dict_results
|
| 23 |
+
print(f" This model is initialized with extra kwargs: {extra_kwargs}")
|
| 24 |
+
else:
|
| 25 |
+
model_state_dict, extra_kwargs = state_dict_results, {}
|
| 26 |
+
torch_dtype = torch.float32 if extra_kwargs.get("upcast_to_float32", False) else torch_dtype
|
| 27 |
+
with init_weights_on_device():
|
| 28 |
+
model = model_class(**extra_kwargs)
|
| 29 |
+
if hasattr(model, "eval"):
|
| 30 |
+
model = model.eval()
|
| 31 |
+
model.load_state_dict(model_state_dict, assign=True)
|
| 32 |
+
model = model.to(dtype=torch_dtype, device=device)
|
| 33 |
+
loaded_model_names.append(model_name)
|
| 34 |
+
loaded_models.append(model)
|
| 35 |
+
return loaded_model_names, loaded_models
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def load_model_from_huggingface_folder(file_path, model_names, model_classes, torch_dtype, device):
|
| 39 |
+
loaded_model_names, loaded_models = [], []
|
| 40 |
+
for model_name, model_class in zip(model_names, model_classes):
|
| 41 |
+
if torch_dtype in [torch.float32, torch.float16, torch.bfloat16]:
|
| 42 |
+
model = model_class.from_pretrained(file_path, torch_dtype=torch_dtype).eval()
|
| 43 |
+
else:
|
| 44 |
+
model = model_class.from_pretrained(file_path).eval().to(dtype=torch_dtype)
|
| 45 |
+
if torch_dtype == torch.float16 and hasattr(model, "half"):
|
| 46 |
+
model = model.half()
|
| 47 |
+
try:
|
| 48 |
+
model = model.to(device=device)
|
| 49 |
+
except:
|
| 50 |
+
pass
|
| 51 |
+
loaded_model_names.append(model_name)
|
| 52 |
+
loaded_models.append(model)
|
| 53 |
+
return loaded_model_names, loaded_models
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def load_single_patch_model_from_single_file(state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device):
|
| 57 |
+
print(f" model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}")
|
| 58 |
+
base_state_dict = base_model.state_dict()
|
| 59 |
+
base_model.to("cpu")
|
| 60 |
+
del base_model
|
| 61 |
+
model = model_class(**extra_kwargs)
|
| 62 |
+
model.load_state_dict(base_state_dict, strict=False)
|
| 63 |
+
model.load_state_dict(state_dict, strict=False)
|
| 64 |
+
model.to(dtype=torch_dtype, device=device)
|
| 65 |
+
return model
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def load_patch_model_from_single_file(state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device):
|
| 69 |
+
loaded_model_names, loaded_models = [], []
|
| 70 |
+
for model_name, model_class in zip(model_names, model_classes):
|
| 71 |
+
while True:
|
| 72 |
+
for model_id in range(len(model_manager.model)):
|
| 73 |
+
base_model_name = model_manager.model_name[model_id]
|
| 74 |
+
if base_model_name == model_name:
|
| 75 |
+
base_model_path = model_manager.model_path[model_id]
|
| 76 |
+
base_model = model_manager.model[model_id]
|
| 77 |
+
print(f" Adding patch model to {base_model_name} ({base_model_path})")
|
| 78 |
+
patched_model = load_single_patch_model_from_single_file(
|
| 79 |
+
state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device)
|
| 80 |
+
loaded_model_names.append(base_model_name)
|
| 81 |
+
loaded_models.append(patched_model)
|
| 82 |
+
model_manager.model.pop(model_id)
|
| 83 |
+
model_manager.model_path.pop(model_id)
|
| 84 |
+
model_manager.model_name.pop(model_id)
|
| 85 |
+
break
|
| 86 |
+
else:
|
| 87 |
+
break
|
| 88 |
+
return loaded_model_names, loaded_models
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class ModelDetectorTemplate:
|
| 93 |
+
def __init__(self):
|
| 94 |
+
pass
|
| 95 |
+
|
| 96 |
+
def match(self, file_path="", state_dict={}):
|
| 97 |
+
return False
|
| 98 |
+
|
| 99 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
| 100 |
+
return [], []
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class ModelDetectorFromSingleFile:
|
| 105 |
+
def __init__(self, model_loader_configs=[]):
|
| 106 |
+
self.keys_hash_with_shape_dict = {}
|
| 107 |
+
self.keys_hash_dict = {}
|
| 108 |
+
for metadata in model_loader_configs:
|
| 109 |
+
self.add_model_metadata(*metadata)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def add_model_metadata(self, keys_hash, keys_hash_with_shape, model_names, model_classes, model_resource):
|
| 113 |
+
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_names, model_classes, model_resource)
|
| 114 |
+
if keys_hash is not None:
|
| 115 |
+
self.keys_hash_dict[keys_hash] = (model_names, model_classes, model_resource)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def match(self, file_path="", state_dict={}):
|
| 119 |
+
if isinstance(file_path, str) and os.path.isdir(file_path):
|
| 120 |
+
return False
|
| 121 |
+
if len(state_dict) == 0:
|
| 122 |
+
state_dict = load_state_dict(file_path)
|
| 123 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
| 124 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
| 125 |
+
return True
|
| 126 |
+
keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
|
| 127 |
+
if keys_hash in self.keys_hash_dict:
|
| 128 |
+
return True
|
| 129 |
+
return False
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
| 133 |
+
if len(state_dict) == 0:
|
| 134 |
+
state_dict = load_state_dict(file_path)
|
| 135 |
+
|
| 136 |
+
# Load models with strict matching
|
| 137 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
| 138 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
| 139 |
+
model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[keys_hash_with_shape]
|
| 140 |
+
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device)
|
| 141 |
+
return loaded_model_names, loaded_models
|
| 142 |
+
|
| 143 |
+
# Load models without strict matching
|
| 144 |
+
# (the shape of parameters may be inconsistent, and the state_dict_converter will modify the model architecture)
|
| 145 |
+
keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
|
| 146 |
+
if keys_hash in self.keys_hash_dict:
|
| 147 |
+
model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash]
|
| 148 |
+
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device)
|
| 149 |
+
return loaded_model_names, loaded_models
|
| 150 |
+
|
| 151 |
+
return loaded_model_names, loaded_models
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile):
|
| 156 |
+
def __init__(self, model_loader_configs=[]):
|
| 157 |
+
super().__init__(model_loader_configs)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def match(self, file_path="", state_dict={}):
|
| 161 |
+
if isinstance(file_path, str) and os.path.isdir(file_path):
|
| 162 |
+
return False
|
| 163 |
+
if len(state_dict) == 0:
|
| 164 |
+
state_dict = load_state_dict(file_path)
|
| 165 |
+
splited_state_dict = split_state_dict_with_prefix(state_dict)
|
| 166 |
+
for sub_state_dict in splited_state_dict:
|
| 167 |
+
if super().match(file_path, sub_state_dict):
|
| 168 |
+
return True
|
| 169 |
+
return False
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
| 173 |
+
# Split the state_dict and load from each component
|
| 174 |
+
splited_state_dict = split_state_dict_with_prefix(state_dict)
|
| 175 |
+
valid_state_dict = {}
|
| 176 |
+
for sub_state_dict in splited_state_dict:
|
| 177 |
+
if super().match(file_path, sub_state_dict):
|
| 178 |
+
valid_state_dict.update(sub_state_dict)
|
| 179 |
+
if super().match(file_path, valid_state_dict):
|
| 180 |
+
loaded_model_names, loaded_models = super().load(file_path, valid_state_dict, device, torch_dtype)
|
| 181 |
+
else:
|
| 182 |
+
loaded_model_names, loaded_models = [], []
|
| 183 |
+
for sub_state_dict in splited_state_dict:
|
| 184 |
+
if super().match(file_path, sub_state_dict):
|
| 185 |
+
loaded_model_names_, loaded_models_ = super().load(file_path, valid_state_dict, device, torch_dtype)
|
| 186 |
+
loaded_model_names += loaded_model_names_
|
| 187 |
+
loaded_models += loaded_models_
|
| 188 |
+
return loaded_model_names, loaded_models
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
class ModelDetectorFromHuggingfaceFolder:
|
| 193 |
+
def __init__(self, model_loader_configs=[]):
|
| 194 |
+
self.architecture_dict = {}
|
| 195 |
+
for metadata in model_loader_configs:
|
| 196 |
+
self.add_model_metadata(*metadata)
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def add_model_metadata(self, architecture, huggingface_lib, model_name, redirected_architecture):
|
| 200 |
+
self.architecture_dict[architecture] = (huggingface_lib, model_name, redirected_architecture)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def match(self, file_path="", state_dict={}):
|
| 204 |
+
if not isinstance(file_path, str) or os.path.isfile(file_path):
|
| 205 |
+
return False
|
| 206 |
+
file_list = os.listdir(file_path)
|
| 207 |
+
if "config.json" not in file_list:
|
| 208 |
+
return False
|
| 209 |
+
with open(os.path.join(file_path, "config.json"), "r") as f:
|
| 210 |
+
config = json.load(f)
|
| 211 |
+
if "architectures" not in config and "_class_name" not in config:
|
| 212 |
+
return False
|
| 213 |
+
return True
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
| 217 |
+
with open(os.path.join(file_path, "config.json"), "r") as f:
|
| 218 |
+
config = json.load(f)
|
| 219 |
+
loaded_model_names, loaded_models = [], []
|
| 220 |
+
architectures = config["architectures"] if "architectures" in config else [config["_class_name"]]
|
| 221 |
+
for architecture in architectures:
|
| 222 |
+
huggingface_lib, model_name, redirected_architecture = self.architecture_dict[architecture]
|
| 223 |
+
if redirected_architecture is not None:
|
| 224 |
+
architecture = redirected_architecture
|
| 225 |
+
model_class = importlib.import_module(huggingface_lib).__getattribute__(architecture)
|
| 226 |
+
loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder(file_path, [model_name], [model_class], torch_dtype, device)
|
| 227 |
+
loaded_model_names += loaded_model_names_
|
| 228 |
+
loaded_models += loaded_models_
|
| 229 |
+
return loaded_model_names, loaded_models
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class ModelDetectorFromPatchedSingleFile:
|
| 234 |
+
def __init__(self, model_loader_configs=[]):
|
| 235 |
+
self.keys_hash_with_shape_dict = {}
|
| 236 |
+
for metadata in model_loader_configs:
|
| 237 |
+
self.add_model_metadata(*metadata)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def add_model_metadata(self, keys_hash_with_shape, model_name, model_class, extra_kwargs):
|
| 241 |
+
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_name, model_class, extra_kwargs)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def match(self, file_path="", state_dict={}):
|
| 245 |
+
if not isinstance(file_path, str) or os.path.isdir(file_path):
|
| 246 |
+
return False
|
| 247 |
+
if len(state_dict) == 0:
|
| 248 |
+
state_dict = load_state_dict(file_path)
|
| 249 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
| 250 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
| 251 |
+
return True
|
| 252 |
+
return False
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, model_manager=None, **kwargs):
|
| 256 |
+
if len(state_dict) == 0:
|
| 257 |
+
state_dict = load_state_dict(file_path)
|
| 258 |
+
|
| 259 |
+
# Load models with strict matching
|
| 260 |
+
loaded_model_names, loaded_models = [], []
|
| 261 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
| 262 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
| 263 |
+
model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[keys_hash_with_shape]
|
| 264 |
+
loaded_model_names_, loaded_models_ = load_patch_model_from_single_file(
|
| 265 |
+
state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device)
|
| 266 |
+
loaded_model_names += loaded_model_names_
|
| 267 |
+
loaded_models += loaded_models_
|
| 268 |
+
return loaded_model_names, loaded_models
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class ModelManager:
|
| 273 |
+
def __init__(
|
| 274 |
+
self,
|
| 275 |
+
torch_dtype=torch.float16,
|
| 276 |
+
device="cuda",
|
| 277 |
+
model_id_list: List[Preset_model_id] = [],
|
| 278 |
+
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
|
| 279 |
+
file_path_list: List[str] = [],
|
| 280 |
+
):
|
| 281 |
+
self.torch_dtype = torch_dtype
|
| 282 |
+
self.device = device
|
| 283 |
+
self.model = []
|
| 284 |
+
self.model_path = []
|
| 285 |
+
self.model_name = []
|
| 286 |
+
downloaded_files = download_models(model_id_list, downloading_priority) if len(model_id_list) > 0 else []
|
| 287 |
+
self.model_detector = [
|
| 288 |
+
ModelDetectorFromSingleFile(model_loader_configs),
|
| 289 |
+
ModelDetectorFromSplitedSingleFile(model_loader_configs),
|
| 290 |
+
]
|
| 291 |
+
self.load_models(downloaded_files + file_path_list)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def load_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], model_resource=None):
|
| 295 |
+
print(f"Loading models from file: {file_path}")
|
| 296 |
+
if len(state_dict) == 0:
|
| 297 |
+
state_dict = load_state_dict(file_path)
|
| 298 |
+
model_names, models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, self.torch_dtype, self.device)
|
| 299 |
+
for model_name, model in zip(model_names, models):
|
| 300 |
+
self.model.append(model)
|
| 301 |
+
self.model_path.append(file_path)
|
| 302 |
+
self.model_name.append(model_name)
|
| 303 |
+
print(f" The following models are loaded: {model_names}.")
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def load_model_from_huggingface_folder(self, file_path="", model_names=[], model_classes=[]):
|
| 307 |
+
print(f"Loading models from folder: {file_path}")
|
| 308 |
+
model_names, models = load_model_from_huggingface_folder(file_path, model_names, model_classes, self.torch_dtype, self.device)
|
| 309 |
+
for model_name, model in zip(model_names, models):
|
| 310 |
+
self.model.append(model)
|
| 311 |
+
self.model_path.append(file_path)
|
| 312 |
+
self.model_name.append(model_name)
|
| 313 |
+
print(f" The following models are loaded: {model_names}.")
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def load_patch_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], extra_kwargs={}):
|
| 317 |
+
print(f"Loading patch models from file: {file_path}")
|
| 318 |
+
model_names, models = load_patch_model_from_single_file(
|
| 319 |
+
state_dict, model_names, model_classes, extra_kwargs, self, self.torch_dtype, self.device)
|
| 320 |
+
for model_name, model in zip(model_names, models):
|
| 321 |
+
self.model.append(model)
|
| 322 |
+
self.model_path.append(file_path)
|
| 323 |
+
self.model_name.append(model_name)
|
| 324 |
+
print(f" The following patched models are loaded: {model_names}.")
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0):
|
| 328 |
+
if isinstance(file_path, list):
|
| 329 |
+
for file_path_ in file_path:
|
| 330 |
+
self.load_lora(file_path_, state_dict=state_dict, lora_alpha=lora_alpha)
|
| 331 |
+
else:
|
| 332 |
+
print(f"Loading LoRA models from file: {file_path}")
|
| 333 |
+
is_loaded = False
|
| 334 |
+
if len(state_dict) == 0:
|
| 335 |
+
state_dict = load_state_dict(file_path)
|
| 336 |
+
for model_name, model, model_path in zip(self.model_name, self.model, self.model_path):
|
| 337 |
+
for lora in get_lora_loaders():
|
| 338 |
+
match_results = lora.match(model, state_dict)
|
| 339 |
+
if match_results is not None:
|
| 340 |
+
print(f" Adding LoRA to {model_name} ({model_path}).")
|
| 341 |
+
lora_prefix, model_resource = match_results
|
| 342 |
+
lora.load(model, state_dict, lora_prefix, alpha=lora_alpha, model_resource=model_resource)
|
| 343 |
+
is_loaded = True
|
| 344 |
+
break
|
| 345 |
+
if not is_loaded:
|
| 346 |
+
print(f" Cannot load LoRA: {file_path}")
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def load_model(self, file_path, model_names=None, device=None, torch_dtype=None):
|
| 350 |
+
print(f"Loading models from: {file_path}")
|
| 351 |
+
if device is None: device = self.device
|
| 352 |
+
if torch_dtype is None: torch_dtype = self.torch_dtype
|
| 353 |
+
if isinstance(file_path, list):
|
| 354 |
+
state_dict = {}
|
| 355 |
+
for path in file_path:
|
| 356 |
+
state_dict.update(load_state_dict(path))
|
| 357 |
+
elif os.path.isfile(file_path):
|
| 358 |
+
state_dict = load_state_dict(file_path)
|
| 359 |
+
else:
|
| 360 |
+
state_dict = None
|
| 361 |
+
for model_detector in self.model_detector:
|
| 362 |
+
if model_detector.match(file_path, state_dict):
|
| 363 |
+
model_names, models = model_detector.load(
|
| 364 |
+
file_path, state_dict,
|
| 365 |
+
device=device, torch_dtype=torch_dtype,
|
| 366 |
+
allowed_model_names=model_names, model_manager=self
|
| 367 |
+
)
|
| 368 |
+
for model_name, model in zip(model_names, models):
|
| 369 |
+
self.model.append(model)
|
| 370 |
+
self.model_path.append(file_path)
|
| 371 |
+
self.model_name.append(model_name)
|
| 372 |
+
print(f" The following models are loaded: {model_names}.")
|
| 373 |
+
break
|
| 374 |
+
else:
|
| 375 |
+
print(f" We cannot detect the model type. No models are loaded.")
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
def load_models(self, file_path_list, model_names=None, device=None, torch_dtype=None):
|
| 379 |
+
for file_path in file_path_list:
|
| 380 |
+
self.load_model(file_path, model_names, device=device, torch_dtype=torch_dtype)
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def fetch_model(self, model_name, file_path=None, require_model_path=False, index=None):
|
| 384 |
+
fetched_models = []
|
| 385 |
+
fetched_model_paths = []
|
| 386 |
+
for model, model_path, model_name_ in zip(self.model, self.model_path, self.model_name):
|
| 387 |
+
if file_path is not None and file_path != model_path:
|
| 388 |
+
continue
|
| 389 |
+
if model_name == model_name_:
|
| 390 |
+
fetched_models.append(model)
|
| 391 |
+
fetched_model_paths.append(model_path)
|
| 392 |
+
if len(fetched_models) == 0:
|
| 393 |
+
print(f"No {model_name} models available.")
|
| 394 |
+
return None
|
| 395 |
+
if len(fetched_models) == 1:
|
| 396 |
+
print(f"Using {model_name} from {fetched_model_paths[0]}.")
|
| 397 |
+
model = fetched_models[0]
|
| 398 |
+
path = fetched_model_paths[0]
|
| 399 |
+
else:
|
| 400 |
+
if index is None:
|
| 401 |
+
model = fetched_models[0]
|
| 402 |
+
path = fetched_model_paths[0]
|
| 403 |
+
print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}.")
|
| 404 |
+
elif isinstance(index, int):
|
| 405 |
+
model = fetched_models[:index]
|
| 406 |
+
path = fetched_model_paths[:index]
|
| 407 |
+
print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[:index]}.")
|
| 408 |
+
else:
|
| 409 |
+
model = fetched_models
|
| 410 |
+
path = fetched_model_paths
|
| 411 |
+
print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths}.")
|
| 412 |
+
if require_model_path:
|
| 413 |
+
return model, path
|
| 414 |
+
else:
|
| 415 |
+
return model
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def to(self, device):
|
| 419 |
+
for model in self.model:
|
| 420 |
+
model.to(device)
|
| 421 |
+
|
dkt/models/tiler.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from einops import rearrange, repeat
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class TileWorker:
|
| 6 |
+
def __init__(self):
|
| 7 |
+
pass
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def mask(self, height, width, border_width):
|
| 11 |
+
# Create a mask with shape (height, width).
|
| 12 |
+
# The centre area is filled with 1, and the border line is filled with values in range (0, 1].
|
| 13 |
+
x = torch.arange(height).repeat(width, 1).T
|
| 14 |
+
y = torch.arange(width).repeat(height, 1)
|
| 15 |
+
mask = torch.stack([x + 1, height - x, y + 1, width - y]).min(dim=0).values
|
| 16 |
+
mask = (mask / border_width).clip(0, 1)
|
| 17 |
+
return mask
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def tile(self, model_input, tile_size, tile_stride, tile_device, tile_dtype):
|
| 21 |
+
# Convert a tensor (b, c, h, w) to (b, c, tile_size, tile_size, tile_num)
|
| 22 |
+
batch_size, channel, _, _ = model_input.shape
|
| 23 |
+
model_input = model_input.to(device=tile_device, dtype=tile_dtype)
|
| 24 |
+
unfold_operator = torch.nn.Unfold(
|
| 25 |
+
kernel_size=(tile_size, tile_size),
|
| 26 |
+
stride=(tile_stride, tile_stride)
|
| 27 |
+
)
|
| 28 |
+
model_input = unfold_operator(model_input)
|
| 29 |
+
model_input = model_input.view((batch_size, channel, tile_size, tile_size, -1))
|
| 30 |
+
|
| 31 |
+
return model_input
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def tiled_inference(self, forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype):
|
| 35 |
+
# Call y=forward_fn(x) for each tile
|
| 36 |
+
tile_num = model_input.shape[-1]
|
| 37 |
+
model_output_stack = []
|
| 38 |
+
|
| 39 |
+
for tile_id in range(0, tile_num, tile_batch_size):
|
| 40 |
+
|
| 41 |
+
# process input
|
| 42 |
+
tile_id_ = min(tile_id + tile_batch_size, tile_num)
|
| 43 |
+
x = model_input[:, :, :, :, tile_id: tile_id_]
|
| 44 |
+
x = x.to(device=inference_device, dtype=inference_dtype)
|
| 45 |
+
x = rearrange(x, "b c h w n -> (n b) c h w")
|
| 46 |
+
|
| 47 |
+
# process output
|
| 48 |
+
y = forward_fn(x)
|
| 49 |
+
y = rearrange(y, "(n b) c h w -> b c h w n", n=tile_id_-tile_id)
|
| 50 |
+
y = y.to(device=tile_device, dtype=tile_dtype)
|
| 51 |
+
model_output_stack.append(y)
|
| 52 |
+
|
| 53 |
+
model_output = torch.concat(model_output_stack, dim=-1)
|
| 54 |
+
return model_output
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def io_scale(self, model_output, tile_size):
|
| 58 |
+
# Determine the size modification happened in forward_fn
|
| 59 |
+
# We only consider the same scale on height and width.
|
| 60 |
+
io_scale = model_output.shape[2] / tile_size
|
| 61 |
+
return io_scale
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def untile(self, model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype):
|
| 65 |
+
# The reversed function of tile
|
| 66 |
+
mask = self.mask(tile_size, tile_size, border_width)
|
| 67 |
+
mask = mask.to(device=tile_device, dtype=tile_dtype)
|
| 68 |
+
mask = rearrange(mask, "h w -> 1 1 h w 1")
|
| 69 |
+
model_output = model_output * mask
|
| 70 |
+
|
| 71 |
+
fold_operator = torch.nn.Fold(
|
| 72 |
+
output_size=(height, width),
|
| 73 |
+
kernel_size=(tile_size, tile_size),
|
| 74 |
+
stride=(tile_stride, tile_stride)
|
| 75 |
+
)
|
| 76 |
+
mask = repeat(mask[0, 0, :, :, 0], "h w -> 1 (h w) n", n=model_output.shape[-1])
|
| 77 |
+
model_output = rearrange(model_output, "b c h w n -> b (c h w) n")
|
| 78 |
+
model_output = fold_operator(model_output) / fold_operator(mask)
|
| 79 |
+
|
| 80 |
+
return model_output
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_batch_size=1, tile_device="cpu", tile_dtype=torch.float32, border_width=None):
|
| 84 |
+
# Prepare
|
| 85 |
+
inference_device, inference_dtype = model_input.device, model_input.dtype
|
| 86 |
+
height, width = model_input.shape[2], model_input.shape[3]
|
| 87 |
+
border_width = int(tile_stride*0.5) if border_width is None else border_width
|
| 88 |
+
|
| 89 |
+
# tile
|
| 90 |
+
model_input = self.tile(model_input, tile_size, tile_stride, tile_device, tile_dtype)
|
| 91 |
+
|
| 92 |
+
# inference
|
| 93 |
+
model_output = self.tiled_inference(forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype)
|
| 94 |
+
|
| 95 |
+
# resize
|
| 96 |
+
io_scale = self.io_scale(model_output, tile_size)
|
| 97 |
+
height, width = int(height*io_scale), int(width*io_scale)
|
| 98 |
+
tile_size, tile_stride = int(tile_size*io_scale), int(tile_stride*io_scale)
|
| 99 |
+
border_width = int(border_width*io_scale)
|
| 100 |
+
|
| 101 |
+
# untile
|
| 102 |
+
model_output = self.untile(model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype)
|
| 103 |
+
|
| 104 |
+
# Done!
|
| 105 |
+
model_output = model_output.to(device=inference_device, dtype=inference_dtype)
|
| 106 |
+
return model_output
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class FastTileWorker:
|
| 111 |
+
def __init__(self):
|
| 112 |
+
pass
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def build_mask(self, data, is_bound):
|
| 116 |
+
_, _, H, W = data.shape
|
| 117 |
+
h = repeat(torch.arange(H), "H -> H W", H=H, W=W)
|
| 118 |
+
w = repeat(torch.arange(W), "W -> H W", H=H, W=W)
|
| 119 |
+
border_width = (H + W) // 4
|
| 120 |
+
pad = torch.ones_like(h) * border_width
|
| 121 |
+
mask = torch.stack([
|
| 122 |
+
pad if is_bound[0] else h + 1,
|
| 123 |
+
pad if is_bound[1] else H - h,
|
| 124 |
+
pad if is_bound[2] else w + 1,
|
| 125 |
+
pad if is_bound[3] else W - w
|
| 126 |
+
]).min(dim=0).values
|
| 127 |
+
mask = mask.clip(1, border_width)
|
| 128 |
+
mask = (mask / border_width).to(dtype=data.dtype, device=data.device)
|
| 129 |
+
mask = rearrange(mask, "H W -> 1 H W")
|
| 130 |
+
return mask
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_device="cpu", tile_dtype=torch.float32, border_width=None):
|
| 134 |
+
# Prepare
|
| 135 |
+
B, C, H, W = model_input.shape
|
| 136 |
+
border_width = int(tile_stride*0.5) if border_width is None else border_width
|
| 137 |
+
weight = torch.zeros((1, 1, H, W), dtype=tile_dtype, device=tile_device)
|
| 138 |
+
values = torch.zeros((B, C, H, W), dtype=tile_dtype, device=tile_device)
|
| 139 |
+
|
| 140 |
+
# Split tasks
|
| 141 |
+
tasks = []
|
| 142 |
+
for h in range(0, H, tile_stride):
|
| 143 |
+
for w in range(0, W, tile_stride):
|
| 144 |
+
if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W):
|
| 145 |
+
continue
|
| 146 |
+
h_, w_ = h + tile_size, w + tile_size
|
| 147 |
+
if h_ > H: h, h_ = H - tile_size, H
|
| 148 |
+
if w_ > W: w, w_ = W - tile_size, W
|
| 149 |
+
tasks.append((h, h_, w, w_))
|
| 150 |
+
|
| 151 |
+
# Run
|
| 152 |
+
for hl, hr, wl, wr in tasks:
|
| 153 |
+
# Forward
|
| 154 |
+
hidden_states_batch = forward_fn(hl, hr, wl, wr).to(dtype=tile_dtype, device=tile_device)
|
| 155 |
+
|
| 156 |
+
mask = self.build_mask(hidden_states_batch, is_bound=(hl==0, hr>=H, wl==0, wr>=W))
|
| 157 |
+
values[:, :, hl:hr, wl:wr] += hidden_states_batch * mask
|
| 158 |
+
weight[:, :, hl:hr, wl:wr] += mask
|
| 159 |
+
values /= weight
|
| 160 |
+
return values
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
class TileWorker2Dto3D:
|
| 165 |
+
"""
|
| 166 |
+
Process 3D tensors, but only enable TileWorker on 2D.
|
| 167 |
+
"""
|
| 168 |
+
def __init__(self):
|
| 169 |
+
pass
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def build_mask(self, T, H, W, dtype, device, is_bound, border_width):
|
| 173 |
+
t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W)
|
| 174 |
+
h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W)
|
| 175 |
+
w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W)
|
| 176 |
+
border_width = (H + W) // 4 if border_width is None else border_width
|
| 177 |
+
pad = torch.ones_like(h) * border_width
|
| 178 |
+
mask = torch.stack([
|
| 179 |
+
pad if is_bound[0] else t + 1,
|
| 180 |
+
pad if is_bound[1] else T - t,
|
| 181 |
+
pad if is_bound[2] else h + 1,
|
| 182 |
+
pad if is_bound[3] else H - h,
|
| 183 |
+
pad if is_bound[4] else w + 1,
|
| 184 |
+
pad if is_bound[5] else W - w
|
| 185 |
+
]).min(dim=0).values
|
| 186 |
+
mask = mask.clip(1, border_width)
|
| 187 |
+
mask = (mask / border_width).to(dtype=dtype, device=device)
|
| 188 |
+
mask = rearrange(mask, "T H W -> 1 1 T H W")
|
| 189 |
+
return mask
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def tiled_forward(
|
| 193 |
+
self,
|
| 194 |
+
forward_fn,
|
| 195 |
+
model_input,
|
| 196 |
+
tile_size, tile_stride,
|
| 197 |
+
tile_device="cpu", tile_dtype=torch.float32,
|
| 198 |
+
computation_device="cuda", computation_dtype=torch.float32,
|
| 199 |
+
border_width=None, scales=[1, 1, 1, 1],
|
| 200 |
+
progress_bar=lambda x:x
|
| 201 |
+
):
|
| 202 |
+
B, C, T, H, W = model_input.shape
|
| 203 |
+
scale_C, scale_T, scale_H, scale_W = scales
|
| 204 |
+
tile_size_H, tile_size_W = tile_size
|
| 205 |
+
tile_stride_H, tile_stride_W = tile_stride
|
| 206 |
+
|
| 207 |
+
value = torch.zeros((B, int(C*scale_C), int(T*scale_T), int(H*scale_H), int(W*scale_W)), dtype=tile_dtype, device=tile_device)
|
| 208 |
+
weight = torch.zeros((1, 1, int(T*scale_T), int(H*scale_H), int(W*scale_W)), dtype=tile_dtype, device=tile_device)
|
| 209 |
+
|
| 210 |
+
# Split tasks
|
| 211 |
+
tasks = []
|
| 212 |
+
for h in range(0, H, tile_stride_H):
|
| 213 |
+
for w in range(0, W, tile_stride_W):
|
| 214 |
+
if (h-tile_stride_H >= 0 and h-tile_stride_H+tile_size_H >= H) or (w-tile_stride_W >= 0 and w-tile_stride_W+tile_size_W >= W):
|
| 215 |
+
continue
|
| 216 |
+
h_, w_ = h + tile_size_H, w + tile_size_W
|
| 217 |
+
if h_ > H: h, h_ = max(H - tile_size_H, 0), H
|
| 218 |
+
if w_ > W: w, w_ = max(W - tile_size_W, 0), W
|
| 219 |
+
tasks.append((h, h_, w, w_))
|
| 220 |
+
|
| 221 |
+
# Run
|
| 222 |
+
for hl, hr, wl, wr in progress_bar(tasks):
|
| 223 |
+
mask = self.build_mask(
|
| 224 |
+
int(T*scale_T), int((hr-hl)*scale_H), int((wr-wl)*scale_W),
|
| 225 |
+
tile_dtype, tile_device,
|
| 226 |
+
is_bound=(True, True, hl==0, hr>=H, wl==0, wr>=W),
|
| 227 |
+
border_width=border_width
|
| 228 |
+
)
|
| 229 |
+
grid_input = model_input[:, :, :, hl:hr, wl:wr].to(dtype=computation_dtype, device=computation_device)
|
| 230 |
+
grid_output = forward_fn(grid_input).to(dtype=tile_dtype, device=tile_device)
|
| 231 |
+
value[:, :, :, int(hl*scale_H):int(hr*scale_H), int(wl*scale_W):int(wr*scale_W)] += grid_output * mask
|
| 232 |
+
weight[:, :, :, int(hl*scale_H):int(hr*scale_H), int(wl*scale_W):int(wr*scale_W)] += mask
|
| 233 |
+
value = value / weight
|
| 234 |
+
return value
|
dkt/models/utils.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, os
|
| 2 |
+
from safetensors import safe_open
|
| 3 |
+
from contextlib import contextmanager
|
| 4 |
+
import hashlib
|
| 5 |
+
|
| 6 |
+
@contextmanager
|
| 7 |
+
def init_weights_on_device(device = torch.device("meta"), include_buffers :bool = False):
|
| 8 |
+
|
| 9 |
+
old_register_parameter = torch.nn.Module.register_parameter
|
| 10 |
+
if include_buffers:
|
| 11 |
+
old_register_buffer = torch.nn.Module.register_buffer
|
| 12 |
+
|
| 13 |
+
def register_empty_parameter(module, name, param):
|
| 14 |
+
old_register_parameter(module, name, param)
|
| 15 |
+
if param is not None:
|
| 16 |
+
param_cls = type(module._parameters[name])
|
| 17 |
+
kwargs = module._parameters[name].__dict__
|
| 18 |
+
kwargs["requires_grad"] = param.requires_grad
|
| 19 |
+
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
|
| 20 |
+
|
| 21 |
+
def register_empty_buffer(module, name, buffer, persistent=True):
|
| 22 |
+
old_register_buffer(module, name, buffer, persistent=persistent)
|
| 23 |
+
if buffer is not None:
|
| 24 |
+
module._buffers[name] = module._buffers[name].to(device)
|
| 25 |
+
|
| 26 |
+
def patch_tensor_constructor(fn):
|
| 27 |
+
def wrapper(*args, **kwargs):
|
| 28 |
+
kwargs["device"] = device
|
| 29 |
+
return fn(*args, **kwargs)
|
| 30 |
+
|
| 31 |
+
return wrapper
|
| 32 |
+
|
| 33 |
+
if include_buffers:
|
| 34 |
+
tensor_constructors_to_patch = {
|
| 35 |
+
torch_function_name: getattr(torch, torch_function_name)
|
| 36 |
+
for torch_function_name in ["empty", "zeros", "ones", "full"]
|
| 37 |
+
}
|
| 38 |
+
else:
|
| 39 |
+
tensor_constructors_to_patch = {}
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
torch.nn.Module.register_parameter = register_empty_parameter
|
| 43 |
+
if include_buffers:
|
| 44 |
+
torch.nn.Module.register_buffer = register_empty_buffer
|
| 45 |
+
for torch_function_name in tensor_constructors_to_patch.keys():
|
| 46 |
+
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
|
| 47 |
+
yield
|
| 48 |
+
finally:
|
| 49 |
+
torch.nn.Module.register_parameter = old_register_parameter
|
| 50 |
+
if include_buffers:
|
| 51 |
+
torch.nn.Module.register_buffer = old_register_buffer
|
| 52 |
+
for torch_function_name, old_torch_function in tensor_constructors_to_patch.items():
|
| 53 |
+
setattr(torch, torch_function_name, old_torch_function)
|
| 54 |
+
|
| 55 |
+
def load_state_dict_from_folder(file_path, torch_dtype=None):
|
| 56 |
+
state_dict = {}
|
| 57 |
+
for file_name in os.listdir(file_path):
|
| 58 |
+
if "." in file_name and file_name.split(".")[-1] in [
|
| 59 |
+
"safetensors", "bin", "ckpt", "pth", "pt"
|
| 60 |
+
]:
|
| 61 |
+
state_dict.update(load_state_dict(os.path.join(file_path, file_name), torch_dtype=torch_dtype))
|
| 62 |
+
return state_dict
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def load_state_dict(file_path, torch_dtype=None, device="cpu"):
|
| 66 |
+
if file_path.endswith(".safetensors"):
|
| 67 |
+
return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype, device=device)
|
| 68 |
+
else:
|
| 69 |
+
return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype, device=device)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def load_state_dict_from_safetensors(file_path, torch_dtype=None, device="cpu"):
|
| 73 |
+
state_dict = {}
|
| 74 |
+
with safe_open(file_path, framework="pt", device=str(device)) as f:
|
| 75 |
+
for k in f.keys():
|
| 76 |
+
state_dict[k] = f.get_tensor(k)
|
| 77 |
+
if torch_dtype is not None:
|
| 78 |
+
state_dict[k] = state_dict[k].to(torch_dtype)
|
| 79 |
+
return state_dict
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def load_state_dict_from_bin(file_path, torch_dtype=None, device="cpu"):
|
| 83 |
+
state_dict = torch.load(file_path, map_location=device, weights_only=True)
|
| 84 |
+
if torch_dtype is not None:
|
| 85 |
+
for i in state_dict:
|
| 86 |
+
if isinstance(state_dict[i], torch.Tensor):
|
| 87 |
+
state_dict[i] = state_dict[i].to(torch_dtype)
|
| 88 |
+
return state_dict
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def search_for_embeddings(state_dict):
|
| 92 |
+
embeddings = []
|
| 93 |
+
for k in state_dict:
|
| 94 |
+
if isinstance(state_dict[k], torch.Tensor):
|
| 95 |
+
embeddings.append(state_dict[k])
|
| 96 |
+
elif isinstance(state_dict[k], dict):
|
| 97 |
+
embeddings += search_for_embeddings(state_dict[k])
|
| 98 |
+
return embeddings
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def search_parameter(param, state_dict):
|
| 102 |
+
for name, param_ in state_dict.items():
|
| 103 |
+
if param.numel() == param_.numel():
|
| 104 |
+
if param.shape == param_.shape:
|
| 105 |
+
if torch.dist(param, param_) < 1e-3:
|
| 106 |
+
return name
|
| 107 |
+
else:
|
| 108 |
+
if torch.dist(param.flatten(), param_.flatten()) < 1e-3:
|
| 109 |
+
return name
|
| 110 |
+
return None
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False):
|
| 114 |
+
matched_keys = set()
|
| 115 |
+
with torch.no_grad():
|
| 116 |
+
for name in source_state_dict:
|
| 117 |
+
rename = search_parameter(source_state_dict[name], target_state_dict)
|
| 118 |
+
if rename is not None:
|
| 119 |
+
print(f'"{name}": "{rename}",')
|
| 120 |
+
matched_keys.add(rename)
|
| 121 |
+
elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0:
|
| 122 |
+
length = source_state_dict[name].shape[0] // 3
|
| 123 |
+
rename = []
|
| 124 |
+
for i in range(3):
|
| 125 |
+
rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict))
|
| 126 |
+
if None not in rename:
|
| 127 |
+
print(f'"{name}": {rename},')
|
| 128 |
+
for rename_ in rename:
|
| 129 |
+
matched_keys.add(rename_)
|
| 130 |
+
for name in target_state_dict:
|
| 131 |
+
if name not in matched_keys:
|
| 132 |
+
print("Cannot find", name, target_state_dict[name].shape)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def search_for_files(folder, extensions):
|
| 136 |
+
files = []
|
| 137 |
+
if os.path.isdir(folder):
|
| 138 |
+
for file in sorted(os.listdir(folder)):
|
| 139 |
+
files += search_for_files(os.path.join(folder, file), extensions)
|
| 140 |
+
elif os.path.isfile(folder):
|
| 141 |
+
for extension in extensions:
|
| 142 |
+
if folder.endswith(extension):
|
| 143 |
+
files.append(folder)
|
| 144 |
+
break
|
| 145 |
+
return files
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def convert_state_dict_keys_to_single_str(state_dict, with_shape=True):
|
| 149 |
+
keys = []
|
| 150 |
+
for key, value in state_dict.items():
|
| 151 |
+
if isinstance(key, str):
|
| 152 |
+
if isinstance(value, torch.Tensor):
|
| 153 |
+
if with_shape:
|
| 154 |
+
shape = "_".join(map(str, list(value.shape)))
|
| 155 |
+
keys.append(key + ":" + shape)
|
| 156 |
+
keys.append(key)
|
| 157 |
+
elif isinstance(value, dict):
|
| 158 |
+
keys.append(key + "|" + convert_state_dict_keys_to_single_str(value, with_shape=with_shape))
|
| 159 |
+
keys.sort()
|
| 160 |
+
keys_str = ",".join(keys)
|
| 161 |
+
return keys_str
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def split_state_dict_with_prefix(state_dict):
|
| 165 |
+
keys = sorted([key for key in state_dict if isinstance(key, str)])
|
| 166 |
+
prefix_dict = {}
|
| 167 |
+
for key in keys:
|
| 168 |
+
prefix = key if "." not in key else key.split(".")[0]
|
| 169 |
+
if prefix not in prefix_dict:
|
| 170 |
+
prefix_dict[prefix] = []
|
| 171 |
+
prefix_dict[prefix].append(key)
|
| 172 |
+
state_dicts = []
|
| 173 |
+
for prefix, keys in prefix_dict.items():
|
| 174 |
+
sub_state_dict = {key: state_dict[key] for key in keys}
|
| 175 |
+
state_dicts.append(sub_state_dict)
|
| 176 |
+
return state_dicts
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def hash_state_dict_keys(state_dict, with_shape=True):
|
| 180 |
+
keys_str = convert_state_dict_keys_to_single_str(state_dict, with_shape=with_shape)
|
| 181 |
+
keys_str = keys_str.encode(encoding="UTF-8")
|
| 182 |
+
return hashlib.md5(keys_str).hexdigest()
|
dkt/models/wan_video_camera_controller.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
import os
|
| 6 |
+
from typing_extensions import Literal
|
| 7 |
+
|
| 8 |
+
class SimpleAdapter(nn.Module):
|
| 9 |
+
def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1):
|
| 10 |
+
super(SimpleAdapter, self).__init__()
|
| 11 |
+
|
| 12 |
+
# Pixel Unshuffle: reduce spatial dimensions by a factor of 8
|
| 13 |
+
self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8)
|
| 14 |
+
|
| 15 |
+
# Convolution: reduce spatial dimensions by a factor
|
| 16 |
+
# of 2 (without overlap)
|
| 17 |
+
self.conv = nn.Conv2d(in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0)
|
| 18 |
+
|
| 19 |
+
# Residual blocks for feature extraction
|
| 20 |
+
self.residual_blocks = nn.Sequential(
|
| 21 |
+
*[ResidualBlock(out_dim) for _ in range(num_residual_blocks)]
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
def forward(self, x):
|
| 25 |
+
# Reshape to merge the frame dimension into batch
|
| 26 |
+
bs, c, f, h, w = x.size()
|
| 27 |
+
x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w)
|
| 28 |
+
|
| 29 |
+
# Pixel Unshuffle operation
|
| 30 |
+
x_unshuffled = self.pixel_unshuffle(x)
|
| 31 |
+
|
| 32 |
+
# Convolution operation
|
| 33 |
+
x_conv = self.conv(x_unshuffled)
|
| 34 |
+
|
| 35 |
+
# Feature extraction with residual blocks
|
| 36 |
+
out = self.residual_blocks(x_conv)
|
| 37 |
+
|
| 38 |
+
# Reshape to restore original bf dimension
|
| 39 |
+
out = out.view(bs, f, out.size(1), out.size(2), out.size(3))
|
| 40 |
+
|
| 41 |
+
# Permute dimensions to reorder (if needed), e.g., swap channels and feature frames
|
| 42 |
+
out = out.permute(0, 2, 1, 3, 4)
|
| 43 |
+
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
def process_camera_coordinates(
|
| 47 |
+
self,
|
| 48 |
+
direction: Literal["Left", "Right", "Up", "Down", "LeftUp", "LeftDown", "RightUp", "RightDown"],
|
| 49 |
+
length: int,
|
| 50 |
+
height: int,
|
| 51 |
+
width: int,
|
| 52 |
+
speed: float = 1/54,
|
| 53 |
+
origin=(0, 0.532139961, 0.946026558, 0.5, 0.5, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)
|
| 54 |
+
):
|
| 55 |
+
if origin is None:
|
| 56 |
+
origin = (0, 0.532139961, 0.946026558, 0.5, 0.5, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)
|
| 57 |
+
coordinates = generate_camera_coordinates(direction, length, speed, origin)
|
| 58 |
+
plucker_embedding = process_pose_file(coordinates, width, height)
|
| 59 |
+
return plucker_embedding
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class ResidualBlock(nn.Module):
|
| 64 |
+
def __init__(self, dim):
|
| 65 |
+
super(ResidualBlock, self).__init__()
|
| 66 |
+
self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, padding=1)
|
| 67 |
+
self.relu = nn.ReLU(inplace=True)
|
| 68 |
+
self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, padding=1)
|
| 69 |
+
|
| 70 |
+
def forward(self, x):
|
| 71 |
+
residual = x
|
| 72 |
+
out = self.relu(self.conv1(x))
|
| 73 |
+
out = self.conv2(out)
|
| 74 |
+
out += residual
|
| 75 |
+
return out
|
| 76 |
+
|
| 77 |
+
class Camera(object):
|
| 78 |
+
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
|
| 79 |
+
"""
|
| 80 |
+
def __init__(self, entry):
|
| 81 |
+
fx, fy, cx, cy = entry[1:5]
|
| 82 |
+
self.fx = fx
|
| 83 |
+
self.fy = fy
|
| 84 |
+
self.cx = cx
|
| 85 |
+
self.cy = cy
|
| 86 |
+
w2c_mat = np.array(entry[7:]).reshape(3, 4)
|
| 87 |
+
w2c_mat_4x4 = np.eye(4)
|
| 88 |
+
w2c_mat_4x4[:3, :] = w2c_mat
|
| 89 |
+
self.w2c_mat = w2c_mat_4x4
|
| 90 |
+
self.c2w_mat = np.linalg.inv(w2c_mat_4x4)
|
| 91 |
+
|
| 92 |
+
def get_relative_pose(cam_params):
|
| 93 |
+
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
|
| 94 |
+
"""
|
| 95 |
+
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
|
| 96 |
+
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
|
| 97 |
+
cam_to_origin = 0
|
| 98 |
+
target_cam_c2w = np.array([
|
| 99 |
+
[1, 0, 0, 0],
|
| 100 |
+
[0, 1, 0, -cam_to_origin],
|
| 101 |
+
[0, 0, 1, 0],
|
| 102 |
+
[0, 0, 0, 1]
|
| 103 |
+
])
|
| 104 |
+
abs2rel = target_cam_c2w @ abs_w2cs[0]
|
| 105 |
+
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
|
| 106 |
+
ret_poses = np.array(ret_poses, dtype=np.float32)
|
| 107 |
+
return ret_poses
|
| 108 |
+
|
| 109 |
+
def custom_meshgrid(*args):
|
| 110 |
+
# torch>=2.0.0 only
|
| 111 |
+
return torch.meshgrid(*args, indexing='ij')
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def ray_condition(K, c2w, H, W, device):
|
| 115 |
+
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
|
| 116 |
+
"""
|
| 117 |
+
# c2w: B, V, 4, 4
|
| 118 |
+
# K: B, V, 4
|
| 119 |
+
|
| 120 |
+
B = K.shape[0]
|
| 121 |
+
|
| 122 |
+
j, i = custom_meshgrid(
|
| 123 |
+
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
|
| 124 |
+
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
|
| 125 |
+
)
|
| 126 |
+
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
|
| 127 |
+
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
|
| 128 |
+
|
| 129 |
+
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
|
| 130 |
+
|
| 131 |
+
zs = torch.ones_like(i) # [B, HxW]
|
| 132 |
+
xs = (i - cx) / fx * zs
|
| 133 |
+
ys = (j - cy) / fy * zs
|
| 134 |
+
zs = zs.expand_as(ys)
|
| 135 |
+
|
| 136 |
+
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
|
| 137 |
+
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
|
| 138 |
+
|
| 139 |
+
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW
|
| 140 |
+
rays_o = c2w[..., :3, 3] # B, V, 3
|
| 141 |
+
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW
|
| 142 |
+
# c2w @ dirctions
|
| 143 |
+
rays_dxo = torch.linalg.cross(rays_o, rays_d)
|
| 144 |
+
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
|
| 145 |
+
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
|
| 146 |
+
# plucker = plucker.permute(0, 1, 4, 2, 3)
|
| 147 |
+
return plucker
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def process_pose_file(cam_params, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu', return_poses=False):
|
| 151 |
+
if return_poses:
|
| 152 |
+
return cam_params
|
| 153 |
+
else:
|
| 154 |
+
cam_params = [Camera(cam_param) for cam_param in cam_params]
|
| 155 |
+
|
| 156 |
+
sample_wh_ratio = width / height
|
| 157 |
+
pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed
|
| 158 |
+
|
| 159 |
+
if pose_wh_ratio > sample_wh_ratio:
|
| 160 |
+
resized_ori_w = height * pose_wh_ratio
|
| 161 |
+
for cam_param in cam_params:
|
| 162 |
+
cam_param.fx = resized_ori_w * cam_param.fx / width
|
| 163 |
+
else:
|
| 164 |
+
resized_ori_h = width / pose_wh_ratio
|
| 165 |
+
for cam_param in cam_params:
|
| 166 |
+
cam_param.fy = resized_ori_h * cam_param.fy / height
|
| 167 |
+
|
| 168 |
+
intrinsic = np.asarray([[cam_param.fx * width,
|
| 169 |
+
cam_param.fy * height,
|
| 170 |
+
cam_param.cx * width,
|
| 171 |
+
cam_param.cy * height]
|
| 172 |
+
for cam_param in cam_params], dtype=np.float32)
|
| 173 |
+
|
| 174 |
+
K = torch.as_tensor(intrinsic)[None] # [1, 1, 4]
|
| 175 |
+
c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere
|
| 176 |
+
c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4]
|
| 177 |
+
plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W
|
| 178 |
+
plucker_embedding = plucker_embedding[None]
|
| 179 |
+
plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
|
| 180 |
+
return plucker_embedding
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def generate_camera_coordinates(
|
| 185 |
+
direction: Literal["Left", "Right", "Up", "Down", "LeftUp", "LeftDown", "RightUp", "RightDown"],
|
| 186 |
+
length: int,
|
| 187 |
+
speed: float = 1/54,
|
| 188 |
+
origin=(0, 0.532139961, 0.946026558, 0.5, 0.5, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)
|
| 189 |
+
):
|
| 190 |
+
coordinates = [list(origin)]
|
| 191 |
+
while len(coordinates) < length:
|
| 192 |
+
coor = coordinates[-1].copy()
|
| 193 |
+
if "Left" in direction:
|
| 194 |
+
coor[9] += speed
|
| 195 |
+
if "Right" in direction:
|
| 196 |
+
coor[9] -= speed
|
| 197 |
+
if "Up" in direction:
|
| 198 |
+
coor[13] += speed
|
| 199 |
+
if "Down" in direction:
|
| 200 |
+
coor[13] -= speed
|
| 201 |
+
coordinates.append(coor)
|
| 202 |
+
return coordinates
|
dkt/models/wan_video_dit.py
ADDED
|
@@ -0,0 +1,719 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import math
|
| 5 |
+
from typing import Tuple, Optional
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from .utils import hash_state_dict_keys
|
| 8 |
+
from .wan_video_camera_controller import SimpleAdapter
|
| 9 |
+
try:
|
| 10 |
+
import flash_attn_interface
|
| 11 |
+
FLASH_ATTN_3_AVAILABLE = True
|
| 12 |
+
except ModuleNotFoundError:
|
| 13 |
+
FLASH_ATTN_3_AVAILABLE = False
|
| 14 |
+
|
| 15 |
+
try:
|
| 16 |
+
import flash_attn
|
| 17 |
+
FLASH_ATTN_2_AVAILABLE = True
|
| 18 |
+
except ModuleNotFoundError:
|
| 19 |
+
FLASH_ATTN_2_AVAILABLE = False
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
from sageattention import sageattn
|
| 23 |
+
SAGE_ATTN_AVAILABLE = True
|
| 24 |
+
except ModuleNotFoundError:
|
| 25 |
+
SAGE_ATTN_AVAILABLE = False
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def flash_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, num_heads: int, compatibility_mode=False):
|
| 29 |
+
if compatibility_mode:
|
| 30 |
+
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
|
| 31 |
+
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
|
| 32 |
+
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
|
| 33 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
| 34 |
+
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
|
| 35 |
+
elif FLASH_ATTN_3_AVAILABLE:
|
| 36 |
+
q = rearrange(q, "b s (n d) -> b s n d", n=num_heads)
|
| 37 |
+
k = rearrange(k, "b s (n d) -> b s n d", n=num_heads)
|
| 38 |
+
v = rearrange(v, "b s (n d) -> b s n d", n=num_heads)
|
| 39 |
+
x = flash_attn_interface.flash_attn_func(q, k, v)
|
| 40 |
+
if isinstance(x,tuple):
|
| 41 |
+
x = x[0]
|
| 42 |
+
x = rearrange(x, "b s n d -> b s (n d)", n=num_heads)
|
| 43 |
+
elif FLASH_ATTN_2_AVAILABLE:
|
| 44 |
+
q = rearrange(q, "b s (n d) -> b s n d", n=num_heads)
|
| 45 |
+
k = rearrange(k, "b s (n d) -> b s n d", n=num_heads)
|
| 46 |
+
v = rearrange(v, "b s (n d) -> b s n d", n=num_heads)
|
| 47 |
+
x = flash_attn.flash_attn_func(q, k, v)
|
| 48 |
+
x = rearrange(x, "b s n d -> b s (n d)", n=num_heads)
|
| 49 |
+
elif SAGE_ATTN_AVAILABLE:
|
| 50 |
+
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
|
| 51 |
+
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
|
| 52 |
+
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
|
| 53 |
+
x = sageattn(q, k, v)
|
| 54 |
+
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
|
| 55 |
+
else:
|
| 56 |
+
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
|
| 57 |
+
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
|
| 58 |
+
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
|
| 59 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
| 60 |
+
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
|
| 61 |
+
return x
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor):
|
| 65 |
+
return (x * (1 + scale) + shift)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def sinusoidal_embedding_1d(dim, position):
|
| 69 |
+
sinusoid = torch.outer(position.type(torch.float64), torch.pow(
|
| 70 |
+
10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2)))
|
| 71 |
+
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
|
| 72 |
+
return x.to(position.dtype)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def precompute_freqs_cis_3d(dim: int, end: int = 1024, theta: float = 10000.0):
|
| 76 |
+
# 3d rope precompute
|
| 77 |
+
f_freqs_cis = precompute_freqs_cis(dim - 2 * (dim // 3), end, theta)
|
| 78 |
+
h_freqs_cis = precompute_freqs_cis(dim // 3, end, theta)
|
| 79 |
+
w_freqs_cis = precompute_freqs_cis(dim // 3, end, theta)
|
| 80 |
+
return f_freqs_cis, h_freqs_cis, w_freqs_cis
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def precompute_freqs_cis(dim: int, end: int = 1024, theta: float = 10000.0):
|
| 84 |
+
# 1d rope precompute
|
| 85 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)
|
| 86 |
+
[: (dim // 2)].double() / dim))
|
| 87 |
+
freqs = torch.outer(torch.arange(end, device=freqs.device), freqs)
|
| 88 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
| 89 |
+
return freqs_cis
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def rope_apply(x, freqs, num_heads):
|
| 93 |
+
x = rearrange(x, "b s (n d) -> b s n d", n=num_heads)
|
| 94 |
+
x_out = torch.view_as_complex(x.to(torch.float64).reshape(
|
| 95 |
+
x.shape[0], x.shape[1], x.shape[2], -1, 2))
|
| 96 |
+
x_out = torch.view_as_real(x_out * freqs).flatten(2)
|
| 97 |
+
return x_out.to(x.dtype)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class RMSNorm(nn.Module):
|
| 101 |
+
def __init__(self, dim, eps=1e-5):
|
| 102 |
+
super().__init__()
|
| 103 |
+
self.eps = eps
|
| 104 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 105 |
+
|
| 106 |
+
def norm(self, x):
|
| 107 |
+
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
|
| 108 |
+
|
| 109 |
+
def forward(self, x):
|
| 110 |
+
dtype = x.dtype
|
| 111 |
+
return self.norm(x.float()).to(dtype) * self.weight
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class AttentionModule(nn.Module):
|
| 115 |
+
def __init__(self, num_heads):
|
| 116 |
+
super().__init__()
|
| 117 |
+
self.num_heads = num_heads
|
| 118 |
+
|
| 119 |
+
def forward(self, q, k, v):
|
| 120 |
+
x = flash_attention(q=q, k=k, v=v, num_heads=self.num_heads)
|
| 121 |
+
return x
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class SelfAttention(nn.Module):
|
| 125 |
+
def __init__(self, dim: int, num_heads: int, eps: float = 1e-6):
|
| 126 |
+
super().__init__()
|
| 127 |
+
self.dim = dim
|
| 128 |
+
self.num_heads = num_heads
|
| 129 |
+
self.head_dim = dim // num_heads
|
| 130 |
+
|
| 131 |
+
self.q = nn.Linear(dim, dim)
|
| 132 |
+
self.k = nn.Linear(dim, dim)
|
| 133 |
+
self.v = nn.Linear(dim, dim)
|
| 134 |
+
self.o = nn.Linear(dim, dim)
|
| 135 |
+
self.norm_q = RMSNorm(dim, eps=eps)
|
| 136 |
+
self.norm_k = RMSNorm(dim, eps=eps)
|
| 137 |
+
|
| 138 |
+
self.attn = AttentionModule(self.num_heads)
|
| 139 |
+
|
| 140 |
+
def forward(self, x, freqs):
|
| 141 |
+
q = self.norm_q(self.q(x))
|
| 142 |
+
k = self.norm_k(self.k(x))
|
| 143 |
+
v = self.v(x)
|
| 144 |
+
q = rope_apply(q, freqs, self.num_heads)
|
| 145 |
+
k = rope_apply(k, freqs, self.num_heads)
|
| 146 |
+
x = self.attn(q, k, v)
|
| 147 |
+
return self.o(x)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class CrossAttention(nn.Module):
|
| 151 |
+
def __init__(self, dim: int, num_heads: int, eps: float = 1e-6, has_image_input: bool = False):
|
| 152 |
+
super().__init__()
|
| 153 |
+
self.dim = dim
|
| 154 |
+
self.num_heads = num_heads
|
| 155 |
+
self.head_dim = dim // num_heads
|
| 156 |
+
|
| 157 |
+
self.q = nn.Linear(dim, dim)
|
| 158 |
+
self.k = nn.Linear(dim, dim)
|
| 159 |
+
self.v = nn.Linear(dim, dim)
|
| 160 |
+
self.o = nn.Linear(dim, dim)
|
| 161 |
+
self.norm_q = RMSNorm(dim, eps=eps)
|
| 162 |
+
self.norm_k = RMSNorm(dim, eps=eps)
|
| 163 |
+
self.has_image_input = has_image_input
|
| 164 |
+
if has_image_input:
|
| 165 |
+
self.k_img = nn.Linear(dim, dim)
|
| 166 |
+
self.v_img = nn.Linear(dim, dim)
|
| 167 |
+
self.norm_k_img = RMSNorm(dim, eps=eps)
|
| 168 |
+
|
| 169 |
+
self.attn = AttentionModule(self.num_heads)
|
| 170 |
+
|
| 171 |
+
def forward(self, x: torch.Tensor, y: torch.Tensor):
|
| 172 |
+
if self.has_image_input:
|
| 173 |
+
img = y[:, :257]
|
| 174 |
+
ctx = y[:, 257:]
|
| 175 |
+
else:
|
| 176 |
+
ctx = y
|
| 177 |
+
q = self.norm_q(self.q(x))
|
| 178 |
+
k = self.norm_k(self.k(ctx))
|
| 179 |
+
v = self.v(ctx)
|
| 180 |
+
x = self.attn(q, k, v)
|
| 181 |
+
if self.has_image_input:
|
| 182 |
+
k_img = self.norm_k_img(self.k_img(img))
|
| 183 |
+
v_img = self.v_img(img)
|
| 184 |
+
y = flash_attention(q, k_img, v_img, num_heads=self.num_heads)
|
| 185 |
+
x = x + y
|
| 186 |
+
return self.o(x)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
class GateModule(nn.Module):
|
| 190 |
+
def __init__(self,):
|
| 191 |
+
super().__init__()
|
| 192 |
+
|
| 193 |
+
def forward(self, x, gate, residual):
|
| 194 |
+
return x + gate * residual
|
| 195 |
+
|
| 196 |
+
class DiTBlock(nn.Module):
|
| 197 |
+
def __init__(self, has_image_input: bool, dim: int, num_heads: int, ffn_dim: int, eps: float = 1e-6):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.dim = dim
|
| 200 |
+
self.num_heads = num_heads
|
| 201 |
+
self.ffn_dim = ffn_dim
|
| 202 |
+
|
| 203 |
+
self.self_attn = SelfAttention(dim, num_heads, eps)
|
| 204 |
+
self.cross_attn = CrossAttention(
|
| 205 |
+
dim, num_heads, eps, has_image_input=has_image_input)
|
| 206 |
+
self.norm1 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
|
| 207 |
+
self.norm2 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
|
| 208 |
+
self.norm3 = nn.LayerNorm(dim, eps=eps)
|
| 209 |
+
self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(
|
| 210 |
+
approximate='tanh'), nn.Linear(ffn_dim, dim))
|
| 211 |
+
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
| 212 |
+
self.gate = GateModule()
|
| 213 |
+
|
| 214 |
+
def forward(self, x, context, t_mod, freqs):
|
| 215 |
+
has_seq = len(t_mod.shape) == 4
|
| 216 |
+
chunk_dim = 2 if has_seq else 1
|
| 217 |
+
# msa: multi-head self-attention mlp: multi-layer perceptron
|
| 218 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 219 |
+
self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(6, dim=chunk_dim)
|
| 220 |
+
if has_seq:
|
| 221 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 222 |
+
shift_msa.squeeze(2), scale_msa.squeeze(2), gate_msa.squeeze(2),
|
| 223 |
+
shift_mlp.squeeze(2), scale_mlp.squeeze(2), gate_mlp.squeeze(2),
|
| 224 |
+
)
|
| 225 |
+
input_x = modulate(self.norm1(x), shift_msa, scale_msa)
|
| 226 |
+
x = self.gate(x, gate_msa, self.self_attn(input_x, freqs))
|
| 227 |
+
x = x + self.cross_attn(self.norm3(x), context)
|
| 228 |
+
input_x = modulate(self.norm2(x), shift_mlp, scale_mlp)
|
| 229 |
+
x = self.gate(x, gate_mlp, self.ffn(input_x))
|
| 230 |
+
return x
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class MLP(torch.nn.Module):
|
| 234 |
+
def __init__(self, in_dim, out_dim, has_pos_emb=False):
|
| 235 |
+
super().__init__()
|
| 236 |
+
self.proj = torch.nn.Sequential(
|
| 237 |
+
nn.LayerNorm(in_dim),
|
| 238 |
+
nn.Linear(in_dim, in_dim),
|
| 239 |
+
nn.GELU(),
|
| 240 |
+
nn.Linear(in_dim, out_dim),
|
| 241 |
+
nn.LayerNorm(out_dim)
|
| 242 |
+
)
|
| 243 |
+
self.has_pos_emb = has_pos_emb
|
| 244 |
+
if has_pos_emb:
|
| 245 |
+
self.emb_pos = torch.nn.Parameter(torch.zeros((1, 514, 1280)))
|
| 246 |
+
|
| 247 |
+
def forward(self, x):
|
| 248 |
+
if self.has_pos_emb:
|
| 249 |
+
x = x + self.emb_pos.to(dtype=x.dtype, device=x.device)
|
| 250 |
+
return self.proj(x)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
class Head(nn.Module):
|
| 254 |
+
def __init__(self, dim: int, out_dim: int, patch_size: Tuple[int, int, int], eps: float):
|
| 255 |
+
super().__init__()
|
| 256 |
+
self.dim = dim
|
| 257 |
+
self.patch_size = patch_size
|
| 258 |
+
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
|
| 259 |
+
self.head = nn.Linear(dim, out_dim * math.prod(patch_size))
|
| 260 |
+
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
| 261 |
+
|
| 262 |
+
def forward(self, x, t_mod):
|
| 263 |
+
if len(t_mod.shape) == 3:
|
| 264 |
+
shift, scale = (self.modulation.unsqueeze(0).to(dtype=t_mod.dtype, device=t_mod.device) + t_mod.unsqueeze(2)).chunk(2, dim=2)
|
| 265 |
+
x = (self.head(self.norm(x) * (1 + scale.squeeze(2)) + shift.squeeze(2)))
|
| 266 |
+
else:
|
| 267 |
+
shift, scale = (self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(2, dim=1)
|
| 268 |
+
x = (self.head(self.norm(x) * (1 + scale) + shift))
|
| 269 |
+
return x
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class WanModel(torch.nn.Module):
|
| 273 |
+
def __init__(
|
| 274 |
+
self,
|
| 275 |
+
dim: int,
|
| 276 |
+
in_dim: int,
|
| 277 |
+
ffn_dim: int,
|
| 278 |
+
out_dim: int,
|
| 279 |
+
text_dim: int,
|
| 280 |
+
freq_dim: int,
|
| 281 |
+
eps: float,
|
| 282 |
+
patch_size: Tuple[int, int, int],
|
| 283 |
+
num_heads: int,
|
| 284 |
+
num_layers: int,
|
| 285 |
+
has_image_input: bool,
|
| 286 |
+
has_image_pos_emb: bool = False,
|
| 287 |
+
has_ref_conv: bool = False,
|
| 288 |
+
add_control_adapter: bool = False,
|
| 289 |
+
in_dim_control_adapter: int = 24,
|
| 290 |
+
seperated_timestep: bool = False,
|
| 291 |
+
require_vae_embedding: bool = True,
|
| 292 |
+
require_clip_embedding: bool = True,
|
| 293 |
+
fuse_vae_embedding_in_latents: bool = False,
|
| 294 |
+
):
|
| 295 |
+
super().__init__()
|
| 296 |
+
self.dim = dim
|
| 297 |
+
self.freq_dim = freq_dim
|
| 298 |
+
self.has_image_input = has_image_input
|
| 299 |
+
self.patch_size = patch_size
|
| 300 |
+
self.seperated_timestep = seperated_timestep
|
| 301 |
+
self.require_vae_embedding = require_vae_embedding
|
| 302 |
+
self.require_clip_embedding = require_clip_embedding
|
| 303 |
+
self.fuse_vae_embedding_in_latents = fuse_vae_embedding_in_latents
|
| 304 |
+
|
| 305 |
+
self.patch_embedding = nn.Conv3d(
|
| 306 |
+
in_dim, dim, kernel_size=patch_size, stride=patch_size)
|
| 307 |
+
self.text_embedding = nn.Sequential(
|
| 308 |
+
nn.Linear(text_dim, dim),
|
| 309 |
+
nn.GELU(approximate='tanh'),
|
| 310 |
+
nn.Linear(dim, dim)
|
| 311 |
+
)
|
| 312 |
+
self.time_embedding = nn.Sequential(
|
| 313 |
+
nn.Linear(freq_dim, dim),
|
| 314 |
+
nn.SiLU(),
|
| 315 |
+
nn.Linear(dim, dim)
|
| 316 |
+
)
|
| 317 |
+
self.time_projection = nn.Sequential(
|
| 318 |
+
nn.SiLU(), nn.Linear(dim, dim * 6))
|
| 319 |
+
self.blocks = nn.ModuleList([
|
| 320 |
+
DiTBlock(has_image_input, dim, num_heads, ffn_dim, eps)
|
| 321 |
+
for _ in range(num_layers)
|
| 322 |
+
])
|
| 323 |
+
self.head = Head(dim, out_dim, patch_size, eps)
|
| 324 |
+
head_dim = dim // num_heads
|
| 325 |
+
self.freqs = precompute_freqs_cis_3d(head_dim)
|
| 326 |
+
|
| 327 |
+
if has_image_input:
|
| 328 |
+
self.img_emb = MLP(1280, dim, has_pos_emb=has_image_pos_emb) # clip_feature_dim = 1280
|
| 329 |
+
if has_ref_conv:
|
| 330 |
+
self.ref_conv = nn.Conv2d(16, dim, kernel_size=(2, 2), stride=(2, 2))
|
| 331 |
+
self.has_image_pos_emb = has_image_pos_emb
|
| 332 |
+
self.has_ref_conv = has_ref_conv
|
| 333 |
+
if add_control_adapter:
|
| 334 |
+
self.control_adapter = SimpleAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:])
|
| 335 |
+
else:
|
| 336 |
+
self.control_adapter = None
|
| 337 |
+
|
| 338 |
+
def patchify(self, x: torch.Tensor,control_camera_latents_input: torch.Tensor = None):
|
| 339 |
+
|
| 340 |
+
x = self.patch_embedding(x) #* from ([1, 48, 21, 30, 40]) to [1, 1536, 21, 15, 20]),
|
| 341 |
+
if self.control_adapter is not None and control_camera_latents_input is not None:
|
| 342 |
+
y_camera = self.control_adapter(control_camera_latents_input)
|
| 343 |
+
x = [u + v for u, v in zip(x, y_camera)]
|
| 344 |
+
x = x[0].unsqueeze(0)
|
| 345 |
+
grid_size = x.shape[2:]#* get the (F,H,W)
|
| 346 |
+
x = rearrange(x, 'b c f h w -> b (f h w) c').contiguous()
|
| 347 |
+
return x, grid_size # x, grid_size: (f, h, w)
|
| 348 |
+
|
| 349 |
+
def unpatchify(self, x: torch.Tensor, grid_size: torch.Tensor):
|
| 350 |
+
return rearrange(
|
| 351 |
+
x, 'b (f h w) (x y z c) -> b c (f x) (h y) (w z)',
|
| 352 |
+
f=grid_size[0], h=grid_size[1], w=grid_size[2],
|
| 353 |
+
x=self.patch_size[0], y=self.patch_size[1], z=self.patch_size[2]
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
def forward(self,
|
| 357 |
+
x: torch.Tensor,
|
| 358 |
+
timestep: torch.Tensor,
|
| 359 |
+
context: torch.Tensor,
|
| 360 |
+
clip_feature: Optional[torch.Tensor] = None,
|
| 361 |
+
y: Optional[torch.Tensor] = None,
|
| 362 |
+
use_gradient_checkpointing: bool = False,
|
| 363 |
+
use_gradient_checkpointing_offload: bool = False,
|
| 364 |
+
**kwargs,
|
| 365 |
+
):
|
| 366 |
+
t = self.time_embedding(
|
| 367 |
+
sinusoidal_embedding_1d(self.freq_dim, timestep))
|
| 368 |
+
t_mod = self.time_projection(t).unflatten(1, (6, self.dim))
|
| 369 |
+
context = self.text_embedding(context)
|
| 370 |
+
|
| 371 |
+
if self.has_image_input:
|
| 372 |
+
x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w)
|
| 373 |
+
clip_embdding = self.img_emb(clip_feature)
|
| 374 |
+
context = torch.cat([clip_embdding, context], dim=1)
|
| 375 |
+
|
| 376 |
+
x, (f, h, w) = self.patchify(x)
|
| 377 |
+
|
| 378 |
+
freqs = torch.cat([
|
| 379 |
+
self.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
| 380 |
+
self.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
| 381 |
+
self.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
| 382 |
+
], dim=-1).reshape(f * h * w, 1, -1).to(x.device)
|
| 383 |
+
|
| 384 |
+
def create_custom_forward(module):
|
| 385 |
+
def custom_forward(*inputs):
|
| 386 |
+
return module(*inputs)
|
| 387 |
+
return custom_forward
|
| 388 |
+
|
| 389 |
+
for block in self.blocks:
|
| 390 |
+
if self.training and use_gradient_checkpointing:
|
| 391 |
+
if use_gradient_checkpointing_offload:
|
| 392 |
+
with torch.autograd.graph.save_on_cpu():
|
| 393 |
+
x = torch.utils.checkpoint.checkpoint(
|
| 394 |
+
create_custom_forward(block),
|
| 395 |
+
x, context, t_mod, freqs,
|
| 396 |
+
use_reentrant=False,
|
| 397 |
+
)
|
| 398 |
+
else:
|
| 399 |
+
x = torch.utils.checkpoint.checkpoint(
|
| 400 |
+
create_custom_forward(block),
|
| 401 |
+
x, context, t_mod, freqs,
|
| 402 |
+
use_reentrant=False,
|
| 403 |
+
)
|
| 404 |
+
else:
|
| 405 |
+
x = block(x, context, t_mod, freqs)
|
| 406 |
+
|
| 407 |
+
x = self.head(x, t)
|
| 408 |
+
x = self.unpatchify(x, (f, h, w))
|
| 409 |
+
return x
|
| 410 |
+
|
| 411 |
+
@staticmethod
|
| 412 |
+
def state_dict_converter():
|
| 413 |
+
return WanModelStateDictConverter()
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
class WanModelStateDictConverter:
|
| 417 |
+
def __init__(self):
|
| 418 |
+
pass
|
| 419 |
+
|
| 420 |
+
def from_diffusers(self, state_dict):
|
| 421 |
+
rename_dict = {
|
| 422 |
+
"blocks.0.attn1.norm_k.weight": "blocks.0.self_attn.norm_k.weight",
|
| 423 |
+
"blocks.0.attn1.norm_q.weight": "blocks.0.self_attn.norm_q.weight",
|
| 424 |
+
"blocks.0.attn1.to_k.bias": "blocks.0.self_attn.k.bias",
|
| 425 |
+
"blocks.0.attn1.to_k.weight": "blocks.0.self_attn.k.weight",
|
| 426 |
+
"blocks.0.attn1.to_out.0.bias": "blocks.0.self_attn.o.bias",
|
| 427 |
+
"blocks.0.attn1.to_out.0.weight": "blocks.0.self_attn.o.weight",
|
| 428 |
+
"blocks.0.attn1.to_q.bias": "blocks.0.self_attn.q.bias",
|
| 429 |
+
"blocks.0.attn1.to_q.weight": "blocks.0.self_attn.q.weight",
|
| 430 |
+
"blocks.0.attn1.to_v.bias": "blocks.0.self_attn.v.bias",
|
| 431 |
+
"blocks.0.attn1.to_v.weight": "blocks.0.self_attn.v.weight",
|
| 432 |
+
"blocks.0.attn2.norm_k.weight": "blocks.0.cross_attn.norm_k.weight",
|
| 433 |
+
"blocks.0.attn2.norm_q.weight": "blocks.0.cross_attn.norm_q.weight",
|
| 434 |
+
"blocks.0.attn2.to_k.bias": "blocks.0.cross_attn.k.bias",
|
| 435 |
+
"blocks.0.attn2.to_k.weight": "blocks.0.cross_attn.k.weight",
|
| 436 |
+
"blocks.0.attn2.to_out.0.bias": "blocks.0.cross_attn.o.bias",
|
| 437 |
+
"blocks.0.attn2.to_out.0.weight": "blocks.0.cross_attn.o.weight",
|
| 438 |
+
"blocks.0.attn2.to_q.bias": "blocks.0.cross_attn.q.bias",
|
| 439 |
+
"blocks.0.attn2.to_q.weight": "blocks.0.cross_attn.q.weight",
|
| 440 |
+
"blocks.0.attn2.to_v.bias": "blocks.0.cross_attn.v.bias",
|
| 441 |
+
"blocks.0.attn2.to_v.weight": "blocks.0.cross_attn.v.weight",
|
| 442 |
+
"blocks.0.ffn.net.0.proj.bias": "blocks.0.ffn.0.bias",
|
| 443 |
+
"blocks.0.ffn.net.0.proj.weight": "blocks.0.ffn.0.weight",
|
| 444 |
+
"blocks.0.ffn.net.2.bias": "blocks.0.ffn.2.bias",
|
| 445 |
+
"blocks.0.ffn.net.2.weight": "blocks.0.ffn.2.weight",
|
| 446 |
+
"blocks.0.norm2.bias": "blocks.0.norm3.bias",
|
| 447 |
+
"blocks.0.norm2.weight": "blocks.0.norm3.weight",
|
| 448 |
+
"blocks.0.scale_shift_table": "blocks.0.modulation",
|
| 449 |
+
"condition_embedder.text_embedder.linear_1.bias": "text_embedding.0.bias",
|
| 450 |
+
"condition_embedder.text_embedder.linear_1.weight": "text_embedding.0.weight",
|
| 451 |
+
"condition_embedder.text_embedder.linear_2.bias": "text_embedding.2.bias",
|
| 452 |
+
"condition_embedder.text_embedder.linear_2.weight": "text_embedding.2.weight",
|
| 453 |
+
"condition_embedder.time_embedder.linear_1.bias": "time_embedding.0.bias",
|
| 454 |
+
"condition_embedder.time_embedder.linear_1.weight": "time_embedding.0.weight",
|
| 455 |
+
"condition_embedder.time_embedder.linear_2.bias": "time_embedding.2.bias",
|
| 456 |
+
"condition_embedder.time_embedder.linear_2.weight": "time_embedding.2.weight",
|
| 457 |
+
"condition_embedder.time_proj.bias": "time_projection.1.bias",
|
| 458 |
+
"condition_embedder.time_proj.weight": "time_projection.1.weight",
|
| 459 |
+
"patch_embedding.bias": "patch_embedding.bias",
|
| 460 |
+
"patch_embedding.weight": "patch_embedding.weight",
|
| 461 |
+
"scale_shift_table": "head.modulation",
|
| 462 |
+
"proj_out.bias": "head.head.bias",
|
| 463 |
+
"proj_out.weight": "head.head.weight",
|
| 464 |
+
}
|
| 465 |
+
state_dict_ = {}
|
| 466 |
+
for name, param in state_dict.items():
|
| 467 |
+
if name in rename_dict:
|
| 468 |
+
state_dict_[rename_dict[name]] = param
|
| 469 |
+
else:
|
| 470 |
+
name_ = ".".join(name.split(".")[:1] + ["0"] + name.split(".")[2:])
|
| 471 |
+
if name_ in rename_dict:
|
| 472 |
+
name_ = rename_dict[name_]
|
| 473 |
+
name_ = ".".join(name_.split(".")[:1] + [name.split(".")[1]] + name_.split(".")[2:])
|
| 474 |
+
state_dict_[name_] = param
|
| 475 |
+
if hash_state_dict_keys(state_dict) == "cb104773c6c2cb6df4f9529ad5c60d0b":
|
| 476 |
+
config = {
|
| 477 |
+
"model_type": "t2v",
|
| 478 |
+
"patch_size": (1, 2, 2),
|
| 479 |
+
"text_len": 512,
|
| 480 |
+
"in_dim": 16,
|
| 481 |
+
"dim": 5120,
|
| 482 |
+
"ffn_dim": 13824,
|
| 483 |
+
"freq_dim": 256,
|
| 484 |
+
"text_dim": 4096,
|
| 485 |
+
"out_dim": 16,
|
| 486 |
+
"num_heads": 40,
|
| 487 |
+
"num_layers": 40,
|
| 488 |
+
"window_size": (-1, -1),
|
| 489 |
+
"qk_norm": True,
|
| 490 |
+
"cross_attn_norm": True,
|
| 491 |
+
"eps": 1e-6,
|
| 492 |
+
}
|
| 493 |
+
else:
|
| 494 |
+
config = {}
|
| 495 |
+
return state_dict_, config
|
| 496 |
+
|
| 497 |
+
def from_civitai(self, state_dict):
|
| 498 |
+
state_dict = {name: param for name, param in state_dict.items() if not name.startswith("vace")}
|
| 499 |
+
if hash_state_dict_keys(state_dict) == "9269f8db9040a9d860eaca435be61814":
|
| 500 |
+
config = {
|
| 501 |
+
"has_image_input": False,
|
| 502 |
+
"patch_size": [1, 2, 2],
|
| 503 |
+
"in_dim": 16,
|
| 504 |
+
"dim": 1536,
|
| 505 |
+
"ffn_dim": 8960,
|
| 506 |
+
"freq_dim": 256,
|
| 507 |
+
"text_dim": 4096,
|
| 508 |
+
"out_dim": 16,
|
| 509 |
+
"num_heads": 12,
|
| 510 |
+
"num_layers": 30,
|
| 511 |
+
"eps": 1e-6
|
| 512 |
+
}
|
| 513 |
+
elif hash_state_dict_keys(state_dict) == "aafcfd9672c3a2456dc46e1cb6e52c70":
|
| 514 |
+
config = {
|
| 515 |
+
"has_image_input": False,
|
| 516 |
+
"patch_size": [1, 2, 2],
|
| 517 |
+
"in_dim": 16,
|
| 518 |
+
"dim": 5120,
|
| 519 |
+
"ffn_dim": 13824,
|
| 520 |
+
"freq_dim": 256,
|
| 521 |
+
"text_dim": 4096,
|
| 522 |
+
"out_dim": 16,
|
| 523 |
+
"num_heads": 40,
|
| 524 |
+
"num_layers": 40,
|
| 525 |
+
"eps": 1e-6
|
| 526 |
+
}
|
| 527 |
+
elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e":
|
| 528 |
+
config = {
|
| 529 |
+
"has_image_input": True,
|
| 530 |
+
"patch_size": [1, 2, 2],
|
| 531 |
+
"in_dim": 36,
|
| 532 |
+
"dim": 5120,
|
| 533 |
+
"ffn_dim": 13824,
|
| 534 |
+
"freq_dim": 256,
|
| 535 |
+
"text_dim": 4096,
|
| 536 |
+
"out_dim": 16,
|
| 537 |
+
"num_heads": 40,
|
| 538 |
+
"num_layers": 40,
|
| 539 |
+
"eps": 1e-6
|
| 540 |
+
}
|
| 541 |
+
elif hash_state_dict_keys(state_dict) == "6d6ccde6845b95ad9114ab993d917893":
|
| 542 |
+
config = {
|
| 543 |
+
"has_image_input": True,
|
| 544 |
+
"patch_size": [1, 2, 2],
|
| 545 |
+
"in_dim": 36,
|
| 546 |
+
"dim": 1536,
|
| 547 |
+
"ffn_dim": 8960,
|
| 548 |
+
"freq_dim": 256,
|
| 549 |
+
"text_dim": 4096,
|
| 550 |
+
"out_dim": 16,
|
| 551 |
+
"num_heads": 12,
|
| 552 |
+
"num_layers": 30,
|
| 553 |
+
"eps": 1e-6
|
| 554 |
+
}
|
| 555 |
+
elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e":
|
| 556 |
+
config = {
|
| 557 |
+
"has_image_input": True,
|
| 558 |
+
"patch_size": [1, 2, 2],
|
| 559 |
+
"in_dim": 36,
|
| 560 |
+
"dim": 5120,
|
| 561 |
+
"ffn_dim": 13824,
|
| 562 |
+
"freq_dim": 256,
|
| 563 |
+
"text_dim": 4096,
|
| 564 |
+
"out_dim": 16,
|
| 565 |
+
"num_heads": 40,
|
| 566 |
+
"num_layers": 40,
|
| 567 |
+
"eps": 1e-6
|
| 568 |
+
}
|
| 569 |
+
elif hash_state_dict_keys(state_dict) == "349723183fc063b2bfc10bb2835cf677":
|
| 570 |
+
# 1.3B PAI control
|
| 571 |
+
config = {
|
| 572 |
+
"has_image_input": True,
|
| 573 |
+
"patch_size": [1, 2, 2],
|
| 574 |
+
"in_dim": 48,
|
| 575 |
+
"dim": 1536,
|
| 576 |
+
"ffn_dim": 8960,
|
| 577 |
+
"freq_dim": 256,
|
| 578 |
+
"text_dim": 4096,
|
| 579 |
+
"out_dim": 16,
|
| 580 |
+
"num_heads": 12,
|
| 581 |
+
"num_layers": 30,
|
| 582 |
+
"eps": 1e-6
|
| 583 |
+
}
|
| 584 |
+
elif hash_state_dict_keys(state_dict) == "efa44cddf936c70abd0ea28b6cbe946c":
|
| 585 |
+
# 14B PAI control
|
| 586 |
+
config = {
|
| 587 |
+
"has_image_input": True,
|
| 588 |
+
"patch_size": [1, 2, 2],
|
| 589 |
+
"in_dim": 48,
|
| 590 |
+
"dim": 5120,
|
| 591 |
+
"ffn_dim": 13824,
|
| 592 |
+
"freq_dim": 256,
|
| 593 |
+
"text_dim": 4096,
|
| 594 |
+
"out_dim": 16,
|
| 595 |
+
"num_heads": 40,
|
| 596 |
+
"num_layers": 40,
|
| 597 |
+
"eps": 1e-6
|
| 598 |
+
}
|
| 599 |
+
elif hash_state_dict_keys(state_dict) == "3ef3b1f8e1dab83d5b71fd7b617f859f":
|
| 600 |
+
config = {
|
| 601 |
+
"has_image_input": True,
|
| 602 |
+
"patch_size": [1, 2, 2],
|
| 603 |
+
"in_dim": 36,
|
| 604 |
+
"dim": 5120,
|
| 605 |
+
"ffn_dim": 13824,
|
| 606 |
+
"freq_dim": 256,
|
| 607 |
+
"text_dim": 4096,
|
| 608 |
+
"out_dim": 16,
|
| 609 |
+
"num_heads": 40,
|
| 610 |
+
"num_layers": 40,
|
| 611 |
+
"eps": 1e-6,
|
| 612 |
+
"has_image_pos_emb": True
|
| 613 |
+
}
|
| 614 |
+
elif hash_state_dict_keys(state_dict) == "70ddad9d3a133785da5ea371aae09504":
|
| 615 |
+
# 1.3B PAI control v1.1
|
| 616 |
+
config = {
|
| 617 |
+
"has_image_input": True,
|
| 618 |
+
"patch_size": [1, 2, 2],
|
| 619 |
+
"in_dim": 48,
|
| 620 |
+
"dim": 1536,
|
| 621 |
+
"ffn_dim": 8960,
|
| 622 |
+
"freq_dim": 256,
|
| 623 |
+
"text_dim": 4096,
|
| 624 |
+
"out_dim": 16,
|
| 625 |
+
"num_heads": 12,
|
| 626 |
+
"num_layers": 30,
|
| 627 |
+
"eps": 1e-6,
|
| 628 |
+
"has_ref_conv": True
|
| 629 |
+
}
|
| 630 |
+
elif hash_state_dict_keys(state_dict) == "26bde73488a92e64cc20b0a7485b9e5b":
|
| 631 |
+
# 14B PAI control v1.1
|
| 632 |
+
config = {
|
| 633 |
+
"has_image_input": True,
|
| 634 |
+
"patch_size": [1, 2, 2],
|
| 635 |
+
"in_dim": 48,
|
| 636 |
+
"dim": 5120,
|
| 637 |
+
"ffn_dim": 13824,
|
| 638 |
+
"freq_dim": 256,
|
| 639 |
+
"text_dim": 4096,
|
| 640 |
+
"out_dim": 16,
|
| 641 |
+
"num_heads": 40,
|
| 642 |
+
"num_layers": 40,
|
| 643 |
+
"eps": 1e-6,
|
| 644 |
+
"has_ref_conv": True
|
| 645 |
+
}
|
| 646 |
+
elif hash_state_dict_keys(state_dict) == "ac6a5aa74f4a0aab6f64eb9a72f19901":
|
| 647 |
+
# 1.3B PAI control-camera v1.1
|
| 648 |
+
config = {
|
| 649 |
+
"has_image_input": True,
|
| 650 |
+
"patch_size": [1, 2, 2],
|
| 651 |
+
"in_dim": 32,
|
| 652 |
+
"dim": 1536,
|
| 653 |
+
"ffn_dim": 8960,
|
| 654 |
+
"freq_dim": 256,
|
| 655 |
+
"text_dim": 4096,
|
| 656 |
+
"out_dim": 16,
|
| 657 |
+
"num_heads": 12,
|
| 658 |
+
"num_layers": 30,
|
| 659 |
+
"eps": 1e-6,
|
| 660 |
+
"has_ref_conv": False,
|
| 661 |
+
"add_control_adapter": True,
|
| 662 |
+
"in_dim_control_adapter": 24,
|
| 663 |
+
}
|
| 664 |
+
elif hash_state_dict_keys(state_dict) == "b61c605c2adbd23124d152ed28e049ae":
|
| 665 |
+
# 14B PAI control-camera v1.1
|
| 666 |
+
config = {
|
| 667 |
+
"has_image_input": True,
|
| 668 |
+
"patch_size": [1, 2, 2],
|
| 669 |
+
"in_dim": 32,
|
| 670 |
+
"dim": 5120,
|
| 671 |
+
"ffn_dim": 13824,
|
| 672 |
+
"freq_dim": 256,
|
| 673 |
+
"text_dim": 4096,
|
| 674 |
+
"out_dim": 16,
|
| 675 |
+
"num_heads": 40,
|
| 676 |
+
"num_layers": 40,
|
| 677 |
+
"eps": 1e-6,
|
| 678 |
+
"has_ref_conv": False,
|
| 679 |
+
"add_control_adapter": True,
|
| 680 |
+
"in_dim_control_adapter": 24,
|
| 681 |
+
}
|
| 682 |
+
elif hash_state_dict_keys(state_dict) == "1f5ab7703c6fc803fdded85ff040c316":
|
| 683 |
+
# Wan-AI/Wan2.2-TI2V-5B
|
| 684 |
+
config = {
|
| 685 |
+
"has_image_input": False,
|
| 686 |
+
"patch_size": [1, 2, 2],
|
| 687 |
+
"in_dim": 48,
|
| 688 |
+
"dim": 3072,
|
| 689 |
+
"ffn_dim": 14336,
|
| 690 |
+
"freq_dim": 256,
|
| 691 |
+
"text_dim": 4096,
|
| 692 |
+
"out_dim": 48,
|
| 693 |
+
"num_heads": 24,
|
| 694 |
+
"num_layers": 30,
|
| 695 |
+
"eps": 1e-6,
|
| 696 |
+
"seperated_timestep": True,
|
| 697 |
+
"require_clip_embedding": False,
|
| 698 |
+
"require_vae_embedding": False,
|
| 699 |
+
"fuse_vae_embedding_in_latents": True,
|
| 700 |
+
}
|
| 701 |
+
elif hash_state_dict_keys(state_dict) == "5b013604280dd715f8457c6ed6d6a626":
|
| 702 |
+
# Wan-AI/Wan2.2-I2V-A14B
|
| 703 |
+
config = {
|
| 704 |
+
"has_image_input": False,
|
| 705 |
+
"patch_size": [1, 2, 2],
|
| 706 |
+
"in_dim": 36,
|
| 707 |
+
"dim": 5120,
|
| 708 |
+
"ffn_dim": 13824,
|
| 709 |
+
"freq_dim": 256,
|
| 710 |
+
"text_dim": 4096,
|
| 711 |
+
"out_dim": 16,
|
| 712 |
+
"num_heads": 40,
|
| 713 |
+
"num_layers": 40,
|
| 714 |
+
"eps": 1e-6,
|
| 715 |
+
"require_clip_embedding": False,
|
| 716 |
+
}
|
| 717 |
+
else:
|
| 718 |
+
config = {}
|
| 719 |
+
return state_dict, config
|
dkt/models/wan_video_image_encoder.py
ADDED
|
@@ -0,0 +1,902 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Concise re-implementation of
|
| 3 |
+
``https://github.com/openai/CLIP'' and
|
| 4 |
+
``https://github.com/mlfoundations/open_clip''.
|
| 5 |
+
"""
|
| 6 |
+
import math
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import torchvision.transforms as T
|
| 11 |
+
from .wan_video_dit import flash_attention
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class SelfAttention(nn.Module):
|
| 15 |
+
|
| 16 |
+
def __init__(self, dim, num_heads, dropout=0.1, eps=1e-5):
|
| 17 |
+
assert dim % num_heads == 0
|
| 18 |
+
super().__init__()
|
| 19 |
+
self.dim = dim
|
| 20 |
+
self.num_heads = num_heads
|
| 21 |
+
self.head_dim = dim // num_heads
|
| 22 |
+
self.eps = eps
|
| 23 |
+
|
| 24 |
+
# layers
|
| 25 |
+
self.q = nn.Linear(dim, dim)
|
| 26 |
+
self.k = nn.Linear(dim, dim)
|
| 27 |
+
self.v = nn.Linear(dim, dim)
|
| 28 |
+
self.o = nn.Linear(dim, dim)
|
| 29 |
+
self.dropout = nn.Dropout(dropout)
|
| 30 |
+
|
| 31 |
+
def forward(self, x, mask):
|
| 32 |
+
"""
|
| 33 |
+
x: [B, L, C].
|
| 34 |
+
"""
|
| 35 |
+
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
|
| 36 |
+
|
| 37 |
+
# compute query, key, value
|
| 38 |
+
q = self.q(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
|
| 39 |
+
k = self.k(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
|
| 40 |
+
v = self.v(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
|
| 41 |
+
|
| 42 |
+
# compute attention
|
| 43 |
+
p = self.dropout.p if self.training else 0.0
|
| 44 |
+
x = F.scaled_dot_product_attention(q, k, v, mask, p)
|
| 45 |
+
x = x.permute(0, 2, 1, 3).reshape(b, s, c)
|
| 46 |
+
|
| 47 |
+
# output
|
| 48 |
+
x = self.o(x)
|
| 49 |
+
x = self.dropout(x)
|
| 50 |
+
return x
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class AttentionBlock(nn.Module):
|
| 54 |
+
|
| 55 |
+
def __init__(self, dim, num_heads, post_norm, dropout=0.1, eps=1e-5):
|
| 56 |
+
super().__init__()
|
| 57 |
+
self.dim = dim
|
| 58 |
+
self.num_heads = num_heads
|
| 59 |
+
self.post_norm = post_norm
|
| 60 |
+
self.eps = eps
|
| 61 |
+
|
| 62 |
+
# layers
|
| 63 |
+
self.attn = SelfAttention(dim, num_heads, dropout, eps)
|
| 64 |
+
self.norm1 = nn.LayerNorm(dim, eps=eps)
|
| 65 |
+
self.ffn = nn.Sequential(
|
| 66 |
+
nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim),
|
| 67 |
+
nn.Dropout(dropout))
|
| 68 |
+
self.norm2 = nn.LayerNorm(dim, eps=eps)
|
| 69 |
+
|
| 70 |
+
def forward(self, x, mask):
|
| 71 |
+
if self.post_norm:
|
| 72 |
+
x = self.norm1(x + self.attn(x, mask))
|
| 73 |
+
x = self.norm2(x + self.ffn(x))
|
| 74 |
+
else:
|
| 75 |
+
x = x + self.attn(self.norm1(x), mask)
|
| 76 |
+
x = x + self.ffn(self.norm2(x))
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class XLMRoberta(nn.Module):
|
| 81 |
+
"""
|
| 82 |
+
XLMRobertaModel with no pooler and no LM head.
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
def __init__(self,
|
| 86 |
+
vocab_size=250002,
|
| 87 |
+
max_seq_len=514,
|
| 88 |
+
type_size=1,
|
| 89 |
+
pad_id=1,
|
| 90 |
+
dim=1024,
|
| 91 |
+
num_heads=16,
|
| 92 |
+
num_layers=24,
|
| 93 |
+
post_norm=True,
|
| 94 |
+
dropout=0.1,
|
| 95 |
+
eps=1e-5):
|
| 96 |
+
super().__init__()
|
| 97 |
+
self.vocab_size = vocab_size
|
| 98 |
+
self.max_seq_len = max_seq_len
|
| 99 |
+
self.type_size = type_size
|
| 100 |
+
self.pad_id = pad_id
|
| 101 |
+
self.dim = dim
|
| 102 |
+
self.num_heads = num_heads
|
| 103 |
+
self.num_layers = num_layers
|
| 104 |
+
self.post_norm = post_norm
|
| 105 |
+
self.eps = eps
|
| 106 |
+
|
| 107 |
+
# embeddings
|
| 108 |
+
self.token_embedding = nn.Embedding(vocab_size, dim, padding_idx=pad_id)
|
| 109 |
+
self.type_embedding = nn.Embedding(type_size, dim)
|
| 110 |
+
self.pos_embedding = nn.Embedding(max_seq_len, dim, padding_idx=pad_id)
|
| 111 |
+
self.dropout = nn.Dropout(dropout)
|
| 112 |
+
|
| 113 |
+
# blocks
|
| 114 |
+
self.blocks = nn.ModuleList([
|
| 115 |
+
AttentionBlock(dim, num_heads, post_norm, dropout, eps)
|
| 116 |
+
for _ in range(num_layers)
|
| 117 |
+
])
|
| 118 |
+
|
| 119 |
+
# norm layer
|
| 120 |
+
self.norm = nn.LayerNorm(dim, eps=eps)
|
| 121 |
+
|
| 122 |
+
def forward(self, ids):
|
| 123 |
+
"""
|
| 124 |
+
ids: [B, L] of torch.LongTensor.
|
| 125 |
+
"""
|
| 126 |
+
b, s = ids.shape
|
| 127 |
+
mask = ids.ne(self.pad_id).long()
|
| 128 |
+
|
| 129 |
+
# embeddings
|
| 130 |
+
x = self.token_embedding(ids) + \
|
| 131 |
+
self.type_embedding(torch.zeros_like(ids)) + \
|
| 132 |
+
self.pos_embedding(self.pad_id + torch.cumsum(mask, dim=1) * mask)
|
| 133 |
+
if self.post_norm:
|
| 134 |
+
x = self.norm(x)
|
| 135 |
+
x = self.dropout(x)
|
| 136 |
+
|
| 137 |
+
# blocks
|
| 138 |
+
mask = torch.where(
|
| 139 |
+
mask.view(b, 1, 1, s).gt(0), 0.0,
|
| 140 |
+
torch.finfo(x.dtype).min)
|
| 141 |
+
for block in self.blocks:
|
| 142 |
+
x = block(x, mask)
|
| 143 |
+
|
| 144 |
+
# output
|
| 145 |
+
if not self.post_norm:
|
| 146 |
+
x = self.norm(x)
|
| 147 |
+
return x
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def xlm_roberta_large(pretrained=False,
|
| 151 |
+
return_tokenizer=False,
|
| 152 |
+
device='cpu',
|
| 153 |
+
**kwargs):
|
| 154 |
+
"""
|
| 155 |
+
XLMRobertaLarge adapted from Huggingface.
|
| 156 |
+
"""
|
| 157 |
+
# params
|
| 158 |
+
cfg = dict(
|
| 159 |
+
vocab_size=250002,
|
| 160 |
+
max_seq_len=514,
|
| 161 |
+
type_size=1,
|
| 162 |
+
pad_id=1,
|
| 163 |
+
dim=1024,
|
| 164 |
+
num_heads=16,
|
| 165 |
+
num_layers=24,
|
| 166 |
+
post_norm=True,
|
| 167 |
+
dropout=0.1,
|
| 168 |
+
eps=1e-5)
|
| 169 |
+
cfg.update(**kwargs)
|
| 170 |
+
|
| 171 |
+
# init model
|
| 172 |
+
if pretrained:
|
| 173 |
+
from sora import DOWNLOAD_TO_CACHE
|
| 174 |
+
|
| 175 |
+
# init a meta model
|
| 176 |
+
with torch.device('meta'):
|
| 177 |
+
model = XLMRoberta(**cfg)
|
| 178 |
+
|
| 179 |
+
# load checkpoint
|
| 180 |
+
model.load_state_dict(
|
| 181 |
+
torch.load(
|
| 182 |
+
DOWNLOAD_TO_CACHE('models/xlm_roberta/xlm_roberta_large.pth'),
|
| 183 |
+
map_location=device),
|
| 184 |
+
assign=True)
|
| 185 |
+
else:
|
| 186 |
+
# init a model on device
|
| 187 |
+
with torch.device(device):
|
| 188 |
+
model = XLMRoberta(**cfg)
|
| 189 |
+
|
| 190 |
+
# init tokenizer
|
| 191 |
+
if return_tokenizer:
|
| 192 |
+
from sora.data import HuggingfaceTokenizer
|
| 193 |
+
tokenizer = HuggingfaceTokenizer(
|
| 194 |
+
name='xlm-roberta-large',
|
| 195 |
+
seq_len=model.text_len,
|
| 196 |
+
clean='whitespace')
|
| 197 |
+
return model, tokenizer
|
| 198 |
+
else:
|
| 199 |
+
return model
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def pos_interpolate(pos, seq_len):
|
| 204 |
+
if pos.size(1) == seq_len:
|
| 205 |
+
return pos
|
| 206 |
+
else:
|
| 207 |
+
src_grid = int(math.sqrt(pos.size(1)))
|
| 208 |
+
tar_grid = int(math.sqrt(seq_len))
|
| 209 |
+
n = pos.size(1) - src_grid * src_grid
|
| 210 |
+
return torch.cat([
|
| 211 |
+
pos[:, :n],
|
| 212 |
+
F.interpolate(
|
| 213 |
+
pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute(
|
| 214 |
+
0, 3, 1, 2),
|
| 215 |
+
size=(tar_grid, tar_grid),
|
| 216 |
+
mode='bicubic',
|
| 217 |
+
align_corners=False).flatten(2).transpose(1, 2)
|
| 218 |
+
],
|
| 219 |
+
dim=1)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
class QuickGELU(nn.Module):
|
| 223 |
+
|
| 224 |
+
def forward(self, x):
|
| 225 |
+
return x * torch.sigmoid(1.702 * x)
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
class LayerNorm(nn.LayerNorm):
|
| 229 |
+
|
| 230 |
+
def forward(self, x):
|
| 231 |
+
return super().forward(x).type_as(x)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
class SelfAttention(nn.Module):
|
| 235 |
+
|
| 236 |
+
def __init__(self,
|
| 237 |
+
dim,
|
| 238 |
+
num_heads,
|
| 239 |
+
causal=False,
|
| 240 |
+
attn_dropout=0.0,
|
| 241 |
+
proj_dropout=0.0):
|
| 242 |
+
assert dim % num_heads == 0
|
| 243 |
+
super().__init__()
|
| 244 |
+
self.dim = dim
|
| 245 |
+
self.num_heads = num_heads
|
| 246 |
+
self.head_dim = dim // num_heads
|
| 247 |
+
self.causal = causal
|
| 248 |
+
self.attn_dropout = attn_dropout
|
| 249 |
+
self.proj_dropout = proj_dropout
|
| 250 |
+
|
| 251 |
+
# layers
|
| 252 |
+
self.to_qkv = nn.Linear(dim, dim * 3)
|
| 253 |
+
self.proj = nn.Linear(dim, dim)
|
| 254 |
+
|
| 255 |
+
def forward(self, x):
|
| 256 |
+
"""
|
| 257 |
+
x: [B, L, C].
|
| 258 |
+
"""
|
| 259 |
+
# compute query, key, value
|
| 260 |
+
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
|
| 261 |
+
|
| 262 |
+
# compute attention
|
| 263 |
+
x = flash_attention(q, k, v, num_heads=self.num_heads, compatibility_mode=True)
|
| 264 |
+
|
| 265 |
+
# output
|
| 266 |
+
x = self.proj(x)
|
| 267 |
+
x = F.dropout(x, self.proj_dropout, self.training)
|
| 268 |
+
return x
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class SwiGLU(nn.Module):
|
| 272 |
+
|
| 273 |
+
def __init__(self, dim, mid_dim):
|
| 274 |
+
super().__init__()
|
| 275 |
+
self.dim = dim
|
| 276 |
+
self.mid_dim = mid_dim
|
| 277 |
+
|
| 278 |
+
# layers
|
| 279 |
+
self.fc1 = nn.Linear(dim, mid_dim)
|
| 280 |
+
self.fc2 = nn.Linear(dim, mid_dim)
|
| 281 |
+
self.fc3 = nn.Linear(mid_dim, dim)
|
| 282 |
+
|
| 283 |
+
def forward(self, x):
|
| 284 |
+
x = F.silu(self.fc1(x)) * self.fc2(x)
|
| 285 |
+
x = self.fc3(x)
|
| 286 |
+
return x
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class AttentionBlock(nn.Module):
|
| 290 |
+
|
| 291 |
+
def __init__(self,
|
| 292 |
+
dim,
|
| 293 |
+
mlp_ratio,
|
| 294 |
+
num_heads,
|
| 295 |
+
post_norm=False,
|
| 296 |
+
causal=False,
|
| 297 |
+
activation='quick_gelu',
|
| 298 |
+
attn_dropout=0.0,
|
| 299 |
+
proj_dropout=0.0,
|
| 300 |
+
norm_eps=1e-5):
|
| 301 |
+
assert activation in ['quick_gelu', 'gelu', 'swi_glu']
|
| 302 |
+
super().__init__()
|
| 303 |
+
self.dim = dim
|
| 304 |
+
self.mlp_ratio = mlp_ratio
|
| 305 |
+
self.num_heads = num_heads
|
| 306 |
+
self.post_norm = post_norm
|
| 307 |
+
self.causal = causal
|
| 308 |
+
self.norm_eps = norm_eps
|
| 309 |
+
|
| 310 |
+
# layers
|
| 311 |
+
self.norm1 = LayerNorm(dim, eps=norm_eps)
|
| 312 |
+
self.attn = SelfAttention(dim, num_heads, causal, attn_dropout,
|
| 313 |
+
proj_dropout)
|
| 314 |
+
self.norm2 = LayerNorm(dim, eps=norm_eps)
|
| 315 |
+
if activation == 'swi_glu':
|
| 316 |
+
self.mlp = SwiGLU(dim, int(dim * mlp_ratio))
|
| 317 |
+
else:
|
| 318 |
+
self.mlp = nn.Sequential(
|
| 319 |
+
nn.Linear(dim, int(dim * mlp_ratio)),
|
| 320 |
+
QuickGELU() if activation == 'quick_gelu' else nn.GELU(),
|
| 321 |
+
nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
|
| 322 |
+
|
| 323 |
+
def forward(self, x):
|
| 324 |
+
if self.post_norm:
|
| 325 |
+
x = x + self.norm1(self.attn(x))
|
| 326 |
+
x = x + self.norm2(self.mlp(x))
|
| 327 |
+
else:
|
| 328 |
+
x = x + self.attn(self.norm1(x))
|
| 329 |
+
x = x + self.mlp(self.norm2(x))
|
| 330 |
+
return x
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class AttentionPool(nn.Module):
|
| 334 |
+
|
| 335 |
+
def __init__(self,
|
| 336 |
+
dim,
|
| 337 |
+
mlp_ratio,
|
| 338 |
+
num_heads,
|
| 339 |
+
activation='gelu',
|
| 340 |
+
proj_dropout=0.0,
|
| 341 |
+
norm_eps=1e-5):
|
| 342 |
+
assert dim % num_heads == 0
|
| 343 |
+
super().__init__()
|
| 344 |
+
self.dim = dim
|
| 345 |
+
self.mlp_ratio = mlp_ratio
|
| 346 |
+
self.num_heads = num_heads
|
| 347 |
+
self.head_dim = dim // num_heads
|
| 348 |
+
self.proj_dropout = proj_dropout
|
| 349 |
+
self.norm_eps = norm_eps
|
| 350 |
+
|
| 351 |
+
# layers
|
| 352 |
+
gain = 1.0 / math.sqrt(dim)
|
| 353 |
+
self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
|
| 354 |
+
self.to_q = nn.Linear(dim, dim)
|
| 355 |
+
self.to_kv = nn.Linear(dim, dim * 2)
|
| 356 |
+
self.proj = nn.Linear(dim, dim)
|
| 357 |
+
self.norm = LayerNorm(dim, eps=norm_eps)
|
| 358 |
+
self.mlp = nn.Sequential(
|
| 359 |
+
nn.Linear(dim, int(dim * mlp_ratio)),
|
| 360 |
+
QuickGELU() if activation == 'quick_gelu' else nn.GELU(),
|
| 361 |
+
nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
|
| 362 |
+
|
| 363 |
+
def forward(self, x):
|
| 364 |
+
"""
|
| 365 |
+
x: [B, L, C].
|
| 366 |
+
"""
|
| 367 |
+
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
|
| 368 |
+
|
| 369 |
+
# compute query, key, value
|
| 370 |
+
q = self.to_q(self.cls_embedding).view(1, 1, n*d).expand(b, -1, -1)
|
| 371 |
+
k, v = self.to_kv(x).chunk(2, dim=-1)
|
| 372 |
+
|
| 373 |
+
# compute attention
|
| 374 |
+
x = flash_attention(q, k, v, num_heads=self.num_heads, compatibility_mode=True)
|
| 375 |
+
x = x.reshape(b, 1, c)
|
| 376 |
+
|
| 377 |
+
# output
|
| 378 |
+
x = self.proj(x)
|
| 379 |
+
x = F.dropout(x, self.proj_dropout, self.training)
|
| 380 |
+
|
| 381 |
+
# mlp
|
| 382 |
+
x = x + self.mlp(self.norm(x))
|
| 383 |
+
return x[:, 0]
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
class VisionTransformer(nn.Module):
|
| 387 |
+
|
| 388 |
+
def __init__(self,
|
| 389 |
+
image_size=224,
|
| 390 |
+
patch_size=16,
|
| 391 |
+
dim=768,
|
| 392 |
+
mlp_ratio=4,
|
| 393 |
+
out_dim=512,
|
| 394 |
+
num_heads=12,
|
| 395 |
+
num_layers=12,
|
| 396 |
+
pool_type='token',
|
| 397 |
+
pre_norm=True,
|
| 398 |
+
post_norm=False,
|
| 399 |
+
activation='quick_gelu',
|
| 400 |
+
attn_dropout=0.0,
|
| 401 |
+
proj_dropout=0.0,
|
| 402 |
+
embedding_dropout=0.0,
|
| 403 |
+
norm_eps=1e-5):
|
| 404 |
+
if image_size % patch_size != 0:
|
| 405 |
+
print(
|
| 406 |
+
'[WARNING] image_size is not divisible by patch_size',
|
| 407 |
+
flush=True)
|
| 408 |
+
assert pool_type in ('token', 'token_fc', 'attn_pool')
|
| 409 |
+
out_dim = out_dim or dim
|
| 410 |
+
super().__init__()
|
| 411 |
+
self.image_size = image_size
|
| 412 |
+
self.patch_size = patch_size
|
| 413 |
+
self.num_patches = (image_size // patch_size)**2
|
| 414 |
+
self.dim = dim
|
| 415 |
+
self.mlp_ratio = mlp_ratio
|
| 416 |
+
self.out_dim = out_dim
|
| 417 |
+
self.num_heads = num_heads
|
| 418 |
+
self.num_layers = num_layers
|
| 419 |
+
self.pool_type = pool_type
|
| 420 |
+
self.post_norm = post_norm
|
| 421 |
+
self.norm_eps = norm_eps
|
| 422 |
+
|
| 423 |
+
# embeddings
|
| 424 |
+
gain = 1.0 / math.sqrt(dim)
|
| 425 |
+
self.patch_embedding = nn.Conv2d(
|
| 426 |
+
3,
|
| 427 |
+
dim,
|
| 428 |
+
kernel_size=patch_size,
|
| 429 |
+
stride=patch_size,
|
| 430 |
+
bias=not pre_norm)
|
| 431 |
+
if pool_type in ('token', 'token_fc'):
|
| 432 |
+
self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
|
| 433 |
+
self.pos_embedding = nn.Parameter(gain * torch.randn(
|
| 434 |
+
1, self.num_patches +
|
| 435 |
+
(1 if pool_type in ('token', 'token_fc') else 0), dim))
|
| 436 |
+
self.dropout = nn.Dropout(embedding_dropout)
|
| 437 |
+
|
| 438 |
+
# transformer
|
| 439 |
+
self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None
|
| 440 |
+
self.transformer = nn.Sequential(*[
|
| 441 |
+
AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False,
|
| 442 |
+
activation, attn_dropout, proj_dropout, norm_eps)
|
| 443 |
+
for _ in range(num_layers)
|
| 444 |
+
])
|
| 445 |
+
self.post_norm = LayerNorm(dim, eps=norm_eps)
|
| 446 |
+
|
| 447 |
+
# head
|
| 448 |
+
if pool_type == 'token':
|
| 449 |
+
self.head = nn.Parameter(gain * torch.randn(dim, out_dim))
|
| 450 |
+
elif pool_type == 'token_fc':
|
| 451 |
+
self.head = nn.Linear(dim, out_dim)
|
| 452 |
+
elif pool_type == 'attn_pool':
|
| 453 |
+
self.head = AttentionPool(dim, mlp_ratio, num_heads, activation,
|
| 454 |
+
proj_dropout, norm_eps)
|
| 455 |
+
|
| 456 |
+
def forward(self, x, interpolation=False, use_31_block=False):
|
| 457 |
+
b = x.size(0)
|
| 458 |
+
|
| 459 |
+
# embeddings
|
| 460 |
+
x = self.patch_embedding(x).flatten(2).permute(0, 2, 1)
|
| 461 |
+
if self.pool_type in ('token', 'token_fc'):
|
| 462 |
+
x = torch.cat([self.cls_embedding.expand(b, -1, -1).to(dtype=x.dtype, device=x.device), x], dim=1)
|
| 463 |
+
if interpolation:
|
| 464 |
+
e = pos_interpolate(self.pos_embedding, x.size(1))
|
| 465 |
+
else:
|
| 466 |
+
e = self.pos_embedding
|
| 467 |
+
e = e.to(dtype=x.dtype, device=x.device)
|
| 468 |
+
x = self.dropout(x + e)
|
| 469 |
+
if self.pre_norm is not None:
|
| 470 |
+
x = self.pre_norm(x)
|
| 471 |
+
|
| 472 |
+
# transformer
|
| 473 |
+
if use_31_block:
|
| 474 |
+
x = self.transformer[:-1](x)
|
| 475 |
+
return x
|
| 476 |
+
else:
|
| 477 |
+
x = self.transformer(x)
|
| 478 |
+
return x
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
class CLIP(nn.Module):
|
| 482 |
+
|
| 483 |
+
def __init__(self,
|
| 484 |
+
embed_dim=512,
|
| 485 |
+
image_size=224,
|
| 486 |
+
patch_size=16,
|
| 487 |
+
vision_dim=768,
|
| 488 |
+
vision_mlp_ratio=4,
|
| 489 |
+
vision_heads=12,
|
| 490 |
+
vision_layers=12,
|
| 491 |
+
vision_pool='token',
|
| 492 |
+
vision_pre_norm=True,
|
| 493 |
+
vision_post_norm=False,
|
| 494 |
+
vocab_size=49408,
|
| 495 |
+
text_len=77,
|
| 496 |
+
text_dim=512,
|
| 497 |
+
text_mlp_ratio=4,
|
| 498 |
+
text_heads=8,
|
| 499 |
+
text_layers=12,
|
| 500 |
+
text_causal=True,
|
| 501 |
+
text_pool='argmax',
|
| 502 |
+
text_head_bias=False,
|
| 503 |
+
logit_bias=None,
|
| 504 |
+
activation='quick_gelu',
|
| 505 |
+
attn_dropout=0.0,
|
| 506 |
+
proj_dropout=0.0,
|
| 507 |
+
embedding_dropout=0.0,
|
| 508 |
+
norm_eps=1e-5):
|
| 509 |
+
super().__init__()
|
| 510 |
+
self.embed_dim = embed_dim
|
| 511 |
+
self.image_size = image_size
|
| 512 |
+
self.patch_size = patch_size
|
| 513 |
+
self.vision_dim = vision_dim
|
| 514 |
+
self.vision_mlp_ratio = vision_mlp_ratio
|
| 515 |
+
self.vision_heads = vision_heads
|
| 516 |
+
self.vision_layers = vision_layers
|
| 517 |
+
self.vision_pool = vision_pool
|
| 518 |
+
self.vision_pre_norm = vision_pre_norm
|
| 519 |
+
self.vision_post_norm = vision_post_norm
|
| 520 |
+
self.vocab_size = vocab_size
|
| 521 |
+
self.text_len = text_len
|
| 522 |
+
self.text_dim = text_dim
|
| 523 |
+
self.text_mlp_ratio = text_mlp_ratio
|
| 524 |
+
self.text_heads = text_heads
|
| 525 |
+
self.text_layers = text_layers
|
| 526 |
+
self.text_causal = text_causal
|
| 527 |
+
self.text_pool = text_pool
|
| 528 |
+
self.text_head_bias = text_head_bias
|
| 529 |
+
self.norm_eps = norm_eps
|
| 530 |
+
|
| 531 |
+
# models
|
| 532 |
+
self.visual = VisionTransformer(
|
| 533 |
+
image_size=image_size,
|
| 534 |
+
patch_size=patch_size,
|
| 535 |
+
dim=vision_dim,
|
| 536 |
+
mlp_ratio=vision_mlp_ratio,
|
| 537 |
+
out_dim=embed_dim,
|
| 538 |
+
num_heads=vision_heads,
|
| 539 |
+
num_layers=vision_layers,
|
| 540 |
+
pool_type=vision_pool,
|
| 541 |
+
pre_norm=vision_pre_norm,
|
| 542 |
+
post_norm=vision_post_norm,
|
| 543 |
+
activation=activation,
|
| 544 |
+
attn_dropout=attn_dropout,
|
| 545 |
+
proj_dropout=proj_dropout,
|
| 546 |
+
embedding_dropout=embedding_dropout,
|
| 547 |
+
norm_eps=norm_eps)
|
| 548 |
+
self.textual = TextTransformer(
|
| 549 |
+
vocab_size=vocab_size,
|
| 550 |
+
text_len=text_len,
|
| 551 |
+
dim=text_dim,
|
| 552 |
+
mlp_ratio=text_mlp_ratio,
|
| 553 |
+
out_dim=embed_dim,
|
| 554 |
+
num_heads=text_heads,
|
| 555 |
+
num_layers=text_layers,
|
| 556 |
+
causal=text_causal,
|
| 557 |
+
pool_type=text_pool,
|
| 558 |
+
head_bias=text_head_bias,
|
| 559 |
+
activation=activation,
|
| 560 |
+
attn_dropout=attn_dropout,
|
| 561 |
+
proj_dropout=proj_dropout,
|
| 562 |
+
embedding_dropout=embedding_dropout,
|
| 563 |
+
norm_eps=norm_eps)
|
| 564 |
+
self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))
|
| 565 |
+
if logit_bias is not None:
|
| 566 |
+
self.logit_bias = nn.Parameter(logit_bias * torch.ones([]))
|
| 567 |
+
|
| 568 |
+
# initialize weights
|
| 569 |
+
self.init_weights()
|
| 570 |
+
|
| 571 |
+
def forward(self, imgs, txt_ids):
|
| 572 |
+
"""
|
| 573 |
+
imgs: [B, 3, H, W] of torch.float32.
|
| 574 |
+
- mean: [0.48145466, 0.4578275, 0.40821073]
|
| 575 |
+
- std: [0.26862954, 0.26130258, 0.27577711]
|
| 576 |
+
txt_ids: [B, L] of torch.long. Encoded by data.CLIPTokenizer.
|
| 577 |
+
"""
|
| 578 |
+
xi = self.visual(imgs)
|
| 579 |
+
xt = self.textual(txt_ids)
|
| 580 |
+
return xi, xt
|
| 581 |
+
|
| 582 |
+
def init_weights(self):
|
| 583 |
+
# embeddings
|
| 584 |
+
nn.init.normal_(self.textual.token_embedding.weight, std=0.02)
|
| 585 |
+
nn.init.normal_(self.visual.patch_embedding.weight, std=0.1)
|
| 586 |
+
|
| 587 |
+
# attentions
|
| 588 |
+
for modality in ['visual', 'textual']:
|
| 589 |
+
dim = self.vision_dim if modality == 'visual' else self.text_dim
|
| 590 |
+
transformer = getattr(self, modality).transformer
|
| 591 |
+
proj_gain = (1.0 / math.sqrt(dim)) * (
|
| 592 |
+
1.0 / math.sqrt(2 * len(transformer)))
|
| 593 |
+
attn_gain = 1.0 / math.sqrt(dim)
|
| 594 |
+
mlp_gain = 1.0 / math.sqrt(2.0 * dim)
|
| 595 |
+
for block in transformer:
|
| 596 |
+
nn.init.normal_(block.attn.to_qkv.weight, std=attn_gain)
|
| 597 |
+
nn.init.normal_(block.attn.proj.weight, std=proj_gain)
|
| 598 |
+
nn.init.normal_(block.mlp[0].weight, std=mlp_gain)
|
| 599 |
+
nn.init.normal_(block.mlp[2].weight, std=proj_gain)
|
| 600 |
+
|
| 601 |
+
def param_groups(self):
|
| 602 |
+
groups = [{
|
| 603 |
+
'params': [
|
| 604 |
+
p for n, p in self.named_parameters()
|
| 605 |
+
if 'norm' in n or n.endswith('bias')
|
| 606 |
+
],
|
| 607 |
+
'weight_decay': 0.0
|
| 608 |
+
}, {
|
| 609 |
+
'params': [
|
| 610 |
+
p for n, p in self.named_parameters()
|
| 611 |
+
if not ('norm' in n or n.endswith('bias'))
|
| 612 |
+
]
|
| 613 |
+
}]
|
| 614 |
+
return groups
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
class XLMRobertaWithHead(XLMRoberta):
|
| 618 |
+
|
| 619 |
+
def __init__(self, **kwargs):
|
| 620 |
+
self.out_dim = kwargs.pop('out_dim')
|
| 621 |
+
super().__init__(**kwargs)
|
| 622 |
+
|
| 623 |
+
# head
|
| 624 |
+
mid_dim = (self.dim + self.out_dim) // 2
|
| 625 |
+
self.head = nn.Sequential(
|
| 626 |
+
nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(),
|
| 627 |
+
nn.Linear(mid_dim, self.out_dim, bias=False))
|
| 628 |
+
|
| 629 |
+
def forward(self, ids):
|
| 630 |
+
# xlm-roberta
|
| 631 |
+
x = super().forward(ids)
|
| 632 |
+
|
| 633 |
+
# average pooling
|
| 634 |
+
mask = ids.ne(self.pad_id).unsqueeze(-1).to(x)
|
| 635 |
+
x = (x * mask).sum(dim=1) / mask.sum(dim=1)
|
| 636 |
+
|
| 637 |
+
# head
|
| 638 |
+
x = self.head(x)
|
| 639 |
+
return x
|
| 640 |
+
|
| 641 |
+
|
| 642 |
+
class XLMRobertaCLIP(nn.Module):
|
| 643 |
+
|
| 644 |
+
def __init__(self,
|
| 645 |
+
embed_dim=1024,
|
| 646 |
+
image_size=224,
|
| 647 |
+
patch_size=14,
|
| 648 |
+
vision_dim=1280,
|
| 649 |
+
vision_mlp_ratio=4,
|
| 650 |
+
vision_heads=16,
|
| 651 |
+
vision_layers=32,
|
| 652 |
+
vision_pool='token',
|
| 653 |
+
vision_pre_norm=True,
|
| 654 |
+
vision_post_norm=False,
|
| 655 |
+
activation='gelu',
|
| 656 |
+
vocab_size=250002,
|
| 657 |
+
max_text_len=514,
|
| 658 |
+
type_size=1,
|
| 659 |
+
pad_id=1,
|
| 660 |
+
text_dim=1024,
|
| 661 |
+
text_heads=16,
|
| 662 |
+
text_layers=24,
|
| 663 |
+
text_post_norm=True,
|
| 664 |
+
text_dropout=0.1,
|
| 665 |
+
attn_dropout=0.0,
|
| 666 |
+
proj_dropout=0.0,
|
| 667 |
+
embedding_dropout=0.0,
|
| 668 |
+
norm_eps=1e-5):
|
| 669 |
+
super().__init__()
|
| 670 |
+
self.embed_dim = embed_dim
|
| 671 |
+
self.image_size = image_size
|
| 672 |
+
self.patch_size = patch_size
|
| 673 |
+
self.vision_dim = vision_dim
|
| 674 |
+
self.vision_mlp_ratio = vision_mlp_ratio
|
| 675 |
+
self.vision_heads = vision_heads
|
| 676 |
+
self.vision_layers = vision_layers
|
| 677 |
+
self.vision_pre_norm = vision_pre_norm
|
| 678 |
+
self.vision_post_norm = vision_post_norm
|
| 679 |
+
self.activation = activation
|
| 680 |
+
self.vocab_size = vocab_size
|
| 681 |
+
self.max_text_len = max_text_len
|
| 682 |
+
self.type_size = type_size
|
| 683 |
+
self.pad_id = pad_id
|
| 684 |
+
self.text_dim = text_dim
|
| 685 |
+
self.text_heads = text_heads
|
| 686 |
+
self.text_layers = text_layers
|
| 687 |
+
self.text_post_norm = text_post_norm
|
| 688 |
+
self.norm_eps = norm_eps
|
| 689 |
+
|
| 690 |
+
# models
|
| 691 |
+
self.visual = VisionTransformer(
|
| 692 |
+
image_size=image_size,
|
| 693 |
+
patch_size=patch_size,
|
| 694 |
+
dim=vision_dim,
|
| 695 |
+
mlp_ratio=vision_mlp_ratio,
|
| 696 |
+
out_dim=embed_dim,
|
| 697 |
+
num_heads=vision_heads,
|
| 698 |
+
num_layers=vision_layers,
|
| 699 |
+
pool_type=vision_pool,
|
| 700 |
+
pre_norm=vision_pre_norm,
|
| 701 |
+
post_norm=vision_post_norm,
|
| 702 |
+
activation=activation,
|
| 703 |
+
attn_dropout=attn_dropout,
|
| 704 |
+
proj_dropout=proj_dropout,
|
| 705 |
+
embedding_dropout=embedding_dropout,
|
| 706 |
+
norm_eps=norm_eps)
|
| 707 |
+
self.textual = None
|
| 708 |
+
self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))
|
| 709 |
+
|
| 710 |
+
def forward(self, imgs, txt_ids):
|
| 711 |
+
"""
|
| 712 |
+
imgs: [B, 3, H, W] of torch.float32.
|
| 713 |
+
- mean: [0.48145466, 0.4578275, 0.40821073]
|
| 714 |
+
- std: [0.26862954, 0.26130258, 0.27577711]
|
| 715 |
+
txt_ids: [B, L] of torch.long.
|
| 716 |
+
Encoded by data.CLIPTokenizer.
|
| 717 |
+
"""
|
| 718 |
+
xi = self.visual(imgs)
|
| 719 |
+
xt = self.textual(txt_ids)
|
| 720 |
+
return xi, xt
|
| 721 |
+
|
| 722 |
+
def param_groups(self):
|
| 723 |
+
groups = [{
|
| 724 |
+
'params': [
|
| 725 |
+
p for n, p in self.named_parameters()
|
| 726 |
+
if 'norm' in n or n.endswith('bias')
|
| 727 |
+
],
|
| 728 |
+
'weight_decay': 0.0
|
| 729 |
+
}, {
|
| 730 |
+
'params': [
|
| 731 |
+
p for n, p in self.named_parameters()
|
| 732 |
+
if not ('norm' in n or n.endswith('bias'))
|
| 733 |
+
]
|
| 734 |
+
}]
|
| 735 |
+
return groups
|
| 736 |
+
|
| 737 |
+
|
| 738 |
+
def _clip(pretrained=False,
|
| 739 |
+
pretrained_name=None,
|
| 740 |
+
model_cls=CLIP,
|
| 741 |
+
return_transforms=False,
|
| 742 |
+
return_tokenizer=False,
|
| 743 |
+
tokenizer_padding='eos',
|
| 744 |
+
dtype=torch.float32,
|
| 745 |
+
device='cpu',
|
| 746 |
+
**kwargs):
|
| 747 |
+
# init model
|
| 748 |
+
if pretrained and pretrained_name:
|
| 749 |
+
from sora import BUCKET, DOWNLOAD_TO_CACHE
|
| 750 |
+
|
| 751 |
+
# init a meta model
|
| 752 |
+
with torch.device('meta'):
|
| 753 |
+
model = model_cls(**kwargs)
|
| 754 |
+
|
| 755 |
+
# checkpoint path
|
| 756 |
+
checkpoint = f'models/clip/{pretrained_name}'
|
| 757 |
+
if dtype in (torch.float16, torch.bfloat16):
|
| 758 |
+
suffix = '-' + {
|
| 759 |
+
torch.float16: 'fp16',
|
| 760 |
+
torch.bfloat16: 'bf16'
|
| 761 |
+
}[dtype]
|
| 762 |
+
if object_exists(BUCKET, f'{checkpoint}{suffix}.pth'):
|
| 763 |
+
checkpoint = f'{checkpoint}{suffix}'
|
| 764 |
+
checkpoint += '.pth'
|
| 765 |
+
|
| 766 |
+
# load
|
| 767 |
+
model.load_state_dict(
|
| 768 |
+
torch.load(DOWNLOAD_TO_CACHE(checkpoint), map_location=device),
|
| 769 |
+
assign=True,
|
| 770 |
+
strict=False)
|
| 771 |
+
else:
|
| 772 |
+
# init a model on device
|
| 773 |
+
with torch.device(device):
|
| 774 |
+
model = model_cls(**kwargs)
|
| 775 |
+
|
| 776 |
+
# set device
|
| 777 |
+
output = (model,)
|
| 778 |
+
|
| 779 |
+
# init transforms
|
| 780 |
+
if return_transforms:
|
| 781 |
+
# mean and std
|
| 782 |
+
if 'siglip' in pretrained_name.lower():
|
| 783 |
+
mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
|
| 784 |
+
else:
|
| 785 |
+
mean = [0.48145466, 0.4578275, 0.40821073]
|
| 786 |
+
std = [0.26862954, 0.26130258, 0.27577711]
|
| 787 |
+
|
| 788 |
+
# transforms
|
| 789 |
+
transforms = T.Compose([
|
| 790 |
+
T.Resize((model.image_size, model.image_size),
|
| 791 |
+
interpolation=T.InterpolationMode.BICUBIC),
|
| 792 |
+
T.ToTensor(),
|
| 793 |
+
T.Normalize(mean=mean, std=std)
|
| 794 |
+
])
|
| 795 |
+
output += (transforms,)
|
| 796 |
+
|
| 797 |
+
# init tokenizer
|
| 798 |
+
if return_tokenizer:
|
| 799 |
+
from sora import data
|
| 800 |
+
if 'siglip' in pretrained_name.lower():
|
| 801 |
+
tokenizer = data.HuggingfaceTokenizer(
|
| 802 |
+
name=f'timm/{pretrained_name}',
|
| 803 |
+
seq_len=model.text_len,
|
| 804 |
+
clean='canonicalize')
|
| 805 |
+
elif 'xlm' in pretrained_name.lower():
|
| 806 |
+
tokenizer = data.HuggingfaceTokenizer(
|
| 807 |
+
name='xlm-roberta-large',
|
| 808 |
+
seq_len=model.max_text_len - 2,
|
| 809 |
+
clean='whitespace')
|
| 810 |
+
elif 'mba' in pretrained_name.lower():
|
| 811 |
+
tokenizer = data.HuggingfaceTokenizer(
|
| 812 |
+
name='facebook/xlm-roberta-xl',
|
| 813 |
+
seq_len=model.max_text_len - 2,
|
| 814 |
+
clean='whitespace')
|
| 815 |
+
else:
|
| 816 |
+
tokenizer = data.CLIPTokenizer(
|
| 817 |
+
seq_len=model.text_len, padding=tokenizer_padding)
|
| 818 |
+
output += (tokenizer,)
|
| 819 |
+
return output[0] if len(output) == 1 else output
|
| 820 |
+
|
| 821 |
+
|
| 822 |
+
def clip_xlm_roberta_vit_h_14(
|
| 823 |
+
pretrained=False,
|
| 824 |
+
pretrained_name='open-clip-xlm-roberta-large-vit-huge-14',
|
| 825 |
+
**kwargs):
|
| 826 |
+
cfg = dict(
|
| 827 |
+
embed_dim=1024,
|
| 828 |
+
image_size=224,
|
| 829 |
+
patch_size=14,
|
| 830 |
+
vision_dim=1280,
|
| 831 |
+
vision_mlp_ratio=4,
|
| 832 |
+
vision_heads=16,
|
| 833 |
+
vision_layers=32,
|
| 834 |
+
vision_pool='token',
|
| 835 |
+
activation='gelu',
|
| 836 |
+
vocab_size=250002,
|
| 837 |
+
max_text_len=514,
|
| 838 |
+
type_size=1,
|
| 839 |
+
pad_id=1,
|
| 840 |
+
text_dim=1024,
|
| 841 |
+
text_heads=16,
|
| 842 |
+
text_layers=24,
|
| 843 |
+
text_post_norm=True,
|
| 844 |
+
text_dropout=0.1,
|
| 845 |
+
attn_dropout=0.0,
|
| 846 |
+
proj_dropout=0.0,
|
| 847 |
+
embedding_dropout=0.0)
|
| 848 |
+
cfg.update(**kwargs)
|
| 849 |
+
return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg)
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
class WanImageEncoder(torch.nn.Module):
|
| 853 |
+
|
| 854 |
+
def __init__(self):
|
| 855 |
+
super().__init__()
|
| 856 |
+
# init model
|
| 857 |
+
self.model, self.transforms = clip_xlm_roberta_vit_h_14(
|
| 858 |
+
pretrained=False,
|
| 859 |
+
return_transforms=True,
|
| 860 |
+
return_tokenizer=False,
|
| 861 |
+
dtype=torch.float32,
|
| 862 |
+
device="cpu")
|
| 863 |
+
|
| 864 |
+
def encode_image(self, videos):
|
| 865 |
+
# preprocess
|
| 866 |
+
size = (self.model.image_size,) * 2
|
| 867 |
+
videos = torch.cat([
|
| 868 |
+
F.interpolate(
|
| 869 |
+
u,
|
| 870 |
+
size=size,
|
| 871 |
+
mode='bicubic',
|
| 872 |
+
align_corners=False) for u in videos
|
| 873 |
+
])
|
| 874 |
+
videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))
|
| 875 |
+
|
| 876 |
+
# forward
|
| 877 |
+
dtype = next(iter(self.model.visual.parameters())).dtype
|
| 878 |
+
videos = videos.to(dtype)
|
| 879 |
+
out = self.model.visual(videos, use_31_block=True)
|
| 880 |
+
return out
|
| 881 |
+
|
| 882 |
+
@staticmethod
|
| 883 |
+
def state_dict_converter():
|
| 884 |
+
return WanImageEncoderStateDictConverter()
|
| 885 |
+
|
| 886 |
+
|
| 887 |
+
class WanImageEncoderStateDictConverter:
|
| 888 |
+
def __init__(self):
|
| 889 |
+
pass
|
| 890 |
+
|
| 891 |
+
def from_diffusers(self, state_dict):
|
| 892 |
+
return state_dict
|
| 893 |
+
|
| 894 |
+
def from_civitai(self, state_dict):
|
| 895 |
+
state_dict_ = {}
|
| 896 |
+
for name, param in state_dict.items():
|
| 897 |
+
if name.startswith("textual."):
|
| 898 |
+
continue
|
| 899 |
+
name = "model." + name
|
| 900 |
+
state_dict_[name] = param
|
| 901 |
+
return state_dict_
|
| 902 |
+
|
dkt/models/wan_video_motion_controller.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from .wan_video_dit import sinusoidal_embedding_1d
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class WanMotionControllerModel(torch.nn.Module):
|
| 8 |
+
def __init__(self, freq_dim=256, dim=1536):
|
| 9 |
+
super().__init__()
|
| 10 |
+
self.freq_dim = freq_dim
|
| 11 |
+
self.linear = nn.Sequential(
|
| 12 |
+
nn.Linear(freq_dim, dim),
|
| 13 |
+
nn.SiLU(),
|
| 14 |
+
nn.Linear(dim, dim),
|
| 15 |
+
nn.SiLU(),
|
| 16 |
+
nn.Linear(dim, dim * 6),
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
def forward(self, motion_bucket_id):
|
| 20 |
+
emb = sinusoidal_embedding_1d(self.freq_dim, motion_bucket_id * 10)
|
| 21 |
+
emb = self.linear(emb)
|
| 22 |
+
return emb
|
| 23 |
+
|
| 24 |
+
def init(self):
|
| 25 |
+
state_dict = self.linear[-1].state_dict()
|
| 26 |
+
state_dict = {i: state_dict[i] * 0 for i in state_dict}
|
| 27 |
+
self.linear[-1].load_state_dict(state_dict)
|
| 28 |
+
|
| 29 |
+
@staticmethod
|
| 30 |
+
def state_dict_converter():
|
| 31 |
+
return WanMotionControllerModelDictConverter()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class WanMotionControllerModelDictConverter:
|
| 36 |
+
def __init__(self):
|
| 37 |
+
pass
|
| 38 |
+
|
| 39 |
+
def from_diffusers(self, state_dict):
|
| 40 |
+
return state_dict
|
| 41 |
+
|
| 42 |
+
def from_civitai(self, state_dict):
|
| 43 |
+
return state_dict
|
| 44 |
+
|
dkt/models/wan_video_text_encoder.py
ADDED
|
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def fp16_clamp(x):
|
| 9 |
+
if x.dtype == torch.float16 and torch.isinf(x).any():
|
| 10 |
+
clamp = torch.finfo(x.dtype).max - 1000
|
| 11 |
+
x = torch.clamp(x, min=-clamp, max=clamp)
|
| 12 |
+
return x
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class GELU(nn.Module):
|
| 16 |
+
|
| 17 |
+
def forward(self, x):
|
| 18 |
+
return 0.5 * x * (1.0 + torch.tanh(
|
| 19 |
+
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class T5LayerNorm(nn.Module):
|
| 23 |
+
|
| 24 |
+
def __init__(self, dim, eps=1e-6):
|
| 25 |
+
super(T5LayerNorm, self).__init__()
|
| 26 |
+
self.dim = dim
|
| 27 |
+
self.eps = eps
|
| 28 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 29 |
+
|
| 30 |
+
def forward(self, x):
|
| 31 |
+
x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) +
|
| 32 |
+
self.eps)
|
| 33 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
| 34 |
+
x = x.type_as(self.weight)
|
| 35 |
+
return self.weight * x
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class T5Attention(nn.Module):
|
| 39 |
+
|
| 40 |
+
def __init__(self, dim, dim_attn, num_heads, dropout=0.1):
|
| 41 |
+
assert dim_attn % num_heads == 0
|
| 42 |
+
super(T5Attention, self).__init__()
|
| 43 |
+
self.dim = dim
|
| 44 |
+
self.dim_attn = dim_attn
|
| 45 |
+
self.num_heads = num_heads
|
| 46 |
+
self.head_dim = dim_attn // num_heads
|
| 47 |
+
|
| 48 |
+
# layers
|
| 49 |
+
self.q = nn.Linear(dim, dim_attn, bias=False)
|
| 50 |
+
self.k = nn.Linear(dim, dim_attn, bias=False)
|
| 51 |
+
self.v = nn.Linear(dim, dim_attn, bias=False)
|
| 52 |
+
self.o = nn.Linear(dim_attn, dim, bias=False)
|
| 53 |
+
self.dropout = nn.Dropout(dropout)
|
| 54 |
+
|
| 55 |
+
def forward(self, x, context=None, mask=None, pos_bias=None):
|
| 56 |
+
"""
|
| 57 |
+
x: [B, L1, C].
|
| 58 |
+
context: [B, L2, C] or None.
|
| 59 |
+
mask: [B, L2] or [B, L1, L2] or None.
|
| 60 |
+
"""
|
| 61 |
+
# check inputs
|
| 62 |
+
context = x if context is None else context
|
| 63 |
+
b, n, c = x.size(0), self.num_heads, self.head_dim
|
| 64 |
+
|
| 65 |
+
# compute query, key, value
|
| 66 |
+
q = self.q(x).view(b, -1, n, c)
|
| 67 |
+
k = self.k(context).view(b, -1, n, c)
|
| 68 |
+
v = self.v(context).view(b, -1, n, c)
|
| 69 |
+
|
| 70 |
+
# attention bias
|
| 71 |
+
attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
|
| 72 |
+
if pos_bias is not None:
|
| 73 |
+
attn_bias += pos_bias
|
| 74 |
+
if mask is not None:
|
| 75 |
+
assert mask.ndim in [2, 3]
|
| 76 |
+
mask = mask.view(b, 1, 1,
|
| 77 |
+
-1) if mask.ndim == 2 else mask.unsqueeze(1)
|
| 78 |
+
attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)
|
| 79 |
+
|
| 80 |
+
# compute attention (T5 does not use scaling)
|
| 81 |
+
attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias
|
| 82 |
+
attn = F.softmax(attn.float(), dim=-1).type_as(attn)
|
| 83 |
+
x = torch.einsum('bnij,bjnc->binc', attn, v)
|
| 84 |
+
|
| 85 |
+
# output
|
| 86 |
+
x = x.reshape(b, -1, n * c)
|
| 87 |
+
x = self.o(x)
|
| 88 |
+
x = self.dropout(x)
|
| 89 |
+
return x
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class T5FeedForward(nn.Module):
|
| 93 |
+
|
| 94 |
+
def __init__(self, dim, dim_ffn, dropout=0.1):
|
| 95 |
+
super(T5FeedForward, self).__init__()
|
| 96 |
+
self.dim = dim
|
| 97 |
+
self.dim_ffn = dim_ffn
|
| 98 |
+
|
| 99 |
+
# layers
|
| 100 |
+
self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU())
|
| 101 |
+
self.fc1 = nn.Linear(dim, dim_ffn, bias=False)
|
| 102 |
+
self.fc2 = nn.Linear(dim_ffn, dim, bias=False)
|
| 103 |
+
self.dropout = nn.Dropout(dropout)
|
| 104 |
+
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
x = self.fc1(x) * self.gate(x)
|
| 107 |
+
x = self.dropout(x)
|
| 108 |
+
x = self.fc2(x)
|
| 109 |
+
x = self.dropout(x)
|
| 110 |
+
return x
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class T5SelfAttention(nn.Module):
|
| 114 |
+
|
| 115 |
+
def __init__(self,
|
| 116 |
+
dim,
|
| 117 |
+
dim_attn,
|
| 118 |
+
dim_ffn,
|
| 119 |
+
num_heads,
|
| 120 |
+
num_buckets,
|
| 121 |
+
shared_pos=True,
|
| 122 |
+
dropout=0.1):
|
| 123 |
+
super(T5SelfAttention, self).__init__()
|
| 124 |
+
self.dim = dim
|
| 125 |
+
self.dim_attn = dim_attn
|
| 126 |
+
self.dim_ffn = dim_ffn
|
| 127 |
+
self.num_heads = num_heads
|
| 128 |
+
self.num_buckets = num_buckets
|
| 129 |
+
self.shared_pos = shared_pos
|
| 130 |
+
|
| 131 |
+
# layers
|
| 132 |
+
self.norm1 = T5LayerNorm(dim)
|
| 133 |
+
self.attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
| 134 |
+
self.norm2 = T5LayerNorm(dim)
|
| 135 |
+
self.ffn = T5FeedForward(dim, dim_ffn, dropout)
|
| 136 |
+
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
|
| 137 |
+
num_buckets, num_heads, bidirectional=True)
|
| 138 |
+
|
| 139 |
+
def forward(self, x, mask=None, pos_bias=None):
|
| 140 |
+
e = pos_bias if self.shared_pos else self.pos_embedding(
|
| 141 |
+
x.size(1), x.size(1))
|
| 142 |
+
x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
|
| 143 |
+
x = fp16_clamp(x + self.ffn(self.norm2(x)))
|
| 144 |
+
return x
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class T5RelativeEmbedding(nn.Module):
|
| 148 |
+
|
| 149 |
+
def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128):
|
| 150 |
+
super(T5RelativeEmbedding, self).__init__()
|
| 151 |
+
self.num_buckets = num_buckets
|
| 152 |
+
self.num_heads = num_heads
|
| 153 |
+
self.bidirectional = bidirectional
|
| 154 |
+
self.max_dist = max_dist
|
| 155 |
+
|
| 156 |
+
# layers
|
| 157 |
+
self.embedding = nn.Embedding(num_buckets, num_heads)
|
| 158 |
+
|
| 159 |
+
def forward(self, lq, lk):
|
| 160 |
+
device = self.embedding.weight.device
|
| 161 |
+
# rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
|
| 162 |
+
# torch.arange(lq).unsqueeze(1).to(device)
|
| 163 |
+
rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \
|
| 164 |
+
torch.arange(lq, device=device).unsqueeze(1)
|
| 165 |
+
rel_pos = self._relative_position_bucket(rel_pos)
|
| 166 |
+
rel_pos_embeds = self.embedding(rel_pos)
|
| 167 |
+
rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(
|
| 168 |
+
0) # [1, N, Lq, Lk]
|
| 169 |
+
return rel_pos_embeds.contiguous()
|
| 170 |
+
|
| 171 |
+
def _relative_position_bucket(self, rel_pos):
|
| 172 |
+
# preprocess
|
| 173 |
+
if self.bidirectional:
|
| 174 |
+
num_buckets = self.num_buckets // 2
|
| 175 |
+
rel_buckets = (rel_pos > 0).long() * num_buckets
|
| 176 |
+
rel_pos = torch.abs(rel_pos)
|
| 177 |
+
else:
|
| 178 |
+
num_buckets = self.num_buckets
|
| 179 |
+
rel_buckets = 0
|
| 180 |
+
rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))
|
| 181 |
+
|
| 182 |
+
# embeddings for small and large positions
|
| 183 |
+
max_exact = num_buckets // 2
|
| 184 |
+
rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) /
|
| 185 |
+
math.log(self.max_dist / max_exact) *
|
| 186 |
+
(num_buckets - max_exact)).long()
|
| 187 |
+
rel_pos_large = torch.min(
|
| 188 |
+
rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
|
| 189 |
+
rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
|
| 190 |
+
return rel_buckets
|
| 191 |
+
|
| 192 |
+
def init_weights(m):
|
| 193 |
+
if isinstance(m, T5LayerNorm):
|
| 194 |
+
nn.init.ones_(m.weight)
|
| 195 |
+
elif isinstance(m, T5FeedForward):
|
| 196 |
+
nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
|
| 197 |
+
nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
|
| 198 |
+
nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
|
| 199 |
+
elif isinstance(m, T5Attention):
|
| 200 |
+
nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5)
|
| 201 |
+
nn.init.normal_(m.k.weight, std=m.dim**-0.5)
|
| 202 |
+
nn.init.normal_(m.v.weight, std=m.dim**-0.5)
|
| 203 |
+
nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5)
|
| 204 |
+
elif isinstance(m, T5RelativeEmbedding):
|
| 205 |
+
nn.init.normal_(
|
| 206 |
+
m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class WanTextEncoder(torch.nn.Module):
|
| 210 |
+
|
| 211 |
+
def __init__(self,
|
| 212 |
+
vocab=256384,
|
| 213 |
+
dim=4096,
|
| 214 |
+
dim_attn=4096,
|
| 215 |
+
dim_ffn=10240,
|
| 216 |
+
num_heads=64,
|
| 217 |
+
num_layers=24,
|
| 218 |
+
num_buckets=32,
|
| 219 |
+
shared_pos=False,
|
| 220 |
+
dropout=0.1):
|
| 221 |
+
super(WanTextEncoder, self).__init__()
|
| 222 |
+
self.dim = dim
|
| 223 |
+
self.dim_attn = dim_attn
|
| 224 |
+
self.dim_ffn = dim_ffn
|
| 225 |
+
self.num_heads = num_heads
|
| 226 |
+
self.num_layers = num_layers
|
| 227 |
+
self.num_buckets = num_buckets
|
| 228 |
+
self.shared_pos = shared_pos
|
| 229 |
+
|
| 230 |
+
# layers
|
| 231 |
+
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
|
| 232 |
+
else nn.Embedding(vocab, dim)
|
| 233 |
+
self.pos_embedding = T5RelativeEmbedding(
|
| 234 |
+
num_buckets, num_heads, bidirectional=True) if shared_pos else None
|
| 235 |
+
self.dropout = nn.Dropout(dropout)
|
| 236 |
+
self.blocks = nn.ModuleList([
|
| 237 |
+
T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
|
| 238 |
+
shared_pos, dropout) for _ in range(num_layers)
|
| 239 |
+
])
|
| 240 |
+
self.norm = T5LayerNorm(dim)
|
| 241 |
+
|
| 242 |
+
# initialize weights
|
| 243 |
+
self.apply(init_weights)
|
| 244 |
+
|
| 245 |
+
def forward(self, ids, mask=None):
|
| 246 |
+
x = self.token_embedding(ids)
|
| 247 |
+
x = self.dropout(x)
|
| 248 |
+
e = self.pos_embedding(x.size(1),
|
| 249 |
+
x.size(1)) if self.shared_pos else None
|
| 250 |
+
for block in self.blocks:
|
| 251 |
+
x = block(x, mask, pos_bias=e)
|
| 252 |
+
x = self.norm(x)
|
| 253 |
+
x = self.dropout(x)
|
| 254 |
+
return x
|
| 255 |
+
|
| 256 |
+
@staticmethod
|
| 257 |
+
def state_dict_converter():
|
| 258 |
+
return WanTextEncoderStateDictConverter()
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class WanTextEncoderStateDictConverter:
|
| 262 |
+
def __init__(self):
|
| 263 |
+
pass
|
| 264 |
+
|
| 265 |
+
def from_diffusers(self, state_dict):
|
| 266 |
+
return state_dict
|
| 267 |
+
|
| 268 |
+
def from_civitai(self, state_dict):
|
| 269 |
+
return state_dict
|
dkt/models/wan_video_vace.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from .wan_video_dit import DiTBlock
|
| 3 |
+
from .utils import hash_state_dict_keys
|
| 4 |
+
|
| 5 |
+
class VaceWanAttentionBlock(DiTBlock):
|
| 6 |
+
def __init__(self, has_image_input, dim, num_heads, ffn_dim, eps=1e-6, block_id=0):
|
| 7 |
+
super().__init__(has_image_input, dim, num_heads, ffn_dim, eps=eps)
|
| 8 |
+
self.block_id = block_id
|
| 9 |
+
if block_id == 0:
|
| 10 |
+
self.before_proj = torch.nn.Linear(self.dim, self.dim)
|
| 11 |
+
self.after_proj = torch.nn.Linear(self.dim, self.dim)
|
| 12 |
+
|
| 13 |
+
def forward(self, c, x, context, t_mod, freqs):
|
| 14 |
+
if self.block_id == 0:
|
| 15 |
+
c = self.before_proj(c) + x
|
| 16 |
+
all_c = []
|
| 17 |
+
else:
|
| 18 |
+
all_c = list(torch.unbind(c))
|
| 19 |
+
c = all_c.pop(-1)
|
| 20 |
+
c = super().forward(c, context, t_mod, freqs)
|
| 21 |
+
c_skip = self.after_proj(c)
|
| 22 |
+
all_c += [c_skip, c]
|
| 23 |
+
c = torch.stack(all_c)
|
| 24 |
+
return c
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class VaceWanModel(torch.nn.Module):
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
vace_layers=(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28),
|
| 31 |
+
vace_in_dim=96,
|
| 32 |
+
patch_size=(1, 2, 2),
|
| 33 |
+
has_image_input=False,
|
| 34 |
+
dim=1536,
|
| 35 |
+
num_heads=12,
|
| 36 |
+
ffn_dim=8960,
|
| 37 |
+
eps=1e-6,
|
| 38 |
+
):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.vace_layers = vace_layers
|
| 41 |
+
self.vace_in_dim = vace_in_dim
|
| 42 |
+
self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}
|
| 43 |
+
|
| 44 |
+
# vace blocks
|
| 45 |
+
self.vace_blocks = torch.nn.ModuleList([
|
| 46 |
+
VaceWanAttentionBlock(has_image_input, dim, num_heads, ffn_dim, eps, block_id=i)
|
| 47 |
+
for i in self.vace_layers
|
| 48 |
+
])
|
| 49 |
+
|
| 50 |
+
# vace patch embeddings
|
| 51 |
+
self.vace_patch_embedding = torch.nn.Conv3d(vace_in_dim, dim, kernel_size=patch_size, stride=patch_size)
|
| 52 |
+
|
| 53 |
+
def forward(
|
| 54 |
+
self, x, vace_context, context, t_mod, freqs,
|
| 55 |
+
use_gradient_checkpointing: bool = False,
|
| 56 |
+
use_gradient_checkpointing_offload: bool = False,
|
| 57 |
+
):
|
| 58 |
+
c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
|
| 59 |
+
c = [u.flatten(2).transpose(1, 2) for u in c]
|
| 60 |
+
c = torch.cat([
|
| 61 |
+
torch.cat([u, u.new_zeros(1, x.shape[1] - u.size(1), u.size(2))],
|
| 62 |
+
dim=1) for u in c
|
| 63 |
+
])
|
| 64 |
+
|
| 65 |
+
def create_custom_forward(module):
|
| 66 |
+
def custom_forward(*inputs):
|
| 67 |
+
return module(*inputs)
|
| 68 |
+
return custom_forward
|
| 69 |
+
|
| 70 |
+
for block in self.vace_blocks:
|
| 71 |
+
if use_gradient_checkpointing_offload:
|
| 72 |
+
with torch.autograd.graph.save_on_cpu():
|
| 73 |
+
c = torch.utils.checkpoint.checkpoint(
|
| 74 |
+
create_custom_forward(block),
|
| 75 |
+
c, x, context, t_mod, freqs,
|
| 76 |
+
use_reentrant=False,
|
| 77 |
+
)
|
| 78 |
+
elif use_gradient_checkpointing:
|
| 79 |
+
c = torch.utils.checkpoint.checkpoint(
|
| 80 |
+
create_custom_forward(block),
|
| 81 |
+
c, x, context, t_mod, freqs,
|
| 82 |
+
use_reentrant=False,
|
| 83 |
+
)
|
| 84 |
+
else:
|
| 85 |
+
c = block(c, x, context, t_mod, freqs)
|
| 86 |
+
hints = torch.unbind(c)[:-1]
|
| 87 |
+
return hints
|
| 88 |
+
|
| 89 |
+
@staticmethod
|
| 90 |
+
def state_dict_converter():
|
| 91 |
+
return VaceWanModelDictConverter()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class VaceWanModelDictConverter:
|
| 95 |
+
def __init__(self):
|
| 96 |
+
pass
|
| 97 |
+
|
| 98 |
+
def from_civitai(self, state_dict):
|
| 99 |
+
state_dict_ = {name: param for name, param in state_dict.items() if name.startswith("vace")}
|
| 100 |
+
if hash_state_dict_keys(state_dict_) == '3b2726384e4f64837bdf216eea3f310d': # vace 14B
|
| 101 |
+
config = {
|
| 102 |
+
"vace_layers": (0, 5, 10, 15, 20, 25, 30, 35),
|
| 103 |
+
"vace_in_dim": 96,
|
| 104 |
+
"patch_size": (1, 2, 2),
|
| 105 |
+
"has_image_input": False,
|
| 106 |
+
"dim": 5120,
|
| 107 |
+
"num_heads": 40,
|
| 108 |
+
"ffn_dim": 13824,
|
| 109 |
+
"eps": 1e-06,
|
| 110 |
+
}
|
| 111 |
+
else:
|
| 112 |
+
config = {}
|
| 113 |
+
return state_dict_, config
|
dkt/models/wan_video_vae.py
ADDED
|
@@ -0,0 +1,1376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from einops import rearrange, repeat
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
CACHE_T = 2
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def check_is_instance(model, module_class):
|
| 12 |
+
if isinstance(model, module_class):
|
| 13 |
+
return True
|
| 14 |
+
if hasattr(model, "module") and isinstance(model.module, module_class):
|
| 15 |
+
return True
|
| 16 |
+
return False
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def block_causal_mask(x, block_size):
|
| 20 |
+
# params
|
| 21 |
+
b, n, s, _, device = *x.size(), x.device
|
| 22 |
+
assert s % block_size == 0
|
| 23 |
+
num_blocks = s // block_size
|
| 24 |
+
|
| 25 |
+
# build mask
|
| 26 |
+
mask = torch.zeros(b, n, s, s, dtype=torch.bool, device=device)
|
| 27 |
+
for i in range(num_blocks):
|
| 28 |
+
mask[:, :,
|
| 29 |
+
i * block_size:(i + 1) * block_size, :(i + 1) * block_size] = 1
|
| 30 |
+
return mask
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class CausalConv3d(nn.Conv3d):
|
| 34 |
+
"""
|
| 35 |
+
Causal 3d convolusion.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(self, *args, **kwargs):
|
| 39 |
+
super().__init__(*args, **kwargs)
|
| 40 |
+
self._padding = (self.padding[2], self.padding[2], self.padding[1],
|
| 41 |
+
self.padding[1], 2 * self.padding[0], 0)
|
| 42 |
+
self.padding = (0, 0, 0)
|
| 43 |
+
|
| 44 |
+
def forward(self, x, cache_x=None):
|
| 45 |
+
padding = list(self._padding)
|
| 46 |
+
if cache_x is not None and self._padding[4] > 0:
|
| 47 |
+
cache_x = cache_x.to(x.device)
|
| 48 |
+
x = torch.cat([cache_x, x], dim=2)
|
| 49 |
+
padding[4] -= cache_x.shape[2]
|
| 50 |
+
x = F.pad(x, padding)
|
| 51 |
+
|
| 52 |
+
return super().forward(x)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class RMS_norm(nn.Module):
|
| 56 |
+
|
| 57 |
+
def __init__(self, dim, channel_first=True, images=True, bias=False):
|
| 58 |
+
super().__init__()
|
| 59 |
+
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
| 60 |
+
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
| 61 |
+
|
| 62 |
+
self.channel_first = channel_first
|
| 63 |
+
self.scale = dim**0.5
|
| 64 |
+
self.gamma = nn.Parameter(torch.ones(shape))
|
| 65 |
+
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.
|
| 66 |
+
|
| 67 |
+
def forward(self, x):
|
| 68 |
+
return F.normalize(
|
| 69 |
+
x, dim=(1 if self.channel_first else
|
| 70 |
+
-1)) * self.scale * self.gamma + self.bias
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class Upsample(nn.Upsample):
|
| 74 |
+
|
| 75 |
+
def forward(self, x):
|
| 76 |
+
"""
|
| 77 |
+
Fix bfloat16 support for nearest neighbor interpolation.
|
| 78 |
+
"""
|
| 79 |
+
return super().forward(x.float()).type_as(x)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class Resample(nn.Module):
|
| 83 |
+
|
| 84 |
+
def __init__(self, dim, mode):
|
| 85 |
+
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
|
| 86 |
+
'downsample3d')
|
| 87 |
+
super().__init__()
|
| 88 |
+
self.dim = dim
|
| 89 |
+
self.mode = mode
|
| 90 |
+
|
| 91 |
+
# layers
|
| 92 |
+
if mode == 'upsample2d':
|
| 93 |
+
self.resample = nn.Sequential(
|
| 94 |
+
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
| 95 |
+
nn.Conv2d(dim, dim // 2, 3, padding=1))
|
| 96 |
+
elif mode == 'upsample3d':
|
| 97 |
+
self.resample = nn.Sequential(
|
| 98 |
+
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
| 99 |
+
nn.Conv2d(dim, dim // 2, 3, padding=1))
|
| 100 |
+
self.time_conv = CausalConv3d(dim,
|
| 101 |
+
dim * 2, (3, 1, 1),
|
| 102 |
+
padding=(1, 0, 0))
|
| 103 |
+
|
| 104 |
+
elif mode == 'downsample2d':
|
| 105 |
+
self.resample = nn.Sequential(
|
| 106 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
| 107 |
+
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
| 108 |
+
elif mode == 'downsample3d':
|
| 109 |
+
self.resample = nn.Sequential(
|
| 110 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
| 111 |
+
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
| 112 |
+
self.time_conv = CausalConv3d(dim,
|
| 113 |
+
dim, (3, 1, 1),
|
| 114 |
+
stride=(2, 1, 1),
|
| 115 |
+
padding=(0, 0, 0))
|
| 116 |
+
|
| 117 |
+
else:
|
| 118 |
+
self.resample = nn.Identity()
|
| 119 |
+
|
| 120 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 121 |
+
b, c, t, h, w = x.size()
|
| 122 |
+
if self.mode == 'upsample3d':
|
| 123 |
+
if feat_cache is not None:
|
| 124 |
+
idx = feat_idx[0]
|
| 125 |
+
if feat_cache[idx] is None:
|
| 126 |
+
feat_cache[idx] = 'Rep'
|
| 127 |
+
feat_idx[0] += 1
|
| 128 |
+
else:
|
| 129 |
+
|
| 130 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 131 |
+
if cache_x.shape[2] < 2 and feat_cache[
|
| 132 |
+
idx] is not None and feat_cache[idx] != 'Rep':
|
| 133 |
+
# cache last frame of last two chunk
|
| 134 |
+
cache_x = torch.cat([
|
| 135 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
| 136 |
+
cache_x.device), cache_x
|
| 137 |
+
],
|
| 138 |
+
dim=2)
|
| 139 |
+
if cache_x.shape[2] < 2 and feat_cache[
|
| 140 |
+
idx] is not None and feat_cache[idx] == 'Rep':
|
| 141 |
+
cache_x = torch.cat([
|
| 142 |
+
torch.zeros_like(cache_x).to(cache_x.device),
|
| 143 |
+
cache_x
|
| 144 |
+
],
|
| 145 |
+
dim=2)
|
| 146 |
+
if feat_cache[idx] == 'Rep':
|
| 147 |
+
x = self.time_conv(x)
|
| 148 |
+
else:
|
| 149 |
+
x = self.time_conv(x, feat_cache[idx])
|
| 150 |
+
feat_cache[idx] = cache_x
|
| 151 |
+
feat_idx[0] += 1
|
| 152 |
+
|
| 153 |
+
x = x.reshape(b, 2, c, t, h, w)
|
| 154 |
+
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
|
| 155 |
+
3)
|
| 156 |
+
x = x.reshape(b, c, t * 2, h, w)
|
| 157 |
+
t = x.shape[2]
|
| 158 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
| 159 |
+
x = self.resample(x)
|
| 160 |
+
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
|
| 161 |
+
|
| 162 |
+
if self.mode == 'downsample3d':
|
| 163 |
+
if feat_cache is not None:
|
| 164 |
+
idx = feat_idx[0]
|
| 165 |
+
if feat_cache[idx] is None:
|
| 166 |
+
feat_cache[idx] = x.clone()
|
| 167 |
+
feat_idx[0] += 1
|
| 168 |
+
else:
|
| 169 |
+
cache_x = x[:, :, -1:, :, :].clone()
|
| 170 |
+
x = self.time_conv(
|
| 171 |
+
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
| 172 |
+
feat_cache[idx] = cache_x
|
| 173 |
+
feat_idx[0] += 1
|
| 174 |
+
return x
|
| 175 |
+
|
| 176 |
+
def init_weight(self, conv):
|
| 177 |
+
conv_weight = conv.weight
|
| 178 |
+
nn.init.zeros_(conv_weight)
|
| 179 |
+
c1, c2, t, h, w = conv_weight.size()
|
| 180 |
+
one_matrix = torch.eye(c1, c2)
|
| 181 |
+
init_matrix = one_matrix
|
| 182 |
+
nn.init.zeros_(conv_weight)
|
| 183 |
+
conv_weight.data[:, :, 1, 0, 0] = init_matrix
|
| 184 |
+
conv.weight.data.copy_(conv_weight)
|
| 185 |
+
nn.init.zeros_(conv.bias.data)
|
| 186 |
+
|
| 187 |
+
def init_weight2(self, conv):
|
| 188 |
+
conv_weight = conv.weight.data
|
| 189 |
+
nn.init.zeros_(conv_weight)
|
| 190 |
+
c1, c2, t, h, w = conv_weight.size()
|
| 191 |
+
init_matrix = torch.eye(c1 // 2, c2)
|
| 192 |
+
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
|
| 193 |
+
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
|
| 194 |
+
conv.weight.data.copy_(conv_weight)
|
| 195 |
+
nn.init.zeros_(conv.bias.data)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def patchify(x, patch_size):
|
| 200 |
+
if patch_size == 1:
|
| 201 |
+
return x
|
| 202 |
+
if x.dim() == 4:
|
| 203 |
+
x = rearrange(x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size, r=patch_size)
|
| 204 |
+
elif x.dim() == 5:
|
| 205 |
+
x = rearrange(x,
|
| 206 |
+
"b c f (h q) (w r) -> b (c r q) f h w",
|
| 207 |
+
q=patch_size,
|
| 208 |
+
r=patch_size)
|
| 209 |
+
else:
|
| 210 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
| 211 |
+
return x
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def unpatchify(x, patch_size):
|
| 215 |
+
if patch_size == 1:
|
| 216 |
+
return x
|
| 217 |
+
if x.dim() == 4:
|
| 218 |
+
x = rearrange(x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size, r=patch_size)
|
| 219 |
+
elif x.dim() == 5:
|
| 220 |
+
x = rearrange(x,
|
| 221 |
+
"b (c r q) f h w -> b c f (h q) (w r)",
|
| 222 |
+
q=patch_size,
|
| 223 |
+
r=patch_size)
|
| 224 |
+
return x
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class Resample38(Resample):
|
| 228 |
+
|
| 229 |
+
def __init__(self, dim, mode):
|
| 230 |
+
assert mode in (
|
| 231 |
+
"none",
|
| 232 |
+
"upsample2d",
|
| 233 |
+
"upsample3d",
|
| 234 |
+
"downsample2d",
|
| 235 |
+
"downsample3d",
|
| 236 |
+
)
|
| 237 |
+
super(Resample, self).__init__()
|
| 238 |
+
self.dim = dim
|
| 239 |
+
self.mode = mode
|
| 240 |
+
|
| 241 |
+
# layers
|
| 242 |
+
if mode == "upsample2d":
|
| 243 |
+
self.resample = nn.Sequential(
|
| 244 |
+
Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
| 245 |
+
nn.Conv2d(dim, dim, 3, padding=1),
|
| 246 |
+
)
|
| 247 |
+
elif mode == "upsample3d":
|
| 248 |
+
self.resample = nn.Sequential(
|
| 249 |
+
Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
| 250 |
+
nn.Conv2d(dim, dim, 3, padding=1),
|
| 251 |
+
)
|
| 252 |
+
self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
| 253 |
+
elif mode == "downsample2d":
|
| 254 |
+
self.resample = nn.Sequential(
|
| 255 |
+
nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))
|
| 256 |
+
)
|
| 257 |
+
elif mode == "downsample3d":
|
| 258 |
+
self.resample = nn.Sequential(
|
| 259 |
+
nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))
|
| 260 |
+
)
|
| 261 |
+
self.time_conv = CausalConv3d(
|
| 262 |
+
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)
|
| 263 |
+
)
|
| 264 |
+
else:
|
| 265 |
+
self.resample = nn.Identity()
|
| 266 |
+
|
| 267 |
+
class ResidualBlock(nn.Module):
|
| 268 |
+
|
| 269 |
+
def __init__(self, in_dim, out_dim, dropout=0.0):
|
| 270 |
+
super().__init__()
|
| 271 |
+
self.in_dim = in_dim
|
| 272 |
+
self.out_dim = out_dim
|
| 273 |
+
|
| 274 |
+
# layers
|
| 275 |
+
self.residual = nn.Sequential(
|
| 276 |
+
RMS_norm(in_dim, images=False), nn.SiLU(),
|
| 277 |
+
CausalConv3d(in_dim, out_dim, 3, padding=1),
|
| 278 |
+
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
|
| 279 |
+
CausalConv3d(out_dim, out_dim, 3, padding=1))
|
| 280 |
+
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
|
| 281 |
+
if in_dim != out_dim else nn.Identity()
|
| 282 |
+
|
| 283 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 284 |
+
h = self.shortcut(x)
|
| 285 |
+
for layer in self.residual:
|
| 286 |
+
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
|
| 287 |
+
idx = feat_idx[0]
|
| 288 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 289 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 290 |
+
# cache last frame of last two chunk
|
| 291 |
+
cache_x = torch.cat([
|
| 292 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
| 293 |
+
cache_x.device), cache_x
|
| 294 |
+
],
|
| 295 |
+
dim=2)
|
| 296 |
+
x = layer(x, feat_cache[idx])
|
| 297 |
+
feat_cache[idx] = cache_x
|
| 298 |
+
feat_idx[0] += 1
|
| 299 |
+
else:
|
| 300 |
+
x = layer(x)
|
| 301 |
+
return x + h
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
class AttentionBlock(nn.Module):
|
| 305 |
+
"""
|
| 306 |
+
Causal self-attention with a single head.
|
| 307 |
+
"""
|
| 308 |
+
|
| 309 |
+
def __init__(self, dim):
|
| 310 |
+
super().__init__()
|
| 311 |
+
self.dim = dim
|
| 312 |
+
|
| 313 |
+
# layers
|
| 314 |
+
self.norm = RMS_norm(dim)
|
| 315 |
+
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
| 316 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
| 317 |
+
|
| 318 |
+
# zero out the last layer params
|
| 319 |
+
nn.init.zeros_(self.proj.weight)
|
| 320 |
+
|
| 321 |
+
def forward(self, x):
|
| 322 |
+
identity = x
|
| 323 |
+
b, c, t, h, w = x.size()
|
| 324 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
| 325 |
+
x = self.norm(x)
|
| 326 |
+
# compute query, key, value
|
| 327 |
+
q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(
|
| 328 |
+
0, 1, 3, 2).contiguous().chunk(3, dim=-1)
|
| 329 |
+
|
| 330 |
+
# apply attention
|
| 331 |
+
x = F.scaled_dot_product_attention(
|
| 332 |
+
q,
|
| 333 |
+
k,
|
| 334 |
+
v,
|
| 335 |
+
#attn_mask=block_causal_mask(q, block_size=h * w)
|
| 336 |
+
)
|
| 337 |
+
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
|
| 338 |
+
|
| 339 |
+
# output
|
| 340 |
+
x = self.proj(x)
|
| 341 |
+
x = rearrange(x, '(b t) c h w-> b c t h w', t=t)
|
| 342 |
+
return x + identity
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
class AvgDown3D(nn.Module):
|
| 346 |
+
def __init__(
|
| 347 |
+
self,
|
| 348 |
+
in_channels,
|
| 349 |
+
out_channels,
|
| 350 |
+
factor_t,
|
| 351 |
+
factor_s=1,
|
| 352 |
+
):
|
| 353 |
+
super().__init__()
|
| 354 |
+
self.in_channels = in_channels
|
| 355 |
+
self.out_channels = out_channels
|
| 356 |
+
self.factor_t = factor_t
|
| 357 |
+
self.factor_s = factor_s
|
| 358 |
+
self.factor = self.factor_t * self.factor_s * self.factor_s
|
| 359 |
+
|
| 360 |
+
assert in_channels * self.factor % out_channels == 0
|
| 361 |
+
self.group_size = in_channels * self.factor // out_channels
|
| 362 |
+
|
| 363 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 364 |
+
pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t
|
| 365 |
+
pad = (0, 0, 0, 0, pad_t, 0)
|
| 366 |
+
x = F.pad(x, pad)
|
| 367 |
+
B, C, T, H, W = x.shape
|
| 368 |
+
x = x.view(
|
| 369 |
+
B,
|
| 370 |
+
C,
|
| 371 |
+
T // self.factor_t,
|
| 372 |
+
self.factor_t,
|
| 373 |
+
H // self.factor_s,
|
| 374 |
+
self.factor_s,
|
| 375 |
+
W // self.factor_s,
|
| 376 |
+
self.factor_s,
|
| 377 |
+
)
|
| 378 |
+
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
|
| 379 |
+
x = x.view(
|
| 380 |
+
B,
|
| 381 |
+
C * self.factor,
|
| 382 |
+
T // self.factor_t,
|
| 383 |
+
H // self.factor_s,
|
| 384 |
+
W // self.factor_s,
|
| 385 |
+
)
|
| 386 |
+
x = x.view(
|
| 387 |
+
B,
|
| 388 |
+
self.out_channels,
|
| 389 |
+
self.group_size,
|
| 390 |
+
T // self.factor_t,
|
| 391 |
+
H // self.factor_s,
|
| 392 |
+
W // self.factor_s,
|
| 393 |
+
)
|
| 394 |
+
x = x.mean(dim=2)
|
| 395 |
+
return x
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
class DupUp3D(nn.Module):
|
| 399 |
+
def __init__(
|
| 400 |
+
self,
|
| 401 |
+
in_channels: int,
|
| 402 |
+
out_channels: int,
|
| 403 |
+
factor_t,
|
| 404 |
+
factor_s=1,
|
| 405 |
+
):
|
| 406 |
+
super().__init__()
|
| 407 |
+
self.in_channels = in_channels
|
| 408 |
+
self.out_channels = out_channels
|
| 409 |
+
|
| 410 |
+
self.factor_t = factor_t
|
| 411 |
+
self.factor_s = factor_s
|
| 412 |
+
self.factor = self.factor_t * self.factor_s * self.factor_s
|
| 413 |
+
|
| 414 |
+
assert out_channels * self.factor % in_channels == 0
|
| 415 |
+
self.repeats = out_channels * self.factor // in_channels
|
| 416 |
+
|
| 417 |
+
def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor:
|
| 418 |
+
x = x.repeat_interleave(self.repeats, dim=1)
|
| 419 |
+
x = x.view(
|
| 420 |
+
x.size(0),
|
| 421 |
+
self.out_channels,
|
| 422 |
+
self.factor_t,
|
| 423 |
+
self.factor_s,
|
| 424 |
+
self.factor_s,
|
| 425 |
+
x.size(2),
|
| 426 |
+
x.size(3),
|
| 427 |
+
x.size(4),
|
| 428 |
+
)
|
| 429 |
+
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
|
| 430 |
+
x = x.view(
|
| 431 |
+
x.size(0),
|
| 432 |
+
self.out_channels,
|
| 433 |
+
x.size(2) * self.factor_t,
|
| 434 |
+
x.size(4) * self.factor_s,
|
| 435 |
+
x.size(6) * self.factor_s,
|
| 436 |
+
)
|
| 437 |
+
if first_chunk:
|
| 438 |
+
x = x[:, :, self.factor_t - 1 :, :, :]
|
| 439 |
+
return x
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
class Down_ResidualBlock(nn.Module):
|
| 443 |
+
def __init__(
|
| 444 |
+
self, in_dim, out_dim, dropout, mult, temperal_downsample=False, down_flag=False
|
| 445 |
+
):
|
| 446 |
+
super().__init__()
|
| 447 |
+
|
| 448 |
+
# Shortcut path with downsample
|
| 449 |
+
self.avg_shortcut = AvgDown3D(
|
| 450 |
+
in_dim,
|
| 451 |
+
out_dim,
|
| 452 |
+
factor_t=2 if temperal_downsample else 1,
|
| 453 |
+
factor_s=2 if down_flag else 1,
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
# Main path with residual blocks and downsample
|
| 457 |
+
downsamples = []
|
| 458 |
+
for _ in range(mult):
|
| 459 |
+
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
| 460 |
+
in_dim = out_dim
|
| 461 |
+
|
| 462 |
+
# Add the final downsample block
|
| 463 |
+
if down_flag:
|
| 464 |
+
mode = "downsample3d" if temperal_downsample else "downsample2d"
|
| 465 |
+
downsamples.append(Resample38(out_dim, mode=mode))
|
| 466 |
+
|
| 467 |
+
self.downsamples = nn.Sequential(*downsamples)
|
| 468 |
+
|
| 469 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 470 |
+
x_copy = x.clone()
|
| 471 |
+
for module in self.downsamples:
|
| 472 |
+
x = module(x, feat_cache, feat_idx)
|
| 473 |
+
|
| 474 |
+
return x + self.avg_shortcut(x_copy)
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
class Up_ResidualBlock(nn.Module):
|
| 478 |
+
def __init__(
|
| 479 |
+
self, in_dim, out_dim, dropout, mult, temperal_upsample=False, up_flag=False
|
| 480 |
+
):
|
| 481 |
+
super().__init__()
|
| 482 |
+
# Shortcut path with upsample
|
| 483 |
+
if up_flag:
|
| 484 |
+
self.avg_shortcut = DupUp3D(
|
| 485 |
+
in_dim,
|
| 486 |
+
out_dim,
|
| 487 |
+
factor_t=2 if temperal_upsample else 1,
|
| 488 |
+
factor_s=2 if up_flag else 1,
|
| 489 |
+
)
|
| 490 |
+
else:
|
| 491 |
+
self.avg_shortcut = None
|
| 492 |
+
|
| 493 |
+
# Main path with residual blocks and upsample
|
| 494 |
+
upsamples = []
|
| 495 |
+
for _ in range(mult):
|
| 496 |
+
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
| 497 |
+
in_dim = out_dim
|
| 498 |
+
|
| 499 |
+
# Add the final upsample block
|
| 500 |
+
if up_flag:
|
| 501 |
+
mode = "upsample3d" if temperal_upsample else "upsample2d"
|
| 502 |
+
upsamples.append(Resample38(out_dim, mode=mode))
|
| 503 |
+
|
| 504 |
+
self.upsamples = nn.Sequential(*upsamples)
|
| 505 |
+
|
| 506 |
+
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
|
| 507 |
+
x_main = x.clone()
|
| 508 |
+
for module in self.upsamples:
|
| 509 |
+
x_main = module(x_main, feat_cache, feat_idx)
|
| 510 |
+
if self.avg_shortcut is not None:
|
| 511 |
+
x_shortcut = self.avg_shortcut(x, first_chunk)
|
| 512 |
+
return x_main + x_shortcut
|
| 513 |
+
else:
|
| 514 |
+
return x_main
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
class Encoder3d(nn.Module):
|
| 518 |
+
|
| 519 |
+
def __init__(self,
|
| 520 |
+
dim=128,
|
| 521 |
+
z_dim=4,
|
| 522 |
+
dim_mult=[1, 2, 4, 4],
|
| 523 |
+
num_res_blocks=2,
|
| 524 |
+
attn_scales=[],
|
| 525 |
+
temperal_downsample=[True, True, False],
|
| 526 |
+
dropout=0.0):
|
| 527 |
+
super().__init__()
|
| 528 |
+
self.dim = dim
|
| 529 |
+
self.z_dim = z_dim
|
| 530 |
+
self.dim_mult = dim_mult
|
| 531 |
+
self.num_res_blocks = num_res_blocks
|
| 532 |
+
self.attn_scales = attn_scales
|
| 533 |
+
self.temperal_downsample = temperal_downsample
|
| 534 |
+
|
| 535 |
+
# dimensions
|
| 536 |
+
dims = [dim * u for u in [1] + dim_mult]
|
| 537 |
+
scale = 1.0
|
| 538 |
+
|
| 539 |
+
# init block
|
| 540 |
+
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
|
| 541 |
+
|
| 542 |
+
# downsample blocks
|
| 543 |
+
downsamples = []
|
| 544 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
| 545 |
+
# residual (+attention) blocks
|
| 546 |
+
for _ in range(num_res_blocks):
|
| 547 |
+
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
| 548 |
+
if scale in attn_scales:
|
| 549 |
+
downsamples.append(AttentionBlock(out_dim))
|
| 550 |
+
in_dim = out_dim
|
| 551 |
+
|
| 552 |
+
# downsample block
|
| 553 |
+
if i != len(dim_mult) - 1:
|
| 554 |
+
mode = 'downsample3d' if temperal_downsample[
|
| 555 |
+
i] else 'downsample2d'
|
| 556 |
+
downsamples.append(Resample(out_dim, mode=mode))
|
| 557 |
+
scale /= 2.0
|
| 558 |
+
self.downsamples = nn.Sequential(*downsamples)
|
| 559 |
+
|
| 560 |
+
# middle blocks
|
| 561 |
+
self.middle = nn.Sequential(ResidualBlock(out_dim, out_dim, dropout),
|
| 562 |
+
AttentionBlock(out_dim),
|
| 563 |
+
ResidualBlock(out_dim, out_dim, dropout))
|
| 564 |
+
|
| 565 |
+
# output blocks
|
| 566 |
+
self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(),
|
| 567 |
+
CausalConv3d(out_dim, z_dim, 3, padding=1))
|
| 568 |
+
|
| 569 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 570 |
+
if feat_cache is not None:
|
| 571 |
+
idx = feat_idx[0]
|
| 572 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 573 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 574 |
+
# cache last frame of last two chunk
|
| 575 |
+
cache_x = torch.cat([
|
| 576 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
| 577 |
+
cache_x.device), cache_x
|
| 578 |
+
],
|
| 579 |
+
dim=2)
|
| 580 |
+
x = self.conv1(x, feat_cache[idx])
|
| 581 |
+
feat_cache[idx] = cache_x
|
| 582 |
+
feat_idx[0] += 1
|
| 583 |
+
else:
|
| 584 |
+
x = self.conv1(x)
|
| 585 |
+
|
| 586 |
+
## downsamples
|
| 587 |
+
for layer in self.downsamples:
|
| 588 |
+
if feat_cache is not None:
|
| 589 |
+
x = layer(x, feat_cache, feat_idx)
|
| 590 |
+
else:
|
| 591 |
+
x = layer(x)
|
| 592 |
+
|
| 593 |
+
## middle
|
| 594 |
+
for layer in self.middle:
|
| 595 |
+
if check_is_instance(layer, ResidualBlock) and feat_cache is not None:
|
| 596 |
+
x = layer(x, feat_cache, feat_idx)
|
| 597 |
+
else:
|
| 598 |
+
x = layer(x)
|
| 599 |
+
|
| 600 |
+
## head
|
| 601 |
+
for layer in self.head:
|
| 602 |
+
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
|
| 603 |
+
idx = feat_idx[0]
|
| 604 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 605 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 606 |
+
# cache last frame of last two chunk
|
| 607 |
+
cache_x = torch.cat([
|
| 608 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
| 609 |
+
cache_x.device), cache_x
|
| 610 |
+
],
|
| 611 |
+
dim=2)
|
| 612 |
+
x = layer(x, feat_cache[idx])
|
| 613 |
+
feat_cache[idx] = cache_x
|
| 614 |
+
feat_idx[0] += 1
|
| 615 |
+
else:
|
| 616 |
+
x = layer(x)
|
| 617 |
+
return x
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
class Encoder3d_38(nn.Module):
|
| 621 |
+
|
| 622 |
+
def __init__(self,
|
| 623 |
+
dim=128,
|
| 624 |
+
z_dim=4,
|
| 625 |
+
dim_mult=[1, 2, 4, 4],
|
| 626 |
+
num_res_blocks=2,
|
| 627 |
+
attn_scales=[],
|
| 628 |
+
temperal_downsample=[False, True, True],
|
| 629 |
+
dropout=0.0):
|
| 630 |
+
super().__init__()
|
| 631 |
+
self.dim = dim
|
| 632 |
+
self.z_dim = z_dim
|
| 633 |
+
self.dim_mult = dim_mult
|
| 634 |
+
self.num_res_blocks = num_res_blocks
|
| 635 |
+
self.attn_scales = attn_scales
|
| 636 |
+
self.temperal_downsample = temperal_downsample
|
| 637 |
+
|
| 638 |
+
# dimensions
|
| 639 |
+
dims = [dim * u for u in [1] + dim_mult]
|
| 640 |
+
scale = 1.0
|
| 641 |
+
|
| 642 |
+
# init block
|
| 643 |
+
self.conv1 = CausalConv3d(12, dims[0], 3, padding=1)
|
| 644 |
+
|
| 645 |
+
# downsample blocks
|
| 646 |
+
downsamples = []
|
| 647 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
| 648 |
+
t_down_flag = (
|
| 649 |
+
temperal_downsample[i] if i < len(temperal_downsample) else False
|
| 650 |
+
)
|
| 651 |
+
downsamples.append(
|
| 652 |
+
Down_ResidualBlock(
|
| 653 |
+
in_dim=in_dim,
|
| 654 |
+
out_dim=out_dim,
|
| 655 |
+
dropout=dropout,
|
| 656 |
+
mult=num_res_blocks,
|
| 657 |
+
temperal_downsample=t_down_flag,
|
| 658 |
+
down_flag=i != len(dim_mult) - 1,
|
| 659 |
+
)
|
| 660 |
+
)
|
| 661 |
+
scale /= 2.0
|
| 662 |
+
self.downsamples = nn.Sequential(*downsamples)
|
| 663 |
+
|
| 664 |
+
# middle blocks
|
| 665 |
+
self.middle = nn.Sequential(
|
| 666 |
+
ResidualBlock(out_dim, out_dim, dropout),
|
| 667 |
+
AttentionBlock(out_dim),
|
| 668 |
+
ResidualBlock(out_dim, out_dim, dropout),
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
# # output blocks
|
| 672 |
+
self.head = nn.Sequential(
|
| 673 |
+
RMS_norm(out_dim, images=False),
|
| 674 |
+
nn.SiLU(),
|
| 675 |
+
CausalConv3d(out_dim, z_dim, 3, padding=1),
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 680 |
+
|
| 681 |
+
if feat_cache is not None:
|
| 682 |
+
idx = feat_idx[0]
|
| 683 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 684 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 685 |
+
cache_x = torch.cat(
|
| 686 |
+
[
|
| 687 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
|
| 688 |
+
cache_x,
|
| 689 |
+
],
|
| 690 |
+
dim=2,
|
| 691 |
+
)
|
| 692 |
+
x = self.conv1(x, feat_cache[idx])
|
| 693 |
+
feat_cache[idx] = cache_x
|
| 694 |
+
feat_idx[0] += 1
|
| 695 |
+
else:
|
| 696 |
+
x = self.conv1(x)
|
| 697 |
+
|
| 698 |
+
## downsamples
|
| 699 |
+
for layer in self.downsamples:
|
| 700 |
+
if feat_cache is not None:
|
| 701 |
+
x = layer(x, feat_cache, feat_idx)
|
| 702 |
+
else:
|
| 703 |
+
x = layer(x)
|
| 704 |
+
|
| 705 |
+
## middle
|
| 706 |
+
for layer in self.middle:
|
| 707 |
+
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
| 708 |
+
x = layer(x, feat_cache, feat_idx)
|
| 709 |
+
else:
|
| 710 |
+
x = layer(x)
|
| 711 |
+
|
| 712 |
+
## head
|
| 713 |
+
for layer in self.head:
|
| 714 |
+
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
| 715 |
+
idx = feat_idx[0]
|
| 716 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 717 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 718 |
+
cache_x = torch.cat(
|
| 719 |
+
[
|
| 720 |
+
feat_cache[idx][:, :, -1, :, :]
|
| 721 |
+
.unsqueeze(2)
|
| 722 |
+
.to(cache_x.device),
|
| 723 |
+
cache_x,
|
| 724 |
+
],
|
| 725 |
+
dim=2,
|
| 726 |
+
)
|
| 727 |
+
x = layer(x, feat_cache[idx])
|
| 728 |
+
feat_cache[idx] = cache_x
|
| 729 |
+
feat_idx[0] += 1
|
| 730 |
+
else:
|
| 731 |
+
x = layer(x)
|
| 732 |
+
|
| 733 |
+
return x
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
class Decoder3d(nn.Module):
|
| 737 |
+
|
| 738 |
+
def __init__(self,
|
| 739 |
+
dim=128,
|
| 740 |
+
z_dim=4,
|
| 741 |
+
dim_mult=[1, 2, 4, 4],
|
| 742 |
+
num_res_blocks=2,
|
| 743 |
+
attn_scales=[],
|
| 744 |
+
temperal_upsample=[False, True, True],
|
| 745 |
+
dropout=0.0):
|
| 746 |
+
super().__init__()
|
| 747 |
+
self.dim = dim
|
| 748 |
+
self.z_dim = z_dim
|
| 749 |
+
self.dim_mult = dim_mult
|
| 750 |
+
self.num_res_blocks = num_res_blocks
|
| 751 |
+
self.attn_scales = attn_scales
|
| 752 |
+
self.temperal_upsample = temperal_upsample
|
| 753 |
+
|
| 754 |
+
# dimensions
|
| 755 |
+
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
| 756 |
+
scale = 1.0 / 2**(len(dim_mult) - 2)
|
| 757 |
+
|
| 758 |
+
# init block
|
| 759 |
+
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
|
| 760 |
+
|
| 761 |
+
# middle blocks
|
| 762 |
+
self.middle = nn.Sequential(ResidualBlock(dims[0], dims[0], dropout),
|
| 763 |
+
AttentionBlock(dims[0]),
|
| 764 |
+
ResidualBlock(dims[0], dims[0], dropout))
|
| 765 |
+
|
| 766 |
+
# upsample blocks
|
| 767 |
+
upsamples = []
|
| 768 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
| 769 |
+
# residual (+attention) blocks
|
| 770 |
+
if i == 1 or i == 2 or i == 3:
|
| 771 |
+
in_dim = in_dim // 2
|
| 772 |
+
for _ in range(num_res_blocks + 1):
|
| 773 |
+
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
| 774 |
+
if scale in attn_scales:
|
| 775 |
+
upsamples.append(AttentionBlock(out_dim))
|
| 776 |
+
in_dim = out_dim
|
| 777 |
+
|
| 778 |
+
# upsample block
|
| 779 |
+
if i != len(dim_mult) - 1:
|
| 780 |
+
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
|
| 781 |
+
upsamples.append(Resample(out_dim, mode=mode))
|
| 782 |
+
scale *= 2.0
|
| 783 |
+
self.upsamples = nn.Sequential(*upsamples)
|
| 784 |
+
|
| 785 |
+
# output blocks
|
| 786 |
+
self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(),
|
| 787 |
+
CausalConv3d(out_dim, 3, 3, padding=1))
|
| 788 |
+
|
| 789 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 790 |
+
## conv1
|
| 791 |
+
if feat_cache is not None:
|
| 792 |
+
idx = feat_idx[0]
|
| 793 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 794 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 795 |
+
# cache last frame of last two chunk
|
| 796 |
+
cache_x = torch.cat([
|
| 797 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
| 798 |
+
cache_x.device), cache_x
|
| 799 |
+
],
|
| 800 |
+
dim=2)
|
| 801 |
+
x = self.conv1(x, feat_cache[idx])
|
| 802 |
+
feat_cache[idx] = cache_x
|
| 803 |
+
feat_idx[0] += 1
|
| 804 |
+
else:
|
| 805 |
+
x = self.conv1(x)
|
| 806 |
+
|
| 807 |
+
## middle
|
| 808 |
+
for layer in self.middle:
|
| 809 |
+
if check_is_instance(layer, ResidualBlock) and feat_cache is not None:
|
| 810 |
+
x = layer(x, feat_cache, feat_idx)
|
| 811 |
+
else:
|
| 812 |
+
x = layer(x)
|
| 813 |
+
|
| 814 |
+
## upsamples
|
| 815 |
+
for layer in self.upsamples:
|
| 816 |
+
if feat_cache is not None:
|
| 817 |
+
x = layer(x, feat_cache, feat_idx)
|
| 818 |
+
else:
|
| 819 |
+
x = layer(x)
|
| 820 |
+
|
| 821 |
+
## head
|
| 822 |
+
for layer in self.head:
|
| 823 |
+
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
|
| 824 |
+
idx = feat_idx[0]
|
| 825 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 826 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 827 |
+
# cache last frame of last two chunk
|
| 828 |
+
cache_x = torch.cat([
|
| 829 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
| 830 |
+
cache_x.device), cache_x
|
| 831 |
+
],
|
| 832 |
+
dim=2)
|
| 833 |
+
x = layer(x, feat_cache[idx])
|
| 834 |
+
feat_cache[idx] = cache_x
|
| 835 |
+
feat_idx[0] += 1
|
| 836 |
+
else:
|
| 837 |
+
x = layer(x)
|
| 838 |
+
return x
|
| 839 |
+
|
| 840 |
+
|
| 841 |
+
|
| 842 |
+
class Decoder3d_38(nn.Module):
|
| 843 |
+
|
| 844 |
+
def __init__(self,
|
| 845 |
+
dim=128,
|
| 846 |
+
z_dim=4,
|
| 847 |
+
dim_mult=[1, 2, 4, 4],
|
| 848 |
+
num_res_blocks=2,
|
| 849 |
+
attn_scales=[],
|
| 850 |
+
temperal_upsample=[False, True, True],
|
| 851 |
+
dropout=0.0):
|
| 852 |
+
super().__init__()
|
| 853 |
+
self.dim = dim
|
| 854 |
+
self.z_dim = z_dim
|
| 855 |
+
self.dim_mult = dim_mult
|
| 856 |
+
self.num_res_blocks = num_res_blocks
|
| 857 |
+
self.attn_scales = attn_scales
|
| 858 |
+
self.temperal_upsample = temperal_upsample
|
| 859 |
+
|
| 860 |
+
# dimensions
|
| 861 |
+
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
| 862 |
+
scale = 1.0 / 2 ** (len(dim_mult) - 2)
|
| 863 |
+
# init block
|
| 864 |
+
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
|
| 865 |
+
|
| 866 |
+
# middle blocks
|
| 867 |
+
self.middle = nn.Sequential(ResidualBlock(dims[0], dims[0], dropout),
|
| 868 |
+
AttentionBlock(dims[0]),
|
| 869 |
+
ResidualBlock(dims[0], dims[0], dropout))
|
| 870 |
+
|
| 871 |
+
# upsample blocks
|
| 872 |
+
upsamples = []
|
| 873 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
| 874 |
+
t_up_flag = temperal_upsample[i] if i < len(temperal_upsample) else False
|
| 875 |
+
upsamples.append(
|
| 876 |
+
Up_ResidualBlock(in_dim=in_dim,
|
| 877 |
+
out_dim=out_dim,
|
| 878 |
+
dropout=dropout,
|
| 879 |
+
mult=num_res_blocks + 1,
|
| 880 |
+
temperal_upsample=t_up_flag,
|
| 881 |
+
up_flag=i != len(dim_mult) - 1))
|
| 882 |
+
self.upsamples = nn.Sequential(*upsamples)
|
| 883 |
+
|
| 884 |
+
# output blocks
|
| 885 |
+
self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(),
|
| 886 |
+
CausalConv3d(out_dim, 12, 3, padding=1))
|
| 887 |
+
|
| 888 |
+
|
| 889 |
+
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
|
| 890 |
+
if feat_cache is not None:
|
| 891 |
+
idx = feat_idx[0]
|
| 892 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 893 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 894 |
+
cache_x = torch.cat(
|
| 895 |
+
[
|
| 896 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
|
| 897 |
+
cache_x,
|
| 898 |
+
],
|
| 899 |
+
dim=2,
|
| 900 |
+
)
|
| 901 |
+
x = self.conv1(x, feat_cache[idx])
|
| 902 |
+
feat_cache[idx] = cache_x
|
| 903 |
+
feat_idx[0] += 1
|
| 904 |
+
else:
|
| 905 |
+
x = self.conv1(x)
|
| 906 |
+
|
| 907 |
+
for layer in self.middle:
|
| 908 |
+
if check_is_instance(layer, ResidualBlock) and feat_cache is not None:
|
| 909 |
+
x = layer(x, feat_cache, feat_idx)
|
| 910 |
+
else:
|
| 911 |
+
x = layer(x)
|
| 912 |
+
|
| 913 |
+
## upsamples
|
| 914 |
+
for layer in self.upsamples:
|
| 915 |
+
if feat_cache is not None:
|
| 916 |
+
x = layer(x, feat_cache, feat_idx, first_chunk)
|
| 917 |
+
else:
|
| 918 |
+
x = layer(x)
|
| 919 |
+
|
| 920 |
+
## head
|
| 921 |
+
for layer in self.head:
|
| 922 |
+
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
|
| 923 |
+
idx = feat_idx[0]
|
| 924 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 925 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 926 |
+
cache_x = torch.cat(
|
| 927 |
+
[
|
| 928 |
+
feat_cache[idx][:, :, -1, :, :]
|
| 929 |
+
.unsqueeze(2)
|
| 930 |
+
.to(cache_x.device),
|
| 931 |
+
cache_x,
|
| 932 |
+
],
|
| 933 |
+
dim=2,
|
| 934 |
+
)
|
| 935 |
+
x = layer(x, feat_cache[idx])
|
| 936 |
+
feat_cache[idx] = cache_x
|
| 937 |
+
feat_idx[0] += 1
|
| 938 |
+
else:
|
| 939 |
+
x = layer(x)
|
| 940 |
+
return x
|
| 941 |
+
|
| 942 |
+
|
| 943 |
+
def count_conv3d(model):
|
| 944 |
+
count = 0
|
| 945 |
+
for m in model.modules():
|
| 946 |
+
if isinstance(m, CausalConv3d):
|
| 947 |
+
count += 1
|
| 948 |
+
return count
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
class VideoVAE_(nn.Module):
|
| 952 |
+
|
| 953 |
+
def __init__(self,
|
| 954 |
+
dim=96,
|
| 955 |
+
z_dim=16,
|
| 956 |
+
dim_mult=[1, 2, 4, 4],
|
| 957 |
+
num_res_blocks=2,
|
| 958 |
+
attn_scales=[],
|
| 959 |
+
temperal_downsample=[False, True, True],
|
| 960 |
+
dropout=0.0):
|
| 961 |
+
super().__init__()
|
| 962 |
+
self.dim = dim
|
| 963 |
+
self.z_dim = z_dim
|
| 964 |
+
self.dim_mult = dim_mult
|
| 965 |
+
self.num_res_blocks = num_res_blocks
|
| 966 |
+
self.attn_scales = attn_scales
|
| 967 |
+
self.temperal_downsample = temperal_downsample
|
| 968 |
+
self.temperal_upsample = temperal_downsample[::-1]
|
| 969 |
+
|
| 970 |
+
# modules
|
| 971 |
+
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
|
| 972 |
+
attn_scales, self.temperal_downsample, dropout)
|
| 973 |
+
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
| 974 |
+
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
| 975 |
+
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
|
| 976 |
+
attn_scales, self.temperal_upsample, dropout)
|
| 977 |
+
|
| 978 |
+
def forward(self, x):
|
| 979 |
+
mu, log_var = self.encode(x)
|
| 980 |
+
z = self.reparameterize(mu, log_var)
|
| 981 |
+
x_recon = self.decode(z)
|
| 982 |
+
return x_recon, mu, log_var
|
| 983 |
+
|
| 984 |
+
def encode(self, x, scale):
|
| 985 |
+
self.clear_cache()
|
| 986 |
+
## cache
|
| 987 |
+
t = x.shape[2]
|
| 988 |
+
iter_ = 1 + (t - 1) // 4
|
| 989 |
+
|
| 990 |
+
for i in range(iter_):
|
| 991 |
+
self._enc_conv_idx = [0]
|
| 992 |
+
if i == 0:
|
| 993 |
+
out = self.encoder(x[:, :, :1, :, :],
|
| 994 |
+
feat_cache=self._enc_feat_map,
|
| 995 |
+
feat_idx=self._enc_conv_idx)
|
| 996 |
+
else:
|
| 997 |
+
out_ = self.encoder(x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
| 998 |
+
feat_cache=self._enc_feat_map,
|
| 999 |
+
feat_idx=self._enc_conv_idx)
|
| 1000 |
+
out = torch.cat([out, out_], 2)
|
| 1001 |
+
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
| 1002 |
+
if isinstance(scale[0], torch.Tensor):
|
| 1003 |
+
scale = [s.to(dtype=mu.dtype, device=mu.device) for s in scale]
|
| 1004 |
+
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
|
| 1005 |
+
1, self.z_dim, 1, 1, 1)
|
| 1006 |
+
else:
|
| 1007 |
+
scale = scale.to(dtype=mu.dtype, device=mu.device)
|
| 1008 |
+
mu = (mu - scale[0]) * scale[1]
|
| 1009 |
+
return mu
|
| 1010 |
+
|
| 1011 |
+
def decode(self, z, scale):
|
| 1012 |
+
self.clear_cache()
|
| 1013 |
+
# z: [b,c,t,h,w]
|
| 1014 |
+
if isinstance(scale[0], torch.Tensor):
|
| 1015 |
+
scale = [s.to(dtype=z.dtype, device=z.device) for s in scale]
|
| 1016 |
+
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
|
| 1017 |
+
1, self.z_dim, 1, 1, 1)
|
| 1018 |
+
else:
|
| 1019 |
+
scale = scale.to(dtype=z.dtype, device=z.device)
|
| 1020 |
+
z = z / scale[1] + scale[0]
|
| 1021 |
+
iter_ = z.shape[2]
|
| 1022 |
+
x = self.conv2(z)
|
| 1023 |
+
for i in range(iter_):
|
| 1024 |
+
self._conv_idx = [0]
|
| 1025 |
+
if i == 0:
|
| 1026 |
+
out = self.decoder(x[:, :, i:i + 1, :, :],
|
| 1027 |
+
feat_cache=self._feat_map,
|
| 1028 |
+
feat_idx=self._conv_idx)
|
| 1029 |
+
else:
|
| 1030 |
+
out_ = self.decoder(x[:, :, i:i + 1, :, :],
|
| 1031 |
+
feat_cache=self._feat_map,
|
| 1032 |
+
feat_idx=self._conv_idx)
|
| 1033 |
+
out = torch.cat([out, out_], 2) # may add tensor offload
|
| 1034 |
+
return out
|
| 1035 |
+
|
| 1036 |
+
def reparameterize(self, mu, log_var):
|
| 1037 |
+
std = torch.exp(0.5 * log_var)
|
| 1038 |
+
eps = torch.randn_like(std)
|
| 1039 |
+
return eps * std + mu
|
| 1040 |
+
|
| 1041 |
+
def sample(self, imgs, deterministic=False):
|
| 1042 |
+
mu, log_var = self.encode(imgs)
|
| 1043 |
+
if deterministic:
|
| 1044 |
+
return mu
|
| 1045 |
+
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
| 1046 |
+
return mu + std * torch.randn_like(std)
|
| 1047 |
+
|
| 1048 |
+
def clear_cache(self):
|
| 1049 |
+
self._conv_num = count_conv3d(self.decoder)
|
| 1050 |
+
self._conv_idx = [0]
|
| 1051 |
+
self._feat_map = [None] * self._conv_num
|
| 1052 |
+
# cache encode
|
| 1053 |
+
self._enc_conv_num = count_conv3d(self.encoder)
|
| 1054 |
+
self._enc_conv_idx = [0]
|
| 1055 |
+
self._enc_feat_map = [None] * self._enc_conv_num
|
| 1056 |
+
|
| 1057 |
+
|
| 1058 |
+
class WanVideoVAE(nn.Module):
|
| 1059 |
+
|
| 1060 |
+
def __init__(self, z_dim=16):
|
| 1061 |
+
super().__init__()
|
| 1062 |
+
|
| 1063 |
+
mean = [
|
| 1064 |
+
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
|
| 1065 |
+
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
|
| 1066 |
+
]
|
| 1067 |
+
std = [
|
| 1068 |
+
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
|
| 1069 |
+
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
|
| 1070 |
+
]
|
| 1071 |
+
self.mean = torch.tensor(mean)
|
| 1072 |
+
self.std = torch.tensor(std)
|
| 1073 |
+
self.scale = [self.mean, 1.0 / self.std]
|
| 1074 |
+
|
| 1075 |
+
# init model
|
| 1076 |
+
self.model = VideoVAE_(z_dim=z_dim).eval().requires_grad_(False)
|
| 1077 |
+
self.upsampling_factor = 8
|
| 1078 |
+
self.z_dim = z_dim
|
| 1079 |
+
|
| 1080 |
+
|
| 1081 |
+
def build_1d_mask(self, length, left_bound, right_bound, border_width):
|
| 1082 |
+
x = torch.ones((length,))
|
| 1083 |
+
if not left_bound:
|
| 1084 |
+
x[:border_width] = (torch.arange(border_width) + 1) / border_width
|
| 1085 |
+
if not right_bound:
|
| 1086 |
+
x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,))
|
| 1087 |
+
return x
|
| 1088 |
+
|
| 1089 |
+
|
| 1090 |
+
def build_mask(self, data, is_bound, border_width):
|
| 1091 |
+
_, _, _, H, W = data.shape
|
| 1092 |
+
h = self.build_1d_mask(H, is_bound[0], is_bound[1], border_width[0])
|
| 1093 |
+
w = self.build_1d_mask(W, is_bound[2], is_bound[3], border_width[1])
|
| 1094 |
+
|
| 1095 |
+
h = repeat(h, "H -> H W", H=H, W=W)
|
| 1096 |
+
w = repeat(w, "W -> H W", H=H, W=W)
|
| 1097 |
+
|
| 1098 |
+
mask = torch.stack([h, w]).min(dim=0).values
|
| 1099 |
+
mask = rearrange(mask, "H W -> 1 1 1 H W")
|
| 1100 |
+
return mask
|
| 1101 |
+
|
| 1102 |
+
|
| 1103 |
+
def tiled_decode(self, hidden_states, device, tile_size, tile_stride):
|
| 1104 |
+
_, _, T, H, W = hidden_states.shape
|
| 1105 |
+
size_h, size_w = tile_size
|
| 1106 |
+
stride_h, stride_w = tile_stride
|
| 1107 |
+
|
| 1108 |
+
# Split tasks
|
| 1109 |
+
tasks = []
|
| 1110 |
+
for h in range(0, H, stride_h):
|
| 1111 |
+
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue
|
| 1112 |
+
for w in range(0, W, stride_w):
|
| 1113 |
+
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue
|
| 1114 |
+
h_, w_ = h + size_h, w + size_w
|
| 1115 |
+
tasks.append((h, h_, w, w_))
|
| 1116 |
+
|
| 1117 |
+
data_device = "cpu"
|
| 1118 |
+
computation_device = device
|
| 1119 |
+
|
| 1120 |
+
out_T = T * 4 - 3
|
| 1121 |
+
weight = torch.zeros((1, 1, out_T, H * self.upsampling_factor, W * self.upsampling_factor), dtype=hidden_states.dtype, device=data_device)
|
| 1122 |
+
values = torch.zeros((1, 3, out_T, H * self.upsampling_factor, W * self.upsampling_factor), dtype=hidden_states.dtype, device=data_device)
|
| 1123 |
+
|
| 1124 |
+
for h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"):
|
| 1125 |
+
hidden_states_batch = hidden_states[:, :, :, h:h_, w:w_].to(computation_device)
|
| 1126 |
+
hidden_states_batch = self.model.decode(hidden_states_batch, self.scale).to(data_device)
|
| 1127 |
+
|
| 1128 |
+
mask = self.build_mask(
|
| 1129 |
+
hidden_states_batch,
|
| 1130 |
+
is_bound=(h==0, h_>=H, w==0, w_>=W),
|
| 1131 |
+
border_width=((size_h - stride_h) * self.upsampling_factor, (size_w - stride_w) * self.upsampling_factor)
|
| 1132 |
+
).to(dtype=hidden_states.dtype, device=data_device)
|
| 1133 |
+
|
| 1134 |
+
target_h = h * self.upsampling_factor
|
| 1135 |
+
target_w = w * self.upsampling_factor
|
| 1136 |
+
values[
|
| 1137 |
+
:,
|
| 1138 |
+
:,
|
| 1139 |
+
:,
|
| 1140 |
+
target_h:target_h + hidden_states_batch.shape[3],
|
| 1141 |
+
target_w:target_w + hidden_states_batch.shape[4],
|
| 1142 |
+
] += hidden_states_batch * mask
|
| 1143 |
+
weight[
|
| 1144 |
+
:,
|
| 1145 |
+
:,
|
| 1146 |
+
:,
|
| 1147 |
+
target_h: target_h + hidden_states_batch.shape[3],
|
| 1148 |
+
target_w: target_w + hidden_states_batch.shape[4],
|
| 1149 |
+
] += mask
|
| 1150 |
+
values = values / weight
|
| 1151 |
+
values = values.clamp_(-1, 1)
|
| 1152 |
+
return values
|
| 1153 |
+
|
| 1154 |
+
|
| 1155 |
+
def tiled_encode(self, video, device, tile_size, tile_stride):
|
| 1156 |
+
_, _, T, H, W = video.shape
|
| 1157 |
+
size_h, size_w = tile_size
|
| 1158 |
+
stride_h, stride_w = tile_stride
|
| 1159 |
+
|
| 1160 |
+
# Split tasks
|
| 1161 |
+
tasks = []
|
| 1162 |
+
for h in range(0, H, stride_h):
|
| 1163 |
+
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue
|
| 1164 |
+
for w in range(0, W, stride_w):
|
| 1165 |
+
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue
|
| 1166 |
+
h_, w_ = h + size_h, w + size_w
|
| 1167 |
+
tasks.append((h, h_, w, w_))
|
| 1168 |
+
|
| 1169 |
+
data_device = "cpu"
|
| 1170 |
+
computation_device = device
|
| 1171 |
+
|
| 1172 |
+
out_T = (T + 3) // 4
|
| 1173 |
+
weight = torch.zeros((1, 1, out_T, H // self.upsampling_factor, W // self.upsampling_factor), dtype=video.dtype, device=data_device)
|
| 1174 |
+
values = torch.zeros((1, self.z_dim, out_T, H // self.upsampling_factor, W // self.upsampling_factor), dtype=video.dtype, device=data_device)
|
| 1175 |
+
|
| 1176 |
+
for h, h_, w, w_ in tqdm(tasks, desc="VAE encoding"):
|
| 1177 |
+
hidden_states_batch = video[:, :, :, h:h_, w:w_].to(computation_device)
|
| 1178 |
+
hidden_states_batch = self.model.encode(hidden_states_batch, self.scale).to(data_device)
|
| 1179 |
+
|
| 1180 |
+
mask = self.build_mask(
|
| 1181 |
+
hidden_states_batch,
|
| 1182 |
+
is_bound=(h==0, h_>=H, w==0, w_>=W),
|
| 1183 |
+
border_width=((size_h - stride_h) // self.upsampling_factor, (size_w - stride_w) // self.upsampling_factor)
|
| 1184 |
+
).to(dtype=video.dtype, device=data_device)
|
| 1185 |
+
|
| 1186 |
+
target_h = h // self.upsampling_factor
|
| 1187 |
+
target_w = w // self.upsampling_factor
|
| 1188 |
+
values[
|
| 1189 |
+
:,
|
| 1190 |
+
:,
|
| 1191 |
+
:,
|
| 1192 |
+
target_h:target_h + hidden_states_batch.shape[3],
|
| 1193 |
+
target_w:target_w + hidden_states_batch.shape[4],
|
| 1194 |
+
] += hidden_states_batch * mask
|
| 1195 |
+
weight[
|
| 1196 |
+
:,
|
| 1197 |
+
:,
|
| 1198 |
+
:,
|
| 1199 |
+
target_h: target_h + hidden_states_batch.shape[3],
|
| 1200 |
+
target_w: target_w + hidden_states_batch.shape[4],
|
| 1201 |
+
] += mask
|
| 1202 |
+
values = values / weight
|
| 1203 |
+
return values
|
| 1204 |
+
|
| 1205 |
+
|
| 1206 |
+
def single_encode(self, video, device):
|
| 1207 |
+
video = video.to(device)
|
| 1208 |
+
x = self.model.encode(video, self.scale)
|
| 1209 |
+
return x
|
| 1210 |
+
|
| 1211 |
+
|
| 1212 |
+
def single_decode(self, hidden_state, device):
|
| 1213 |
+
hidden_state = hidden_state.to(device)
|
| 1214 |
+
video = self.model.decode(hidden_state, self.scale)
|
| 1215 |
+
return video.clamp_(-1, 1)
|
| 1216 |
+
|
| 1217 |
+
|
| 1218 |
+
def encode(self, videos, device, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)):
|
| 1219 |
+
|
| 1220 |
+
videos = [video.to("cpu") for video in videos]
|
| 1221 |
+
hidden_states = []
|
| 1222 |
+
for video in videos:
|
| 1223 |
+
video = video.unsqueeze(0)
|
| 1224 |
+
if tiled:
|
| 1225 |
+
tile_size = (tile_size[0] * self.upsampling_factor, tile_size[1] * self.upsampling_factor)
|
| 1226 |
+
tile_stride = (tile_stride[0] * self.upsampling_factor, tile_stride[1] * self.upsampling_factor)
|
| 1227 |
+
hidden_state = self.tiled_encode(video, device, tile_size, tile_stride)
|
| 1228 |
+
else:
|
| 1229 |
+
hidden_state = self.single_encode(video, device)
|
| 1230 |
+
hidden_state = hidden_state.squeeze(0)
|
| 1231 |
+
hidden_states.append(hidden_state)
|
| 1232 |
+
hidden_states = torch.stack(hidden_states)
|
| 1233 |
+
return hidden_states
|
| 1234 |
+
|
| 1235 |
+
|
| 1236 |
+
def decode(self, hidden_states, device, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)):
|
| 1237 |
+
if tiled:
|
| 1238 |
+
video = self.tiled_decode(hidden_states, device, tile_size, tile_stride)
|
| 1239 |
+
else:
|
| 1240 |
+
video = self.single_decode(hidden_states, device)
|
| 1241 |
+
return video
|
| 1242 |
+
|
| 1243 |
+
|
| 1244 |
+
@staticmethod
|
| 1245 |
+
def state_dict_converter():
|
| 1246 |
+
return WanVideoVAEStateDictConverter()
|
| 1247 |
+
|
| 1248 |
+
|
| 1249 |
+
class WanVideoVAEStateDictConverter:
|
| 1250 |
+
|
| 1251 |
+
def __init__(self):
|
| 1252 |
+
pass
|
| 1253 |
+
|
| 1254 |
+
def from_civitai(self, state_dict):
|
| 1255 |
+
state_dict_ = {}
|
| 1256 |
+
if 'model_state' in state_dict:
|
| 1257 |
+
state_dict = state_dict['model_state']
|
| 1258 |
+
for name in state_dict:
|
| 1259 |
+
state_dict_['model.' + name] = state_dict[name]
|
| 1260 |
+
return state_dict_
|
| 1261 |
+
|
| 1262 |
+
|
| 1263 |
+
class VideoVAE38_(VideoVAE_):
|
| 1264 |
+
|
| 1265 |
+
def __init__(self,
|
| 1266 |
+
dim=160,
|
| 1267 |
+
z_dim=48,
|
| 1268 |
+
dec_dim=256,
|
| 1269 |
+
dim_mult=[1, 2, 4, 4],
|
| 1270 |
+
num_res_blocks=2,
|
| 1271 |
+
attn_scales=[],
|
| 1272 |
+
temperal_downsample=[False, True, True],
|
| 1273 |
+
dropout=0.0):
|
| 1274 |
+
super(VideoVAE_, self).__init__()
|
| 1275 |
+
self.dim = dim
|
| 1276 |
+
self.z_dim = z_dim
|
| 1277 |
+
self.dim_mult = dim_mult
|
| 1278 |
+
self.num_res_blocks = num_res_blocks
|
| 1279 |
+
self.attn_scales = attn_scales
|
| 1280 |
+
self.temperal_downsample = temperal_downsample
|
| 1281 |
+
self.temperal_upsample = temperal_downsample[::-1]
|
| 1282 |
+
|
| 1283 |
+
# modules
|
| 1284 |
+
self.encoder = Encoder3d_38(dim, z_dim * 2, dim_mult, num_res_blocks,
|
| 1285 |
+
attn_scales, self.temperal_downsample, dropout)
|
| 1286 |
+
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
| 1287 |
+
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
| 1288 |
+
self.decoder = Decoder3d_38(dec_dim, z_dim, dim_mult, num_res_blocks,
|
| 1289 |
+
attn_scales, self.temperal_upsample, dropout)
|
| 1290 |
+
|
| 1291 |
+
|
| 1292 |
+
def encode(self, x, scale):
|
| 1293 |
+
self.clear_cache()
|
| 1294 |
+
x = patchify(x, patch_size=2)
|
| 1295 |
+
t = x.shape[2]
|
| 1296 |
+
iter_ = 1 + (t - 1) // 4
|
| 1297 |
+
for i in range(iter_):
|
| 1298 |
+
self._enc_conv_idx = [0]
|
| 1299 |
+
if i == 0:
|
| 1300 |
+
out = self.encoder(x[:, :, :1, :, :],
|
| 1301 |
+
feat_cache=self._enc_feat_map,
|
| 1302 |
+
feat_idx=self._enc_conv_idx)
|
| 1303 |
+
else:
|
| 1304 |
+
out_ = self.encoder(x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
| 1305 |
+
feat_cache=self._enc_feat_map,
|
| 1306 |
+
feat_idx=self._enc_conv_idx)
|
| 1307 |
+
out = torch.cat([out, out_], 2)
|
| 1308 |
+
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
| 1309 |
+
if isinstance(scale[0], torch.Tensor):
|
| 1310 |
+
scale = [s.to(dtype=mu.dtype, device=mu.device) for s in scale]
|
| 1311 |
+
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
|
| 1312 |
+
1, self.z_dim, 1, 1, 1)
|
| 1313 |
+
else:
|
| 1314 |
+
scale = scale.to(dtype=mu.dtype, device=mu.device)
|
| 1315 |
+
mu = (mu - scale[0]) * scale[1]
|
| 1316 |
+
self.clear_cache()
|
| 1317 |
+
return mu
|
| 1318 |
+
|
| 1319 |
+
|
| 1320 |
+
def decode(self, z, scale):
|
| 1321 |
+
self.clear_cache()
|
| 1322 |
+
if isinstance(scale[0], torch.Tensor):
|
| 1323 |
+
scale = [s.to(dtype=z.dtype, device=z.device) for s in scale]
|
| 1324 |
+
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
|
| 1325 |
+
1, self.z_dim, 1, 1, 1)
|
| 1326 |
+
else:
|
| 1327 |
+
scale = scale.to(dtype=z.dtype, device=z.device)
|
| 1328 |
+
z = z / scale[1] + scale[0]
|
| 1329 |
+
iter_ = z.shape[2]
|
| 1330 |
+
x = self.conv2(z)
|
| 1331 |
+
for i in range(iter_):
|
| 1332 |
+
self._conv_idx = [0]
|
| 1333 |
+
if i == 0:
|
| 1334 |
+
out = self.decoder(x[:, :, i:i + 1, :, :],
|
| 1335 |
+
feat_cache=self._feat_map,
|
| 1336 |
+
feat_idx=self._conv_idx,
|
| 1337 |
+
first_chunk=True)
|
| 1338 |
+
else:
|
| 1339 |
+
out_ = self.decoder(x[:, :, i:i + 1, :, :],
|
| 1340 |
+
feat_cache=self._feat_map,
|
| 1341 |
+
feat_idx=self._conv_idx)
|
| 1342 |
+
out = torch.cat([out, out_], 2)
|
| 1343 |
+
out = unpatchify(out, patch_size=2)
|
| 1344 |
+
self.clear_cache()
|
| 1345 |
+
return out
|
| 1346 |
+
|
| 1347 |
+
|
| 1348 |
+
class WanVideoVAE38(WanVideoVAE):
|
| 1349 |
+
|
| 1350 |
+
def __init__(self, z_dim=48, dim=160):
|
| 1351 |
+
super(WanVideoVAE, self).__init__()
|
| 1352 |
+
|
| 1353 |
+
mean = [
|
| 1354 |
+
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
|
| 1355 |
+
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
|
| 1356 |
+
-0.2246, -0.1207, -0.0698, 0.5109, 0.2665, -0.2108, -0.2158, 0.2502,
|
| 1357 |
+
-0.2055, -0.0322, 0.1109, 0.1567, -0.0729, 0.0899, -0.2799, -0.1230,
|
| 1358 |
+
-0.0313, -0.1649, 0.0117, 0.0723, -0.2839, -0.2083, -0.0520, 0.3748,
|
| 1359 |
+
0.0152, 0.1957, 0.1433, -0.2944, 0.3573, -0.0548, -0.1681, -0.0667
|
| 1360 |
+
]
|
| 1361 |
+
std = [
|
| 1362 |
+
0.4765, 1.0364, 0.4514, 1.1677, 0.5313, 0.4990, 0.4818, 0.5013,
|
| 1363 |
+
0.8158, 1.0344, 0.5894, 1.0901, 0.6885, 0.6165, 0.8454, 0.4978,
|
| 1364 |
+
0.5759, 0.3523, 0.7135, 0.6804, 0.5833, 1.4146, 0.8986, 0.5659,
|
| 1365 |
+
0.7069, 0.5338, 0.4889, 0.4917, 0.4069, 0.4999, 0.6866, 0.4093,
|
| 1366 |
+
0.5709, 0.6065, 0.6415, 0.4944, 0.5726, 1.2042, 0.5458, 1.6887,
|
| 1367 |
+
0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744
|
| 1368 |
+
]
|
| 1369 |
+
self.mean = torch.tensor(mean)
|
| 1370 |
+
self.std = torch.tensor(std)
|
| 1371 |
+
self.scale = [self.mean, 1.0 / self.std]
|
| 1372 |
+
|
| 1373 |
+
# init model
|
| 1374 |
+
self.model = VideoVAE38_(z_dim=z_dim, dim=dim).eval().requires_grad_(False)
|
| 1375 |
+
self.upsampling_factor = 16
|
| 1376 |
+
self.z_dim = z_dim
|
dkt/pipelines/__init__.py
ADDED
|
File without changes
|
dkt/pipelines/wan_video_new.py
ADDED
|
@@ -0,0 +1,1486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, warnings, glob, os, types
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from einops import repeat, reduce
|
| 5 |
+
from typing import Optional, Union
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from modelscope import snapshot_download as ms_snap_download
|
| 8 |
+
from huggingface_hub import snapshot_download as hf_snap_download
|
| 9 |
+
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
import numpy as np
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
from typing import Optional
|
| 15 |
+
from typing_extensions import Literal
|
| 16 |
+
|
| 17 |
+
from ..utils import BasePipeline, ModelConfig, PipelineUnit, PipelineUnitRunner
|
| 18 |
+
from ..models import ModelManager, load_state_dict
|
| 19 |
+
from ..models.wan_video_dit import WanModel, RMSNorm, sinusoidal_embedding_1d
|
| 20 |
+
from ..models.wan_video_text_encoder import WanTextEncoder, T5RelativeEmbedding, T5LayerNorm
|
| 21 |
+
from ..models.wan_video_vae import WanVideoVAE, RMS_norm, CausalConv3d, Upsample
|
| 22 |
+
from ..models.wan_video_image_encoder import WanImageEncoder
|
| 23 |
+
from ..models.wan_video_vace import VaceWanModel
|
| 24 |
+
from ..models.wan_video_motion_controller import WanMotionControllerModel
|
| 25 |
+
from ..schedulers.flow_match import FlowMatchScheduler
|
| 26 |
+
from ..prompters import WanPrompter
|
| 27 |
+
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear, WanAutoCastLayerNorm
|
| 28 |
+
from ..lora import GeneralLoRALoader
|
| 29 |
+
|
| 30 |
+
from loguru import logger
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class BasePipeline(torch.nn.Module):
|
| 35 |
+
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
device="cuda", torch_dtype=torch.float16,
|
| 39 |
+
height_division_factor=64, width_division_factor=64,
|
| 40 |
+
time_division_factor=None, time_division_remainder=None,
|
| 41 |
+
):
|
| 42 |
+
super().__init__()
|
| 43 |
+
# The device and torch_dtype is used for the storage of intermediate variables, not models.
|
| 44 |
+
self.device = device
|
| 45 |
+
self.torch_dtype = torch_dtype
|
| 46 |
+
# The following parameters are used for shape check.
|
| 47 |
+
self.height_division_factor = height_division_factor
|
| 48 |
+
self.width_division_factor = width_division_factor
|
| 49 |
+
self.time_division_factor = time_division_factor
|
| 50 |
+
self.time_division_remainder = time_division_remainder
|
| 51 |
+
self.vram_management_enabled = False
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def to(self, *args, **kwargs):
|
| 55 |
+
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
|
| 56 |
+
if device is not None:
|
| 57 |
+
self.device = device
|
| 58 |
+
if dtype is not None:
|
| 59 |
+
self.torch_dtype = dtype
|
| 60 |
+
super().to(*args, **kwargs)
|
| 61 |
+
return self
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def check_resize_height_width(self, height, width, num_frames=None):
|
| 65 |
+
# Shape check
|
| 66 |
+
if height % self.height_division_factor != 0:
|
| 67 |
+
height = (height + self.height_division_factor - 1) // self.height_division_factor * self.height_division_factor
|
| 68 |
+
print(f"height % {self.height_division_factor} != 0. We round it up to {height}.")
|
| 69 |
+
if width % self.width_division_factor != 0:
|
| 70 |
+
width = (width + self.width_division_factor - 1) // self.width_division_factor * self.width_division_factor
|
| 71 |
+
print(f"width % {self.width_division_factor} != 0. We round it up to {width}.")
|
| 72 |
+
if num_frames is None:
|
| 73 |
+
return height, width
|
| 74 |
+
else:
|
| 75 |
+
if num_frames % self.time_division_factor != self.time_division_remainder:
|
| 76 |
+
num_frames = (num_frames + self.time_division_factor - 1) // self.time_division_factor * self.time_division_factor + self.time_division_remainder
|
| 77 |
+
print(f"num_frames % {self.time_division_factor} != {self.time_division_remainder}. We round it up to {num_frames}.")
|
| 78 |
+
return height, width, num_frames
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def preprocess_image(self, image, torch_dtype=None, device=None, pattern="B C H W", min_value=-1, max_value=1):
|
| 82 |
+
# Transform a PIL.Image to torch.Tensor
|
| 83 |
+
image = torch.Tensor(np.array(image, dtype=np.float32))
|
| 84 |
+
image = image.to(dtype=torch_dtype or self.torch_dtype, device=device or self.device)
|
| 85 |
+
image = image * ((max_value - min_value) / 255) + min_value
|
| 86 |
+
image = repeat(image, f"H W C -> {pattern}", **({"B": 1} if "B" in pattern else {}))
|
| 87 |
+
return image
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def preprocess_video(self, video, torch_dtype=None, device=None, pattern="B C T H W", min_value=-1, max_value=1):
|
| 91 |
+
# Transform a list of PIL.Image to torch.Tensor
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
if hasattr(video, 'length') and video.length is not None:
|
| 95 |
+
video = [self.preprocess_image(video[idx], torch_dtype=torch_dtype, device=device, min_value=min_value, max_value=max_value) for idx in range(video.length)]
|
| 96 |
+
else:
|
| 97 |
+
video = [self.preprocess_image(image, torch_dtype=torch_dtype, device=device, min_value=min_value, max_value=max_value) for image in video]
|
| 98 |
+
video = torch.stack(video, dim=pattern.index("T") // 2)
|
| 99 |
+
return video
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def vae_output_to_image(self, vae_output, pattern="B C H W", min_value=-1, max_value=1):
|
| 103 |
+
# Transform a torch.Tensor to PIL.Image
|
| 104 |
+
if pattern != "H W C":
|
| 105 |
+
vae_output = reduce(vae_output, f"{pattern} -> H W C", reduction="mean")
|
| 106 |
+
image = ((vae_output - min_value) * (255 / (max_value - min_value))).clip(0, 255)
|
| 107 |
+
image = image.to(device="cpu", dtype=torch.uint8)
|
| 108 |
+
image = Image.fromarray(image.numpy())
|
| 109 |
+
return image
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def vae_output_to_video(self, vae_output, pattern="B C T H W", min_value=-1, max_value=1):
|
| 113 |
+
# Transform a torch.Tensor to list of PIL.Image
|
| 114 |
+
if pattern != "T H W C":
|
| 115 |
+
vae_output = reduce(vae_output, f"{pattern} -> T H W C", reduction="mean")
|
| 116 |
+
video = [self.vae_output_to_image(image, pattern="H W C", min_value=min_value, max_value=max_value) for image in vae_output]
|
| 117 |
+
return video
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def load_models_to_device(self, model_names=[]):
|
| 121 |
+
if self.vram_management_enabled:
|
| 122 |
+
# offload models
|
| 123 |
+
for name, model in self.named_children():
|
| 124 |
+
if name not in model_names:
|
| 125 |
+
if hasattr(model, "vram_management_enabled") and model.vram_management_enabled:
|
| 126 |
+
for module in model.modules():
|
| 127 |
+
if hasattr(module, "offload"):
|
| 128 |
+
module.offload()
|
| 129 |
+
else:
|
| 130 |
+
model.cpu()
|
| 131 |
+
torch.cuda.empty_cache()
|
| 132 |
+
# onload models
|
| 133 |
+
for name, model in self.named_children():
|
| 134 |
+
if name in model_names:
|
| 135 |
+
if hasattr(model, "vram_management_enabled") and model.vram_management_enabled:
|
| 136 |
+
for module in model.modules():
|
| 137 |
+
if hasattr(module, "onload"):
|
| 138 |
+
module.onload()
|
| 139 |
+
else:
|
| 140 |
+
model.to(self.device)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def generate_noise(self, shape, seed=None, rand_device="cpu", rand_torch_dtype=torch.float32, device=None, torch_dtype=None):
|
| 144 |
+
# Initialize Gaussian noise
|
| 145 |
+
generator = None if seed is None else torch.Generator(rand_device).manual_seed(seed)
|
| 146 |
+
noise = torch.randn(shape, generator=generator, device=rand_device, dtype=rand_torch_dtype)
|
| 147 |
+
noise = noise.to(dtype=torch_dtype or self.torch_dtype, device=device or self.device)
|
| 148 |
+
return noise
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def enable_cpu_offload(self):
|
| 152 |
+
warnings.warn("`enable_cpu_offload` will be deprecated. Please use `enable_vram_management`.")
|
| 153 |
+
self.vram_management_enabled = True
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def get_vram(self):
|
| 157 |
+
return torch.cuda.mem_get_info(self.device)[1] / (1024 ** 3)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def freeze_except(self, model_names):
|
| 161 |
+
for name, model in self.named_children():
|
| 162 |
+
if name in model_names:
|
| 163 |
+
model.train()
|
| 164 |
+
model.requires_grad_(True)
|
| 165 |
+
else:
|
| 166 |
+
model.eval()
|
| 167 |
+
model.requires_grad_(False)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
@dataclass
|
| 171 |
+
class ModelConfig:
|
| 172 |
+
path: Union[str, list[str]] = None
|
| 173 |
+
model_id: str = None
|
| 174 |
+
origin_file_pattern: Union[str, list[str]] = None
|
| 175 |
+
download_resource: str = "ModelScope"
|
| 176 |
+
offload_device: Optional[Union[str, torch.device]] = None
|
| 177 |
+
offload_dtype: Optional[torch.dtype] = None
|
| 178 |
+
|
| 179 |
+
def download_if_necessary(self, local_model_path="./checkpoints", skip_download=False, use_usp=False):
|
| 180 |
+
if self.path is None:
|
| 181 |
+
# Check model_id and origin_file_pattern
|
| 182 |
+
if self.model_id is None:
|
| 183 |
+
raise ValueError(f"""No valid model files. Please use `ModelConfig(path="xxx")` or `ModelConfig(model_id="xxx/yyy", origin_file_pattern="zzz")`.""")
|
| 184 |
+
|
| 185 |
+
# Skip if not in rank 0
|
| 186 |
+
if use_usp:
|
| 187 |
+
import torch.distributed as dist
|
| 188 |
+
skip_download = dist.get_rank() != 0
|
| 189 |
+
|
| 190 |
+
# Check whether the origin path is a folder
|
| 191 |
+
if self.origin_file_pattern is None or self.origin_file_pattern == "":
|
| 192 |
+
self.origin_file_pattern = ""
|
| 193 |
+
allow_file_pattern = None
|
| 194 |
+
is_folder = True
|
| 195 |
+
elif isinstance(self.origin_file_pattern, str) and self.origin_file_pattern.endswith("/"):
|
| 196 |
+
allow_file_pattern = self.origin_file_pattern + "*"
|
| 197 |
+
is_folder = True
|
| 198 |
+
else:
|
| 199 |
+
allow_file_pattern = self.origin_file_pattern
|
| 200 |
+
is_folder = False
|
| 201 |
+
|
| 202 |
+
# Download
|
| 203 |
+
if not skip_download:
|
| 204 |
+
|
| 205 |
+
# downloaded_files = glob.glob(self.origin_file_pattern, root_dir=os.path.join(local_model_path, self.model_id))
|
| 206 |
+
#!========================================================================================================================
|
| 207 |
+
downloaded_files = glob.glob(os.path.join(local_model_path, self.model_id, self.origin_file_pattern))
|
| 208 |
+
#!========================================================================================================================
|
| 209 |
+
|
| 210 |
+
if downloaded_files is None or len(downloaded_files) == 0 or not os.path.exists(downloaded_files[0]) :
|
| 211 |
+
if 'Wan2' in self.model_id:
|
| 212 |
+
ms_snap_download(
|
| 213 |
+
self.model_id,
|
| 214 |
+
local_dir=os.path.join(local_model_path, self.model_id),
|
| 215 |
+
allow_file_pattern=allow_file_pattern,
|
| 216 |
+
ignore_file_pattern=downloaded_files,
|
| 217 |
+
)
|
| 218 |
+
else:
|
| 219 |
+
hf_snap_download(
|
| 220 |
+
repo_id=self.model_id,
|
| 221 |
+
local_dir=os.path.join(local_model_path, self.model_id),
|
| 222 |
+
allow_patterns=allow_file_pattern,
|
| 223 |
+
ignore_patterns=downloaded_files if downloaded_files else None
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# Let rank 1, 2, ... wait for rank 0
|
| 227 |
+
if use_usp:
|
| 228 |
+
import torch.distributed as dist
|
| 229 |
+
dist.barrier(device_ids=[dist.get_rank()])
|
| 230 |
+
|
| 231 |
+
# Return downloaded files
|
| 232 |
+
if is_folder:
|
| 233 |
+
self.path = os.path.join(local_model_path, self.model_id, self.origin_file_pattern)
|
| 234 |
+
else:
|
| 235 |
+
self.path = glob.glob(os.path.join(local_model_path, self.model_id, self.origin_file_pattern))
|
| 236 |
+
if isinstance(self.path, list) and len(self.path) == 1:
|
| 237 |
+
self.path = self.path[0]
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class WanVideoPipeline(BasePipeline):
|
| 243 |
+
|
| 244 |
+
def __init__(self, device="cuda", torch_dtype=torch.bfloat16, tokenizer_path=None):
|
| 245 |
+
super().__init__(
|
| 246 |
+
device=device, torch_dtype=torch_dtype,
|
| 247 |
+
height_division_factor=16, width_division_factor=16, time_division_factor=4, time_division_remainder=1
|
| 248 |
+
)
|
| 249 |
+
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
|
| 250 |
+
|
| 251 |
+
self.prompter = WanPrompter(tokenizer_path=tokenizer_path)
|
| 252 |
+
self.text_encoder: WanTextEncoder = None
|
| 253 |
+
self.image_encoder: WanImageEncoder = None
|
| 254 |
+
self.dit: WanModel = None
|
| 255 |
+
self.dit2: WanModel = None
|
| 256 |
+
self.vae: WanVideoVAE = None
|
| 257 |
+
self.motion_controller: WanMotionControllerModel = None
|
| 258 |
+
self.vace: VaceWanModel = None
|
| 259 |
+
self.in_iteration_models = ("dit", "motion_controller", "vace")
|
| 260 |
+
self.in_iteration_models_2 = ("dit2", "motion_controller", "vace")
|
| 261 |
+
self.unit_runner = PipelineUnitRunner()
|
| 262 |
+
self.units = [
|
| 263 |
+
WanVideoUnit_ShapeChecker(),
|
| 264 |
+
WanVideoUnit_NoiseInitializer(),
|
| 265 |
+
WanVideoUnit_InputVideoEmbedder(),
|
| 266 |
+
WanVideoUnit_PromptEmbedder(),
|
| 267 |
+
# WanVideoUnit_ImageEmbedderVAE(),
|
| 268 |
+
# WanVideoUnit_ImageEmbedderCLIP(),
|
| 269 |
+
# WanVideoUnit_ImageEmbedderFused(),
|
| 270 |
+
# WanVideoUnit_FunControl(),
|
| 271 |
+
WanVideoUnit_FunControl_Mask(),
|
| 272 |
+
# WanVideoUnit_FunReference(),
|
| 273 |
+
# WanVideoUnit_FunCameraControl(),
|
| 274 |
+
# WanVideoUnit_SpeedControl(),
|
| 275 |
+
# WanVideoUnit_VACE(),
|
| 276 |
+
# WanVideoUnit_UnifiedSequenceParallel(),
|
| 277 |
+
# WanVideoUnit_TeaCache(),
|
| 278 |
+
# WanVideoUnit_CfgMerger(),
|
| 279 |
+
]
|
| 280 |
+
self.model_fn = model_fn_wan_video
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def load_lora(self, module, path, alpha=1):
|
| 284 |
+
loader = GeneralLoRALoader(torch_dtype=self.torch_dtype, device=self.device)
|
| 285 |
+
lora = load_state_dict(path, torch_dtype=self.torch_dtype, device=self.device)
|
| 286 |
+
loader.load(module, lora, alpha=alpha)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def training_loss(self, **inputs):
|
| 290 |
+
max_timestep_boundary = int(inputs.get("max_timestep_boundary", 1) * self.scheduler.num_train_timesteps)
|
| 291 |
+
min_timestep_boundary = int(inputs.get("min_timestep_boundary", 0) * self.scheduler.num_train_timesteps)
|
| 292 |
+
timestep_id = torch.randint(min_timestep_boundary, max_timestep_boundary, (1,))
|
| 293 |
+
timestep = self.scheduler.timesteps[timestep_id].to(dtype=self.torch_dtype, device=self.device)
|
| 294 |
+
#* 单步去噪的时候,每次返回的都是纯噪声
|
| 295 |
+
#? 指的是input_latents 吧?
|
| 296 |
+
#* 本来就有inputs["latents"], 只不过是完全等于inputs["noise"], 这里做了更新然后覆盖
|
| 297 |
+
inputs["latents"] = self.scheduler.add_noise(inputs["input_latents"], inputs["noise"], timestep)
|
| 298 |
+
training_target = self.scheduler.training_target(inputs["input_latents"], inputs["noise"], timestep)
|
| 299 |
+
|
| 300 |
+
noise_pred = self.model_fn(**inputs, timestep=timestep)#* timestep === 1
|
| 301 |
+
|
| 302 |
+
loss = torch.nn.functional.mse_loss(noise_pred.float(), training_target.float())
|
| 303 |
+
loss = loss * self.scheduler.training_weight(timestep)
|
| 304 |
+
return loss
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def enable_vram_management(self, num_persistent_param_in_dit=None, vram_limit=None, vram_buffer=0.5):
|
| 308 |
+
self.vram_management_enabled = True
|
| 309 |
+
if num_persistent_param_in_dit is not None:
|
| 310 |
+
vram_limit = None
|
| 311 |
+
else:
|
| 312 |
+
if vram_limit is None:
|
| 313 |
+
vram_limit = self.get_vram()
|
| 314 |
+
vram_limit = vram_limit - vram_buffer
|
| 315 |
+
if self.text_encoder is not None:
|
| 316 |
+
dtype = next(iter(self.text_encoder.parameters())).dtype
|
| 317 |
+
enable_vram_management(
|
| 318 |
+
self.text_encoder,
|
| 319 |
+
module_map = {
|
| 320 |
+
torch.nn.Linear: AutoWrappedLinear,
|
| 321 |
+
torch.nn.Embedding: AutoWrappedModule,
|
| 322 |
+
T5RelativeEmbedding: AutoWrappedModule,
|
| 323 |
+
T5LayerNorm: AutoWrappedModule,
|
| 324 |
+
},
|
| 325 |
+
module_config = dict(
|
| 326 |
+
offload_dtype=dtype,
|
| 327 |
+
offload_device="cpu",
|
| 328 |
+
onload_dtype=dtype,
|
| 329 |
+
onload_device="cpu",
|
| 330 |
+
computation_dtype=self.torch_dtype,
|
| 331 |
+
computation_device=self.device,
|
| 332 |
+
),
|
| 333 |
+
vram_limit=vram_limit,
|
| 334 |
+
)
|
| 335 |
+
if self.dit is not None:
|
| 336 |
+
dtype = next(iter(self.dit.parameters())).dtype
|
| 337 |
+
device = "cpu" if vram_limit is not None else self.device
|
| 338 |
+
enable_vram_management(
|
| 339 |
+
self.dit,
|
| 340 |
+
module_map = {
|
| 341 |
+
torch.nn.Linear: AutoWrappedLinear,
|
| 342 |
+
torch.nn.Conv3d: AutoWrappedModule,
|
| 343 |
+
torch.nn.LayerNorm: WanAutoCastLayerNorm,
|
| 344 |
+
RMSNorm: AutoWrappedModule,
|
| 345 |
+
torch.nn.Conv2d: AutoWrappedModule,
|
| 346 |
+
},
|
| 347 |
+
module_config = dict(
|
| 348 |
+
offload_dtype=dtype,
|
| 349 |
+
offload_device="cpu",
|
| 350 |
+
onload_dtype=dtype,
|
| 351 |
+
onload_device=device,
|
| 352 |
+
computation_dtype=self.torch_dtype,
|
| 353 |
+
computation_device=self.device,
|
| 354 |
+
),
|
| 355 |
+
max_num_param=num_persistent_param_in_dit,
|
| 356 |
+
overflow_module_config = dict(
|
| 357 |
+
offload_dtype=dtype,
|
| 358 |
+
offload_device="cpu",
|
| 359 |
+
onload_dtype=dtype,
|
| 360 |
+
onload_device="cpu",
|
| 361 |
+
computation_dtype=self.torch_dtype,
|
| 362 |
+
computation_device=self.device,
|
| 363 |
+
),
|
| 364 |
+
vram_limit=vram_limit,
|
| 365 |
+
)
|
| 366 |
+
if self.dit2 is not None:
|
| 367 |
+
dtype = next(iter(self.dit2.parameters())).dtype
|
| 368 |
+
device = "cpu" if vram_limit is not None else self.device
|
| 369 |
+
enable_vram_management(
|
| 370 |
+
self.dit2,
|
| 371 |
+
module_map = {
|
| 372 |
+
torch.nn.Linear: AutoWrappedLinear,
|
| 373 |
+
torch.nn.Conv3d: AutoWrappedModule,
|
| 374 |
+
torch.nn.LayerNorm: WanAutoCastLayerNorm,
|
| 375 |
+
RMSNorm: AutoWrappedModule,
|
| 376 |
+
torch.nn.Conv2d: AutoWrappedModule,
|
| 377 |
+
},
|
| 378 |
+
module_config = dict(
|
| 379 |
+
offload_dtype=dtype,
|
| 380 |
+
offload_device="cpu",
|
| 381 |
+
onload_dtype=dtype,
|
| 382 |
+
onload_device=device,
|
| 383 |
+
computation_dtype=self.torch_dtype,
|
| 384 |
+
computation_device=self.device,
|
| 385 |
+
),
|
| 386 |
+
max_num_param=num_persistent_param_in_dit,
|
| 387 |
+
overflow_module_config = dict(
|
| 388 |
+
offload_dtype=dtype,
|
| 389 |
+
offload_device="cpu",
|
| 390 |
+
onload_dtype=dtype,
|
| 391 |
+
onload_device="cpu",
|
| 392 |
+
computation_dtype=self.torch_dtype,
|
| 393 |
+
computation_device=self.device,
|
| 394 |
+
),
|
| 395 |
+
vram_limit=vram_limit,
|
| 396 |
+
)
|
| 397 |
+
if self.vae is not None:
|
| 398 |
+
dtype = next(iter(self.vae.parameters())).dtype
|
| 399 |
+
enable_vram_management(
|
| 400 |
+
self.vae,
|
| 401 |
+
module_map = {
|
| 402 |
+
torch.nn.Linear: AutoWrappedLinear,
|
| 403 |
+
torch.nn.Conv2d: AutoWrappedModule,
|
| 404 |
+
RMS_norm: AutoWrappedModule,
|
| 405 |
+
CausalConv3d: AutoWrappedModule,
|
| 406 |
+
Upsample: AutoWrappedModule,
|
| 407 |
+
torch.nn.SiLU: AutoWrappedModule,
|
| 408 |
+
torch.nn.Dropout: AutoWrappedModule,
|
| 409 |
+
},
|
| 410 |
+
module_config = dict(
|
| 411 |
+
offload_dtype=dtype,
|
| 412 |
+
offload_device="cpu",
|
| 413 |
+
onload_dtype=dtype,
|
| 414 |
+
onload_device=self.device,
|
| 415 |
+
computation_dtype=self.torch_dtype,
|
| 416 |
+
computation_device=self.device,
|
| 417 |
+
),
|
| 418 |
+
)
|
| 419 |
+
if self.image_encoder is not None:
|
| 420 |
+
dtype = next(iter(self.image_encoder.parameters())).dtype
|
| 421 |
+
enable_vram_management(
|
| 422 |
+
self.image_encoder,
|
| 423 |
+
module_map = {
|
| 424 |
+
torch.nn.Linear: AutoWrappedLinear,
|
| 425 |
+
torch.nn.Conv2d: AutoWrappedModule,
|
| 426 |
+
torch.nn.LayerNorm: AutoWrappedModule,
|
| 427 |
+
},
|
| 428 |
+
module_config = dict(
|
| 429 |
+
offload_dtype=dtype,
|
| 430 |
+
offload_device="cpu",
|
| 431 |
+
onload_dtype=dtype,
|
| 432 |
+
onload_device="cpu",
|
| 433 |
+
computation_dtype=dtype,
|
| 434 |
+
computation_device=self.device,
|
| 435 |
+
),
|
| 436 |
+
)
|
| 437 |
+
if self.motion_controller is not None:
|
| 438 |
+
dtype = next(iter(self.motion_controller.parameters())).dtype
|
| 439 |
+
enable_vram_management(
|
| 440 |
+
self.motion_controller,
|
| 441 |
+
module_map = {
|
| 442 |
+
torch.nn.Linear: AutoWrappedLinear,
|
| 443 |
+
},
|
| 444 |
+
module_config = dict(
|
| 445 |
+
offload_dtype=dtype,
|
| 446 |
+
offload_device="cpu",
|
| 447 |
+
onload_dtype=dtype,
|
| 448 |
+
onload_device="cpu",
|
| 449 |
+
computation_dtype=dtype,
|
| 450 |
+
computation_device=self.device,
|
| 451 |
+
),
|
| 452 |
+
)
|
| 453 |
+
if self.vace is not None:
|
| 454 |
+
device = "cpu" if vram_limit is not None else self.device
|
| 455 |
+
enable_vram_management(
|
| 456 |
+
self.vace,
|
| 457 |
+
module_map = {
|
| 458 |
+
torch.nn.Linear: AutoWrappedLinear,
|
| 459 |
+
torch.nn.Conv3d: AutoWrappedModule,
|
| 460 |
+
torch.nn.LayerNorm: AutoWrappedModule,
|
| 461 |
+
RMSNorm: AutoWrappedModule,
|
| 462 |
+
},
|
| 463 |
+
module_config = dict(
|
| 464 |
+
offload_dtype=dtype,
|
| 465 |
+
offload_device="cpu",
|
| 466 |
+
onload_dtype=dtype,
|
| 467 |
+
onload_device=device,
|
| 468 |
+
computation_dtype=self.torch_dtype,
|
| 469 |
+
computation_device=self.device,
|
| 470 |
+
),
|
| 471 |
+
vram_limit=vram_limit,
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
def initialize_usp(self):
|
| 476 |
+
import torch.distributed as dist
|
| 477 |
+
from xfuser.core.distributed import initialize_model_parallel, init_distributed_environment
|
| 478 |
+
dist.init_process_group(backend="nccl", init_method="env://")
|
| 479 |
+
init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size())
|
| 480 |
+
initialize_model_parallel(
|
| 481 |
+
sequence_parallel_degree=dist.get_world_size(),
|
| 482 |
+
ring_degree=1,
|
| 483 |
+
ulysses_degree=dist.get_world_size(),
|
| 484 |
+
)
|
| 485 |
+
torch.cuda.set_device(dist.get_rank())
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
def enable_usp(self):
|
| 489 |
+
from xfuser.core.distributed import get_sequence_parallel_world_size
|
| 490 |
+
from ..distributed.xdit_context_parallel import usp_attn_forward, usp_dit_forward
|
| 491 |
+
|
| 492 |
+
for block in self.dit.blocks:
|
| 493 |
+
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn)
|
| 494 |
+
self.dit.forward = types.MethodType(usp_dit_forward, self.dit)
|
| 495 |
+
if self.dit2 is not None:
|
| 496 |
+
for block in self.dit2.blocks:
|
| 497 |
+
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn)
|
| 498 |
+
self.dit2.forward = types.MethodType(usp_dit_forward, self.dit2)
|
| 499 |
+
self.sp_size = get_sequence_parallel_world_size()
|
| 500 |
+
self.use_unified_sequence_parallel = True
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
@staticmethod
|
| 504 |
+
def from_pretrained(
|
| 505 |
+
torch_dtype: torch.dtype = torch.bfloat16,
|
| 506 |
+
device: Union[str, torch.device] = "cuda",
|
| 507 |
+
model_configs: list[ModelConfig] = [],
|
| 508 |
+
tokenizer_config: ModelConfig = ModelConfig(model_id="Wan-AI/Wan2.1-T2V-1.3B", origin_file_pattern="google/*"),
|
| 509 |
+
local_model_path: str = "./checkpoints",
|
| 510 |
+
skip_download: bool = False,
|
| 511 |
+
redirect_common_files: bool = True,
|
| 512 |
+
use_usp=False,
|
| 513 |
+
training_strategy='origin',
|
| 514 |
+
):
|
| 515 |
+
|
| 516 |
+
# Redirect model path
|
| 517 |
+
|
| 518 |
+
if redirect_common_files:
|
| 519 |
+
|
| 520 |
+
redirect_dict = {
|
| 521 |
+
"models_t5_umt5-xxl-enc-bf16.pth": "Wan-AI/Wan2.1-T2V-1.3B",
|
| 522 |
+
"Wan2.1_VAE.pth": "Wan-AI/Wan2.1-T2V-1.3B",
|
| 523 |
+
"models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth": "Wan-AI/Wan2.1-I2V-14B-480P",
|
| 524 |
+
}
|
| 525 |
+
for model_config in model_configs:
|
| 526 |
+
if model_config.origin_file_pattern is None or model_config.model_id is None:
|
| 527 |
+
continue
|
| 528 |
+
if model_config.origin_file_pattern in redirect_dict and model_config.model_id != redirect_dict[model_config.origin_file_pattern]:
|
| 529 |
+
print(f"To avoid repeatedly downloading model files, ({model_config.model_id}, {model_config.origin_file_pattern}) is redirected to ({redirect_dict[model_config.origin_file_pattern]}, {model_config.origin_file_pattern}). You can use `redirect_common_files=False` to disable file redirection.")
|
| 530 |
+
model_config.model_id = redirect_dict[model_config.origin_file_pattern]
|
| 531 |
+
|
| 532 |
+
# Initialize pipeline
|
| 533 |
+
|
| 534 |
+
if training_strategy == 'origin':
|
| 535 |
+
pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype)
|
| 536 |
+
logger.warning("Using origin generative model training")
|
| 537 |
+
else:
|
| 538 |
+
raise ValueError(f"Invalid training strategy: {training_strategy}")
|
| 539 |
+
|
| 540 |
+
if use_usp: pipe.initialize_usp()
|
| 541 |
+
|
| 542 |
+
# Download and load models
|
| 543 |
+
model_manager = ModelManager()
|
| 544 |
+
|
| 545 |
+
for model_config in model_configs:
|
| 546 |
+
model_config.download_if_necessary(use_usp=use_usp)
|
| 547 |
+
model_manager.load_model(
|
| 548 |
+
model_config.path,
|
| 549 |
+
device=model_config.offload_device or device,
|
| 550 |
+
torch_dtype=model_config.offload_dtype or torch_dtype
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
# Load models
|
| 554 |
+
pipe.text_encoder = model_manager.fetch_model("wan_video_text_encoder")
|
| 555 |
+
dit = model_manager.fetch_model("wan_video_dit", index=2)
|
| 556 |
+
if isinstance(dit, list):
|
| 557 |
+
pipe.dit, pipe.dit2 = dit
|
| 558 |
+
else:
|
| 559 |
+
pipe.dit = dit
|
| 560 |
+
pipe.vae = model_manager.fetch_model("wan_video_vae")
|
| 561 |
+
pipe.image_encoder = model_manager.fetch_model("wan_video_image_encoder")
|
| 562 |
+
pipe.motion_controller = model_manager.fetch_model("wan_video_motion_controller")
|
| 563 |
+
pipe.vace = model_manager.fetch_model("wan_video_vace")
|
| 564 |
+
|
| 565 |
+
# Size division factor
|
| 566 |
+
if pipe.vae is not None:
|
| 567 |
+
pipe.height_division_factor = pipe.vae.upsampling_factor * 2
|
| 568 |
+
pipe.width_division_factor = pipe.vae.upsampling_factor * 2
|
| 569 |
+
|
| 570 |
+
# Initialize tokenizer
|
| 571 |
+
tokenizer_config.download_if_necessary(use_usp=use_usp)
|
| 572 |
+
pipe.prompter.fetch_models(pipe.text_encoder)
|
| 573 |
+
pipe.prompter.fetch_tokenizer(tokenizer_config.path)
|
| 574 |
+
|
| 575 |
+
# Unified Sequence Parallel
|
| 576 |
+
if use_usp: pipe.enable_usp()
|
| 577 |
+
return pipe
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
@torch.no_grad()
|
| 583 |
+
def __call__(
|
| 584 |
+
self,
|
| 585 |
+
# Prompt
|
| 586 |
+
prompt: str,
|
| 587 |
+
negative_prompt: Optional[str] = "",
|
| 588 |
+
# Image-to-video
|
| 589 |
+
input_image: Optional[Image.Image] = None,
|
| 590 |
+
# First-last-frame-to-video
|
| 591 |
+
end_image: Optional[Image.Image] = None,
|
| 592 |
+
# Video-to-video
|
| 593 |
+
input_video: Optional[list[Image.Image]] = None,
|
| 594 |
+
denoising_strength: Optional[float] = 1.0,
|
| 595 |
+
# ControlNet
|
| 596 |
+
control_video: Optional[list[Image.Image]] = None,
|
| 597 |
+
reference_image: Optional[Image.Image] = None,
|
| 598 |
+
# Camera control
|
| 599 |
+
camera_control_direction: Optional[Literal["Left", "Right", "Up", "Down", "LeftUp", "LeftDown", "RightUp", "RightDown"]] = None,
|
| 600 |
+
camera_control_speed: Optional[float] = 1/54,
|
| 601 |
+
camera_control_origin: Optional[tuple] = (0, 0.532139961, 0.946026558, 0.5, 0.5, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0),
|
| 602 |
+
# VACE
|
| 603 |
+
vace_video: Optional[list[Image.Image]] = None,
|
| 604 |
+
vace_video_mask: Optional[Image.Image] = None,
|
| 605 |
+
vace_reference_image: Optional[Image.Image] = None,
|
| 606 |
+
vace_scale: Optional[float] = 1.0,
|
| 607 |
+
# Randomness
|
| 608 |
+
seed: Optional[int] = None,
|
| 609 |
+
rand_device: Optional[str] = "cpu",
|
| 610 |
+
# Shape
|
| 611 |
+
height: Optional[int] = 480,
|
| 612 |
+
width: Optional[int] = 832,
|
| 613 |
+
num_frames=81,
|
| 614 |
+
# Classifier-free guidance
|
| 615 |
+
cfg_scale: Optional[float] = 5.0,
|
| 616 |
+
cfg_merge: Optional[bool] = False,
|
| 617 |
+
# Boundary
|
| 618 |
+
switch_DiT_boundary: Optional[float] = 0.875,
|
| 619 |
+
# Scheduler
|
| 620 |
+
num_inference_steps: Optional[int] = 50,
|
| 621 |
+
sigma_shift: Optional[float] = 5.0,
|
| 622 |
+
# Speed control
|
| 623 |
+
motion_bucket_id: Optional[int] = None,
|
| 624 |
+
# VAE tiling
|
| 625 |
+
tiled: Optional[bool] = True,
|
| 626 |
+
tile_size: Optional[tuple[int, int]] = (30, 52),
|
| 627 |
+
tile_stride: Optional[tuple[int, int]] = (15, 26),
|
| 628 |
+
# Sliding window
|
| 629 |
+
sliding_window_size: Optional[int] = None,
|
| 630 |
+
sliding_window_stride: Optional[int] = None,
|
| 631 |
+
# Teacache
|
| 632 |
+
tea_cache_l1_thresh: Optional[float] = None,
|
| 633 |
+
tea_cache_model_id: Optional[str] = "",
|
| 634 |
+
# progress_bar
|
| 635 |
+
progress_bar_cmd=tqdm,
|
| 636 |
+
mask: Optional[Image.Image] = None,
|
| 637 |
+
):
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
# Scheduler
|
| 642 |
+
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift)
|
| 643 |
+
|
| 644 |
+
# Inputs
|
| 645 |
+
inputs_posi = {
|
| 646 |
+
"prompt": prompt,
|
| 647 |
+
"tea_cache_l1_thresh": tea_cache_l1_thresh, "tea_cache_model_id": tea_cache_model_id, "num_inference_steps": num_inference_steps,
|
| 648 |
+
}
|
| 649 |
+
inputs_nega = {
|
| 650 |
+
"negative_prompt": negative_prompt,
|
| 651 |
+
"tea_cache_l1_thresh": tea_cache_l1_thresh, "tea_cache_model_id": tea_cache_model_id, "num_inference_steps": num_inference_steps,
|
| 652 |
+
}
|
| 653 |
+
inputs_shared = {
|
| 654 |
+
"input_image": input_image,
|
| 655 |
+
"end_image": end_image,
|
| 656 |
+
"input_video": input_video, "denoising_strength": denoising_strength,
|
| 657 |
+
"control_video": control_video, "reference_image": reference_image,
|
| 658 |
+
"camera_control_direction": camera_control_direction, "camera_control_speed": camera_control_speed, "camera_control_origin": camera_control_origin,
|
| 659 |
+
"vace_video": vace_video, "vace_video_mask": vace_video_mask, "vace_reference_image": vace_reference_image, "vace_scale": vace_scale,
|
| 660 |
+
"seed": seed, "rand_device": rand_device,
|
| 661 |
+
"height": height, "width": width, "num_frames": num_frames,
|
| 662 |
+
"cfg_scale": cfg_scale, "cfg_merge": cfg_merge,
|
| 663 |
+
"sigma_shift": sigma_shift,
|
| 664 |
+
"motion_bucket_id": motion_bucket_id,
|
| 665 |
+
"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride,
|
| 666 |
+
"sliding_window_size": sliding_window_size, "sliding_window_stride": sliding_window_stride,
|
| 667 |
+
"mask":mask,
|
| 668 |
+
}
|
| 669 |
+
|
| 670 |
+
for unit in self.units:
|
| 671 |
+
inputs_shared, inputs_posi, inputs_nega = self.unit_runner(unit, self, inputs_shared, inputs_posi, inputs_nega)
|
| 672 |
+
|
| 673 |
+
# Denoise
|
| 674 |
+
self.load_models_to_device(self.in_iteration_models)
|
| 675 |
+
models = {name: getattr(self, name) for name in self.in_iteration_models}
|
| 676 |
+
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
|
| 677 |
+
# Switch DiT if necessary
|
| 678 |
+
if timestep.item() < switch_DiT_boundary * self.scheduler.num_train_timesteps and self.dit2 is not None and not models["dit"] is self.dit2:
|
| 679 |
+
self.load_models_to_device(self.in_iteration_models_2)
|
| 680 |
+
models["dit"] = self.dit2
|
| 681 |
+
|
| 682 |
+
# Timestep
|
| 683 |
+
timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device)
|
| 684 |
+
|
| 685 |
+
# Inference
|
| 686 |
+
noise_pred_posi = self.model_fn(**models, **inputs_shared, **inputs_posi, timestep=timestep)
|
| 687 |
+
if cfg_scale != 1.0:
|
| 688 |
+
if cfg_merge:
|
| 689 |
+
noise_pred_posi, noise_pred_nega = noise_pred_posi.chunk(2, dim=0)
|
| 690 |
+
else:
|
| 691 |
+
noise_pred_nega = self.model_fn(**models, **inputs_shared, **inputs_nega, timestep=timestep)
|
| 692 |
+
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
|
| 693 |
+
else:
|
| 694 |
+
noise_pred = noise_pred_posi
|
| 695 |
+
|
| 696 |
+
# Scheduler
|
| 697 |
+
inputs_shared["latents"] = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], inputs_shared["latents"])
|
| 698 |
+
if "first_frame_latents" in inputs_shared:
|
| 699 |
+
inputs_shared["latents"][:, :, 0:1] = inputs_shared["first_frame_latents"]
|
| 700 |
+
|
| 701 |
+
# VACE (TODO: remove it)
|
| 702 |
+
if vace_reference_image is not None:
|
| 703 |
+
inputs_shared["latents"] = inputs_shared["latents"][:, :, 1:]
|
| 704 |
+
|
| 705 |
+
# Decode
|
| 706 |
+
self.load_models_to_device(['vae'])
|
| 707 |
+
vae_outs = self.vae.decode(inputs_shared["latents"], device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
|
| 708 |
+
# from einops import reduce
|
| 709 |
+
# video = reduce(vae_outs, 'b c t h w -> b c t', 'mean')
|
| 710 |
+
|
| 711 |
+
video = self.vae_output_to_video(vae_outs)
|
| 712 |
+
self.load_models_to_device([])
|
| 713 |
+
|
| 714 |
+
return video,vae_outs
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
class WanVideoUnit_ShapeChecker(PipelineUnit):
|
| 725 |
+
def __init__(self):
|
| 726 |
+
super().__init__(input_params=("height", "width", "num_frames"))
|
| 727 |
+
|
| 728 |
+
def process(self, pipe: WanVideoPipeline, height, width, num_frames):
|
| 729 |
+
height, width, num_frames = pipe.check_resize_height_width(height, width, num_frames)
|
| 730 |
+
return {"height": height, "width": width, "num_frames": num_frames}
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
class WanVideoUnit_NoiseInitializer(PipelineUnit):
|
| 735 |
+
def __init__(self):
|
| 736 |
+
super().__init__(input_params=("height", "width", "num_frames", "seed", "rand_device", "vace_reference_image"))
|
| 737 |
+
|
| 738 |
+
def process(self, pipe: WanVideoPipeline, height, width, num_frames, seed, rand_device, vace_reference_image):
|
| 739 |
+
length = (num_frames - 1) // 4 + 1
|
| 740 |
+
if vace_reference_image is not None:
|
| 741 |
+
length += 1
|
| 742 |
+
shape = (1, pipe.vae.model.z_dim, length, height // pipe.vae.upsampling_factor, width // pipe.vae.upsampling_factor)
|
| 743 |
+
noise = pipe.generate_noise(shape, seed=seed, rand_device=rand_device)
|
| 744 |
+
if vace_reference_image is not None:
|
| 745 |
+
noise = torch.concat((noise[:, :, -1:], noise[:, :, :-1]), dim=2)
|
| 746 |
+
return {"noise": noise}
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
class WanVideoUnit_InputVideoEmbedder(PipelineUnit):
|
| 751 |
+
def __init__(self):
|
| 752 |
+
super().__init__(
|
| 753 |
+
input_params=("input_video", "noise", "tiled", "tile_size", "tile_stride", "vace_reference_image"),
|
| 754 |
+
onload_model_names=("vae",)
|
| 755 |
+
)
|
| 756 |
+
|
| 757 |
+
def process(self, pipe: WanVideoPipeline, input_video, noise, tiled, tile_size, tile_stride, vace_reference_image):
|
| 758 |
+
if input_video is None:
|
| 759 |
+
return {"latents": noise}
|
| 760 |
+
|
| 761 |
+
pipe.load_models_to_device(["vae"])#* input_video is the GT
|
| 762 |
+
input_video = pipe.preprocess_video(input_video) #* [B,3,F,W,H]
|
| 763 |
+
#* [B,3,(F/4) + 1 ,W/8,H/8]
|
| 764 |
+
input_latents = pipe.vae.encode(input_video, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 765 |
+
if vace_reference_image is not None:
|
| 766 |
+
vace_reference_image = pipe.preprocess_video([vace_reference_image])
|
| 767 |
+
vace_reference_latents = pipe.vae.encode(vace_reference_image, device=pipe.device).to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 768 |
+
input_latents = torch.concat([vace_reference_latents, input_latents], dim=2)
|
| 769 |
+
#? during training, the input_latents have nothing to do with the noise,
|
| 770 |
+
#? but during inference, the input_latents is used to generate the noise
|
| 771 |
+
if pipe.scheduler.training:
|
| 772 |
+
return {"latents": noise, "input_latents": input_latents}
|
| 773 |
+
else:
|
| 774 |
+
latents = pipe.scheduler.add_noise(input_latents, noise, timestep=pipe.scheduler.timesteps[0])
|
| 775 |
+
return {"latents": latents}
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
|
| 779 |
+
class WanVideoUnit_PromptEmbedder(PipelineUnit):
|
| 780 |
+
def __init__(self):
|
| 781 |
+
super().__init__(
|
| 782 |
+
seperate_cfg=True,
|
| 783 |
+
input_params_posi={"prompt": "prompt", "positive": "positive"},
|
| 784 |
+
input_params_nega={"prompt": "negative_prompt", "positive": "positive"},
|
| 785 |
+
onload_model_names=("text_encoder",)
|
| 786 |
+
)
|
| 787 |
+
|
| 788 |
+
def process(self, pipe: WanVideoPipeline, prompt, positive) -> dict:
|
| 789 |
+
pipe.load_models_to_device(self.onload_model_names)
|
| 790 |
+
prompt_emb = pipe.prompter.encode_prompt(prompt, positive=positive, device=pipe.device)
|
| 791 |
+
return {"context": prompt_emb}
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
class WanVideoUnit_ImageEmbedder(PipelineUnit):
|
| 796 |
+
"""
|
| 797 |
+
Deprecated
|
| 798 |
+
"""
|
| 799 |
+
def __init__(self):
|
| 800 |
+
super().__init__(
|
| 801 |
+
input_params=("input_image", "end_image", "num_frames", "height", "width", "tiled", "tile_size", "tile_stride"),
|
| 802 |
+
onload_model_names=("image_encoder", "vae")
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
def process(self, pipe: WanVideoPipeline, input_image, end_image, num_frames, height, width, tiled, tile_size, tile_stride):
|
| 806 |
+
if input_image is None or pipe.image_encoder is None:
|
| 807 |
+
return {}
|
| 808 |
+
pipe.load_models_to_device(self.onload_model_names)
|
| 809 |
+
image = pipe.preprocess_image(input_image.resize((width, height))).to(pipe.device)
|
| 810 |
+
clip_context = pipe.image_encoder.encode_image([image])
|
| 811 |
+
msk = torch.ones(1, num_frames, height//8, width//8, device=pipe.device) #* indicate which image is reference image
|
| 812 |
+
msk[:, 1:] = 0
|
| 813 |
+
if end_image is not None:
|
| 814 |
+
end_image = pipe.preprocess_image(end_image.resize((width, height))).to(pipe.device)
|
| 815 |
+
vae_input = torch.concat([image.transpose(0,1), torch.zeros(3, num_frames-2, height, width).to(image.device), end_image.transpose(0,1)],dim=1)
|
| 816 |
+
if pipe.dit.has_image_pos_emb:
|
| 817 |
+
clip_context = torch.concat([clip_context, pipe.image_encoder.encode_image([end_image])], dim=1)
|
| 818 |
+
msk[:, -1:] = 1
|
| 819 |
+
else:
|
| 820 |
+
vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1)
|
| 821 |
+
|
| 822 |
+
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
|
| 823 |
+
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8)
|
| 824 |
+
msk = msk.transpose(1, 2)[0]
|
| 825 |
+
|
| 826 |
+
y = pipe.vae.encode([vae_input.to(dtype=pipe.torch_dtype, device=pipe.device)], device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
|
| 827 |
+
y = y.to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 828 |
+
y = torch.concat([msk, y])
|
| 829 |
+
y = y.unsqueeze(0)
|
| 830 |
+
clip_context = clip_context.to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 831 |
+
y = y.to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 832 |
+
return {"clip_feature": clip_context, "y": y}
|
| 833 |
+
|
| 834 |
+
|
| 835 |
+
|
| 836 |
+
class WanVideoUnit_ImageEmbedderCLIP(PipelineUnit):
|
| 837 |
+
def __init__(self):
|
| 838 |
+
super().__init__(
|
| 839 |
+
input_params=("input_image", "end_image", "height", "width"),
|
| 840 |
+
onload_model_names=("image_encoder",)
|
| 841 |
+
)
|
| 842 |
+
|
| 843 |
+
def process(self, pipe: WanVideoPipeline, input_image, end_image, height, width):
|
| 844 |
+
if input_image is None or pipe.image_encoder is None or not pipe.dit.require_clip_embedding:
|
| 845 |
+
return {}
|
| 846 |
+
pipe.load_models_to_device(self.onload_model_names)
|
| 847 |
+
image = pipe.preprocess_image(input_image.resize((width, height))).to(pipe.device)
|
| 848 |
+
clip_context = pipe.image_encoder.encode_image([image])
|
| 849 |
+
if end_image is not None:
|
| 850 |
+
end_image = pipe.preprocess_image(end_image.resize((width, height))).to(pipe.device)
|
| 851 |
+
if pipe.dit.has_image_pos_emb:
|
| 852 |
+
clip_context = torch.concat([clip_context, pipe.image_encoder.encode_image([end_image])], dim=1)
|
| 853 |
+
clip_context = clip_context.to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 854 |
+
return {"clip_feature": clip_context}
|
| 855 |
+
|
| 856 |
+
|
| 857 |
+
|
| 858 |
+
class WanVideoUnit_ImageEmbedderVAE(PipelineUnit):
|
| 859 |
+
def __init__(self):
|
| 860 |
+
super().__init__(
|
| 861 |
+
input_params=("input_image", "end_image", "num_frames", "height", "width", "tiled", "tile_size", "tile_stride"),
|
| 862 |
+
onload_model_names=("vae",)
|
| 863 |
+
)
|
| 864 |
+
|
| 865 |
+
def process(self, pipe: WanVideoPipeline, input_image, end_image, num_frames, height, width, tiled, tile_size, tile_stride):
|
| 866 |
+
if input_image is None or not pipe.dit.require_vae_embedding:
|
| 867 |
+
return {}
|
| 868 |
+
pipe.load_models_to_device(self.onload_model_names)
|
| 869 |
+
image = pipe.preprocess_image(input_image.resize((width, height))).to(pipe.device)
|
| 870 |
+
msk = torch.ones(1, num_frames, height//8, width//8, device=pipe.device)
|
| 871 |
+
msk[:, 1:] = 0
|
| 872 |
+
if end_image is not None:
|
| 873 |
+
end_image = pipe.preprocess_image(end_image.resize((width, height))).to(pipe.device)
|
| 874 |
+
vae_input = torch.concat([image.transpose(0,1), torch.zeros(3, num_frames-2, height, width).to(image.device), end_image.transpose(0,1)],dim=1)
|
| 875 |
+
msk[:, -1:] = 1
|
| 876 |
+
else:
|
| 877 |
+
vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1)
|
| 878 |
+
|
| 879 |
+
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
|
| 880 |
+
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8)
|
| 881 |
+
msk = msk.transpose(1, 2)[0]
|
| 882 |
+
|
| 883 |
+
y = pipe.vae.encode([vae_input.to(dtype=pipe.torch_dtype, device=pipe.device)], device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
|
| 884 |
+
y = y.to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 885 |
+
y = torch.concat([msk, y])
|
| 886 |
+
y = y.unsqueeze(0)
|
| 887 |
+
y = y.to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 888 |
+
return {"y": y}
|
| 889 |
+
|
| 890 |
+
|
| 891 |
+
|
| 892 |
+
class WanVideoUnit_ImageEmbedderFused(PipelineUnit):
|
| 893 |
+
"""
|
| 894 |
+
Encode input image to latents using VAE. This unit is for Wan-AI/Wan2.2-TI2V-5B.
|
| 895 |
+
"""
|
| 896 |
+
def __init__(self):
|
| 897 |
+
super().__init__(
|
| 898 |
+
input_params=("input_image", "latents", "height", "width", "tiled", "tile_size", "tile_stride"),
|
| 899 |
+
onload_model_names=("vae",)
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
def process(self, pipe: WanVideoPipeline, input_image, latents, height, width, tiled, tile_size, tile_stride):
|
| 903 |
+
if input_image is None or not pipe.dit.fuse_vae_embedding_in_latents:
|
| 904 |
+
return {}
|
| 905 |
+
pipe.load_models_to_device(self.onload_model_names)
|
| 906 |
+
image = pipe.preprocess_image(input_image.resize((width, height))).transpose(0, 1)
|
| 907 |
+
z = pipe.vae.encode([image], device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
|
| 908 |
+
latents[:, :, 0: 1] = z
|
| 909 |
+
return {"latents": latents, "fuse_vae_embedding_in_latents": True, "first_frame_latents": z}
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
|
| 913 |
+
class WanVideoUnit_FunControl(PipelineUnit):
|
| 914 |
+
def __init__(self):
|
| 915 |
+
super().__init__(
|
| 916 |
+
input_params=("control_video", "num_frames", "height", "width", "tiled", "tile_size", "tile_stride", "clip_feature", "y"),
|
| 917 |
+
onload_model_names=("vae",)
|
| 918 |
+
)
|
| 919 |
+
|
| 920 |
+
def process(self, pipe: WanVideoPipeline, control_video, num_frames, height, width, tiled, tile_size, tile_stride, clip_feature, y):
|
| 921 |
+
|
| 922 |
+
if control_video is None:
|
| 923 |
+
return {}
|
| 924 |
+
pipe.load_models_to_device(self.onload_model_names)
|
| 925 |
+
#* transfer to torch.tensor from PIL.Image
|
| 926 |
+
#* result size: [1, 3, F, H, W]
|
| 927 |
+
control_video = pipe.preprocess_video(control_video)
|
| 928 |
+
|
| 929 |
+
control_latents = pipe.vae.encode(control_video, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 930 |
+
#* size of control_latents: [1, 3, (F/4) + 1 , H/8, W/8]
|
| 931 |
+
control_latents = control_latents.to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 932 |
+
|
| 933 |
+
if clip_feature is None or y is None:
|
| 934 |
+
#* this branch is used during training
|
| 935 |
+
clip_feature = torch.zeros((1, 257, 1280), dtype=pipe.torch_dtype, device=pipe.device)
|
| 936 |
+
|
| 937 |
+
# y = torch.zeros((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), dtype=pipe.torch_dtype, device=pipe.device)
|
| 938 |
+
|
| 939 |
+
#* [1, 16, (F/4) + 1 , H/8, W/8]
|
| 940 |
+
y = torch.zeros((1, 16, control_latents.shape[-3], height//8, width//8), dtype=pipe.torch_dtype, device=pipe.device)
|
| 941 |
+
else:
|
| 942 |
+
y = y[:, -16:]
|
| 943 |
+
#* control_latents: [1, 16, 21, 60, 80]; y: [1, 16, 21, 60, 80])
|
| 944 |
+
|
| 945 |
+
#* [1, 32, (F/4) + 1 , H/8, W/8], 前16个通道是control_latents, 后16个通道是y(或者说0 vector)
|
| 946 |
+
y = torch.concat([control_latents, y], dim=1)
|
| 947 |
+
return {"clip_feature": clip_feature, "y": y}
|
| 948 |
+
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
class WanVideoUnit_FunControl_Mask(PipelineUnit):
|
| 952 |
+
def __init__(self):
|
| 953 |
+
super().__init__(
|
| 954 |
+
input_params=("control_video", "mask","num_frames", "height", "width", "tiled", "tile_size", "tile_stride", "clip_feature", "y"),
|
| 955 |
+
onload_model_names=("vae",)
|
| 956 |
+
)
|
| 957 |
+
|
| 958 |
+
def process(self, pipe: WanVideoPipeline, control_video, mask, num_frames, height, width, tiled, tile_size, tile_stride, clip_feature, y):
|
| 959 |
+
|
| 960 |
+
if control_video is None:
|
| 961 |
+
return {}
|
| 962 |
+
pipe.load_models_to_device(self.onload_model_names)
|
| 963 |
+
#* transfer to torch.tensor from PIL.Image
|
| 964 |
+
#* result size: [1, 3, F, H, W]
|
| 965 |
+
|
| 966 |
+
control_video = pipe.preprocess_video(control_video)
|
| 967 |
+
|
| 968 |
+
|
| 969 |
+
control_latents = pipe.vae.encode(control_video, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 970 |
+
|
| 971 |
+
#* size of control_latents: [1, 3, (F/4) + 1 , H/8, W/8]
|
| 972 |
+
control_latents = control_latents.to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 973 |
+
|
| 974 |
+
if mask is not None:
|
| 975 |
+
mask = pipe.preprocess_video(mask)
|
| 976 |
+
mask_latents = pipe.vae.encode(mask, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 977 |
+
mask_latents = mask_latents.to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 978 |
+
|
| 979 |
+
|
| 980 |
+
if clip_feature is None or y is None:
|
| 981 |
+
#* this branch is used during training
|
| 982 |
+
clip_feature = torch.zeros((1, 257, 1280), dtype=pipe.torch_dtype, device=pipe.device)
|
| 983 |
+
|
| 984 |
+
# y = torch.zeros((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), dtype=pipe.torch_dtype, device=pipe.device)
|
| 985 |
+
|
| 986 |
+
#* [1, 16, (F/4) + 1 , H/8, W/8]
|
| 987 |
+
y = torch.zeros((1, 16, control_latents.shape[-3], height//8, width//8), dtype=pipe.torch_dtype, device=pipe.device)
|
| 988 |
+
else:
|
| 989 |
+
y = y[:, -16:]
|
| 990 |
+
|
| 991 |
+
#* control_latents: [1, 16, 21, 60, 80]; y: [1, 16, 21, 60, 80])
|
| 992 |
+
|
| 993 |
+
#* [1, 32, (F/4) + 1 , H/8, W/8], 前16个通道是control_latents, 后16个通道是y(或者说0 vector)
|
| 994 |
+
|
| 995 |
+
if mask is not None:
|
| 996 |
+
y = torch.concat([control_latents, mask_latents], dim=1)
|
| 997 |
+
# logger.warning(f"mask is provided, using mask_latents instead of y")
|
| 998 |
+
else:
|
| 999 |
+
y = torch.concat([control_latents, y], dim=1)
|
| 1000 |
+
# logger.warning(f"mask is not provided, using y")
|
| 1001 |
+
|
| 1002 |
+
return {"clip_feature": clip_feature, "y": y}
|
| 1003 |
+
|
| 1004 |
+
|
| 1005 |
+
|
| 1006 |
+
class WanVideoUnit_FunReference(PipelineUnit):
|
| 1007 |
+
def __init__(self):
|
| 1008 |
+
super().__init__(
|
| 1009 |
+
input_params=("reference_image", "height", "width", "reference_image"),
|
| 1010 |
+
onload_model_names=("vae",)
|
| 1011 |
+
)
|
| 1012 |
+
|
| 1013 |
+
def process(self, pipe: WanVideoPipeline, reference_image, height, width):
|
| 1014 |
+
if reference_image is None:
|
| 1015 |
+
return {}
|
| 1016 |
+
pipe.load_models_to_device(["vae"])
|
| 1017 |
+
reference_image = reference_image.resize((width, height))
|
| 1018 |
+
reference_latents = pipe.preprocess_video([reference_image])
|
| 1019 |
+
reference_latents = pipe.vae.encode(reference_latents, device=pipe.device)
|
| 1020 |
+
clip_feature = pipe.preprocess_image(reference_image)
|
| 1021 |
+
clip_feature = pipe.image_encoder.encode_image([clip_feature])
|
| 1022 |
+
return {"reference_latents": reference_latents, "clip_feature": clip_feature}
|
| 1023 |
+
|
| 1024 |
+
|
| 1025 |
+
|
| 1026 |
+
|
| 1027 |
+
class WanVideoUnit_FunCameraControl(PipelineUnit):
|
| 1028 |
+
def __init__(self):
|
| 1029 |
+
super().__init__(
|
| 1030 |
+
input_params=("height", "width", "num_frames", "camera_control_direction", "camera_control_speed", "camera_control_origin", "latents", "input_image"),
|
| 1031 |
+
onload_model_names=("vae",)
|
| 1032 |
+
)
|
| 1033 |
+
|
| 1034 |
+
def process(self, pipe: WanVideoPipeline, height, width, num_frames, camera_control_direction, camera_control_speed, camera_control_origin, latents, input_image):
|
| 1035 |
+
if camera_control_direction is None:
|
| 1036 |
+
return {}
|
| 1037 |
+
camera_control_plucker_embedding = pipe.dit.control_adapter.process_camera_coordinates(
|
| 1038 |
+
camera_control_direction, num_frames, height, width, camera_control_speed, camera_control_origin)
|
| 1039 |
+
|
| 1040 |
+
control_camera_video = camera_control_plucker_embedding[:num_frames].permute([3, 0, 1, 2]).unsqueeze(0)
|
| 1041 |
+
control_camera_latents = torch.concat(
|
| 1042 |
+
[
|
| 1043 |
+
torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2),
|
| 1044 |
+
control_camera_video[:, :, 1:]
|
| 1045 |
+
], dim=2
|
| 1046 |
+
).transpose(1, 2)
|
| 1047 |
+
b, f, c, h, w = control_camera_latents.shape
|
| 1048 |
+
control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3)
|
| 1049 |
+
control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2)
|
| 1050 |
+
control_camera_latents_input = control_camera_latents.to(device=pipe.device, dtype=pipe.torch_dtype)
|
| 1051 |
+
|
| 1052 |
+
input_image = input_image.resize((width, height))
|
| 1053 |
+
input_latents = pipe.preprocess_video([input_image])
|
| 1054 |
+
pipe.load_models_to_device(self.onload_model_names)
|
| 1055 |
+
input_latents = pipe.vae.encode(input_latents, device=pipe.device)
|
| 1056 |
+
y = torch.zeros_like(latents).to(pipe.device)
|
| 1057 |
+
y[:, :, :1] = input_latents
|
| 1058 |
+
y = y.to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 1059 |
+
return {"control_camera_latents_input": control_camera_latents_input, "y": y}
|
| 1060 |
+
|
| 1061 |
+
|
| 1062 |
+
|
| 1063 |
+
class WanVideoUnit_SpeedControl(PipelineUnit):
|
| 1064 |
+
def __init__(self):
|
| 1065 |
+
super().__init__(input_params=("motion_bucket_id",))
|
| 1066 |
+
|
| 1067 |
+
def process(self, pipe: WanVideoPipeline, motion_bucket_id):
|
| 1068 |
+
if motion_bucket_id is None:
|
| 1069 |
+
return {}
|
| 1070 |
+
motion_bucket_id = torch.Tensor((motion_bucket_id,)).to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 1071 |
+
return {"motion_bucket_id": motion_bucket_id}
|
| 1072 |
+
|
| 1073 |
+
|
| 1074 |
+
|
| 1075 |
+
class WanVideoUnit_VACE(PipelineUnit):
|
| 1076 |
+
def __init__(self):
|
| 1077 |
+
super().__init__(
|
| 1078 |
+
input_params=("vace_video", "vace_video_mask", "vace_reference_image", "vace_scale", "height", "width", "num_frames", "tiled", "tile_size", "tile_stride"),
|
| 1079 |
+
onload_model_names=("vae",)
|
| 1080 |
+
)
|
| 1081 |
+
|
| 1082 |
+
def process(
|
| 1083 |
+
self,
|
| 1084 |
+
pipe: WanVideoPipeline,
|
| 1085 |
+
vace_video, vace_video_mask, vace_reference_image, vace_scale,
|
| 1086 |
+
height, width, num_frames,
|
| 1087 |
+
tiled, tile_size, tile_stride
|
| 1088 |
+
):
|
| 1089 |
+
if vace_video is not None or vace_video_mask is not None or vace_reference_image is not None:
|
| 1090 |
+
pipe.load_models_to_device(["vae"])
|
| 1091 |
+
if vace_video is None:
|
| 1092 |
+
vace_video = torch.zeros((1, 3, num_frames, height, width), dtype=pipe.torch_dtype, device=pipe.device)
|
| 1093 |
+
else:
|
| 1094 |
+
vace_video = pipe.preprocess_video(vace_video)
|
| 1095 |
+
|
| 1096 |
+
if vace_video_mask is None:
|
| 1097 |
+
vace_video_mask = torch.ones_like(vace_video)
|
| 1098 |
+
else:
|
| 1099 |
+
vace_video_mask = pipe.preprocess_video(vace_video_mask, min_value=0, max_value=1)
|
| 1100 |
+
|
| 1101 |
+
inactive = vace_video * (1 - vace_video_mask) + 0 * vace_video_mask
|
| 1102 |
+
reactive = vace_video * vace_video_mask + 0 * (1 - vace_video_mask)
|
| 1103 |
+
inactive = pipe.vae.encode(inactive, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 1104 |
+
reactive = pipe.vae.encode(reactive, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 1105 |
+
vace_video_latents = torch.concat((inactive, reactive), dim=1)
|
| 1106 |
+
|
| 1107 |
+
vace_mask_latents = rearrange(vace_video_mask[0,0], "T (H P) (W Q) -> 1 (P Q) T H W", P=8, Q=8)
|
| 1108 |
+
vace_mask_latents = torch.nn.functional.interpolate(vace_mask_latents, size=((vace_mask_latents.shape[2] + 3) // 4, vace_mask_latents.shape[3], vace_mask_latents.shape[4]), mode='nearest-exact')
|
| 1109 |
+
|
| 1110 |
+
if vace_reference_image is None:
|
| 1111 |
+
pass
|
| 1112 |
+
else:
|
| 1113 |
+
vace_reference_image = pipe.preprocess_video([vace_reference_image])
|
| 1114 |
+
vace_reference_latents = pipe.vae.encode(vace_reference_image, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device)
|
| 1115 |
+
vace_reference_latents = torch.concat((vace_reference_latents, torch.zeros_like(vace_reference_latents)), dim=1)
|
| 1116 |
+
vace_video_latents = torch.concat((vace_reference_latents, vace_video_latents), dim=2)
|
| 1117 |
+
vace_mask_latents = torch.concat((torch.zeros_like(vace_mask_latents[:, :, :1]), vace_mask_latents), dim=2)
|
| 1118 |
+
|
| 1119 |
+
vace_context = torch.concat((vace_video_latents, vace_mask_latents), dim=1)
|
| 1120 |
+
return {"vace_context": vace_context, "vace_scale": vace_scale}
|
| 1121 |
+
else:
|
| 1122 |
+
return {"vace_context": None, "vace_scale": vace_scale}
|
| 1123 |
+
|
| 1124 |
+
|
| 1125 |
+
|
| 1126 |
+
class WanVideoUnit_UnifiedSequenceParallel(PipelineUnit):
|
| 1127 |
+
def __init__(self):
|
| 1128 |
+
super().__init__(input_params=())
|
| 1129 |
+
|
| 1130 |
+
def process(self, pipe: WanVideoPipeline):
|
| 1131 |
+
if hasattr(pipe, "use_unified_sequence_parallel"):
|
| 1132 |
+
if pipe.use_unified_sequence_parallel:
|
| 1133 |
+
return {"use_unified_sequence_parallel": True}
|
| 1134 |
+
return {}
|
| 1135 |
+
|
| 1136 |
+
|
| 1137 |
+
|
| 1138 |
+
class WanVideoUnit_TeaCache(PipelineUnit):
|
| 1139 |
+
def __init__(self):
|
| 1140 |
+
super().__init__(
|
| 1141 |
+
seperate_cfg=True,
|
| 1142 |
+
input_params_posi={"num_inference_steps": "num_inference_steps", "tea_cache_l1_thresh": "tea_cache_l1_thresh", "tea_cache_model_id": "tea_cache_model_id"},
|
| 1143 |
+
input_params_nega={"num_inference_steps": "num_inference_steps", "tea_cache_l1_thresh": "tea_cache_l1_thresh", "tea_cache_model_id": "tea_cache_model_id"},
|
| 1144 |
+
)
|
| 1145 |
+
|
| 1146 |
+
def process(self, pipe: WanVideoPipeline, num_inference_steps, tea_cache_l1_thresh, tea_cache_model_id):
|
| 1147 |
+
if tea_cache_l1_thresh is None:
|
| 1148 |
+
return {}
|
| 1149 |
+
return {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id)}
|
| 1150 |
+
|
| 1151 |
+
|
| 1152 |
+
|
| 1153 |
+
class WanVideoUnit_CfgMerger(PipelineUnit):
|
| 1154 |
+
def __init__(self):
|
| 1155 |
+
super().__init__(take_over=True)
|
| 1156 |
+
self.concat_tensor_names = ["context", "clip_feature", "y", "reference_latents"]
|
| 1157 |
+
|
| 1158 |
+
def process(self, pipe: WanVideoPipeline, inputs_shared, inputs_posi, inputs_nega):
|
| 1159 |
+
if not inputs_shared["cfg_merge"]:
|
| 1160 |
+
return inputs_shared, inputs_posi, inputs_nega
|
| 1161 |
+
for name in self.concat_tensor_names:
|
| 1162 |
+
tensor_posi = inputs_posi.get(name)
|
| 1163 |
+
tensor_nega = inputs_nega.get(name)
|
| 1164 |
+
tensor_shared = inputs_shared.get(name)
|
| 1165 |
+
if tensor_posi is not None and tensor_nega is not None:
|
| 1166 |
+
inputs_shared[name] = torch.concat((tensor_posi, tensor_nega), dim=0)
|
| 1167 |
+
elif tensor_shared is not None:
|
| 1168 |
+
inputs_shared[name] = torch.concat((tensor_shared, tensor_shared), dim=0)
|
| 1169 |
+
inputs_posi.clear()
|
| 1170 |
+
inputs_nega.clear()
|
| 1171 |
+
return inputs_shared, inputs_posi, inputs_nega
|
| 1172 |
+
|
| 1173 |
+
|
| 1174 |
+
|
| 1175 |
+
class TeaCache:
|
| 1176 |
+
def __init__(self, num_inference_steps, rel_l1_thresh, model_id):
|
| 1177 |
+
self.num_inference_steps = num_inference_steps
|
| 1178 |
+
self.step = 0
|
| 1179 |
+
self.accumulated_rel_l1_distance = 0
|
| 1180 |
+
self.previous_modulated_input = None
|
| 1181 |
+
self.rel_l1_thresh = rel_l1_thresh
|
| 1182 |
+
self.previous_residual = None
|
| 1183 |
+
self.previous_hidden_states = None
|
| 1184 |
+
|
| 1185 |
+
self.coefficients_dict = {
|
| 1186 |
+
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02],
|
| 1187 |
+
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01],
|
| 1188 |
+
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01],
|
| 1189 |
+
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02],
|
| 1190 |
+
}
|
| 1191 |
+
if model_id not in self.coefficients_dict:
|
| 1192 |
+
supported_model_ids = ", ".join([i for i in self.coefficients_dict])
|
| 1193 |
+
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).")
|
| 1194 |
+
self.coefficients = self.coefficients_dict[model_id]
|
| 1195 |
+
|
| 1196 |
+
def check(self, dit: WanModel, x, t_mod):
|
| 1197 |
+
modulated_inp = t_mod.clone()
|
| 1198 |
+
if self.step == 0 or self.step == self.num_inference_steps - 1:
|
| 1199 |
+
should_calc = True
|
| 1200 |
+
self.accumulated_rel_l1_distance = 0
|
| 1201 |
+
else:
|
| 1202 |
+
coefficients = self.coefficients
|
| 1203 |
+
rescale_func = np.poly1d(coefficients)
|
| 1204 |
+
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
|
| 1205 |
+
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
| 1206 |
+
should_calc = False
|
| 1207 |
+
else:
|
| 1208 |
+
should_calc = True
|
| 1209 |
+
self.accumulated_rel_l1_distance = 0
|
| 1210 |
+
self.previous_modulated_input = modulated_inp
|
| 1211 |
+
self.step += 1
|
| 1212 |
+
if self.step == self.num_inference_steps:
|
| 1213 |
+
self.step = 0
|
| 1214 |
+
if should_calc:
|
| 1215 |
+
self.previous_hidden_states = x.clone()
|
| 1216 |
+
return not should_calc
|
| 1217 |
+
|
| 1218 |
+
def store(self, hidden_states):
|
| 1219 |
+
self.previous_residual = hidden_states - self.previous_hidden_states
|
| 1220 |
+
self.previous_hidden_states = None
|
| 1221 |
+
|
| 1222 |
+
def update(self, hidden_states):
|
| 1223 |
+
hidden_states = hidden_states + self.previous_residual
|
| 1224 |
+
return hidden_states
|
| 1225 |
+
|
| 1226 |
+
|
| 1227 |
+
|
| 1228 |
+
class TemporalTiler_BCTHW:
|
| 1229 |
+
def __init__(self):
|
| 1230 |
+
pass
|
| 1231 |
+
|
| 1232 |
+
def build_1d_mask(self, length, left_bound, right_bound, border_width):
|
| 1233 |
+
x = torch.ones((length,))
|
| 1234 |
+
if border_width == 0:
|
| 1235 |
+
return x
|
| 1236 |
+
|
| 1237 |
+
shift = 0.5
|
| 1238 |
+
if not left_bound:
|
| 1239 |
+
x[:border_width] = (torch.arange(border_width) + shift) / border_width
|
| 1240 |
+
if not right_bound:
|
| 1241 |
+
x[-border_width:] = torch.flip((torch.arange(border_width) + shift) / border_width, dims=(0,))
|
| 1242 |
+
return x
|
| 1243 |
+
|
| 1244 |
+
def build_mask(self, data, is_bound, border_width):
|
| 1245 |
+
_, _, T, _, _ = data.shape
|
| 1246 |
+
t = self.build_1d_mask(T, is_bound[0], is_bound[1], border_width[0])
|
| 1247 |
+
mask = repeat(t, "T -> 1 1 T 1 1")
|
| 1248 |
+
return mask
|
| 1249 |
+
|
| 1250 |
+
def run(self, model_fn, sliding_window_size, sliding_window_stride, computation_device, computation_dtype, model_kwargs, tensor_names, batch_size=None):
|
| 1251 |
+
tensor_names = [tensor_name for tensor_name in tensor_names if model_kwargs.get(tensor_name) is not None]
|
| 1252 |
+
tensor_dict = {tensor_name: model_kwargs[tensor_name] for tensor_name in tensor_names}
|
| 1253 |
+
|
| 1254 |
+
B, C, T, H, W = tensor_dict[tensor_names[0]].shape
|
| 1255 |
+
if batch_size is not None:
|
| 1256 |
+
B *= batch_size
|
| 1257 |
+
data_device, data_dtype = tensor_dict[tensor_names[0]].device, tensor_dict[tensor_names[0]].dtype
|
| 1258 |
+
value = torch.zeros((B, C, T, H, W), device=data_device, dtype=data_dtype)
|
| 1259 |
+
weight = torch.zeros((1, 1, T, 1, 1), device=data_device, dtype=data_dtype)
|
| 1260 |
+
for t in range(0, T, sliding_window_stride):
|
| 1261 |
+
if t - sliding_window_stride >= 0 and t - sliding_window_stride + sliding_window_size >= T: #* 如果上一个窗口已经走到最后一帧了, 那么就continue/break
|
| 1262 |
+
continue
|
| 1263 |
+
t_ = min(t + sliding_window_size, T)
|
| 1264 |
+
|
| 1265 |
+
model_kwargs.update({
|
| 1266 |
+
tensor_name: tensor_dict[tensor_name][:, :, t: t_:, :].to(device=computation_device, dtype=computation_dtype) \
|
| 1267 |
+
for tensor_name in tensor_names
|
| 1268 |
+
})
|
| 1269 |
+
model_output = model_fn(**model_kwargs).to(device=data_device, dtype=data_dtype)
|
| 1270 |
+
|
| 1271 |
+
mask = self.build_mask(
|
| 1272 |
+
model_output,
|
| 1273 |
+
is_bound=(t == 0, t_ == T),
|
| 1274 |
+
border_width=(sliding_window_size - sliding_window_stride,)
|
| 1275 |
+
).to(device=data_device, dtype=data_dtype)
|
| 1276 |
+
|
| 1277 |
+
# logger.info(f"t: {t}, t_: {t_}, sliding_window_size: {sliding_window_size}, sliding_window_stride: {sliding_window_stride}")
|
| 1278 |
+
|
| 1279 |
+
value[:, :, t: t_, :, :] += model_output * mask
|
| 1280 |
+
weight[:, :, t: t_, :, :] += mask
|
| 1281 |
+
value /= weight
|
| 1282 |
+
model_kwargs.update(tensor_dict)
|
| 1283 |
+
return value
|
| 1284 |
+
|
| 1285 |
+
|
| 1286 |
+
|
| 1287 |
+
def model_fn_wan_video(
|
| 1288 |
+
dit: WanModel,
|
| 1289 |
+
motion_controller: WanMotionControllerModel = None,
|
| 1290 |
+
vace: VaceWanModel = None,
|
| 1291 |
+
latents: torch.Tensor = None,
|
| 1292 |
+
timestep: torch.Tensor = None,
|
| 1293 |
+
context: torch.Tensor = None,
|
| 1294 |
+
clip_feature: Optional[torch.Tensor] = None,
|
| 1295 |
+
y: Optional[torch.Tensor] = None,
|
| 1296 |
+
reference_latents = None,
|
| 1297 |
+
vace_context = None,
|
| 1298 |
+
vace_scale = 1.0,
|
| 1299 |
+
tea_cache: TeaCache = None,
|
| 1300 |
+
use_unified_sequence_parallel: bool = False,
|
| 1301 |
+
motion_bucket_id: Optional[torch.Tensor] = None,
|
| 1302 |
+
sliding_window_size: Optional[int] = None,
|
| 1303 |
+
sliding_window_stride: Optional[int] = None,
|
| 1304 |
+
cfg_merge: bool = False,
|
| 1305 |
+
use_gradient_checkpointing: bool = False,
|
| 1306 |
+
use_gradient_checkpointing_offload: bool = False,
|
| 1307 |
+
control_camera_latents_input = None,
|
| 1308 |
+
fuse_vae_embedding_in_latents: bool = False,
|
| 1309 |
+
**kwargs,
|
| 1310 |
+
):
|
| 1311 |
+
|
| 1312 |
+
|
| 1313 |
+
if sliding_window_size is not None and sliding_window_stride is not None: #* skip for training,
|
| 1314 |
+
model_kwargs = dict(
|
| 1315 |
+
dit=dit,
|
| 1316 |
+
motion_controller=motion_controller,
|
| 1317 |
+
vace=vace,
|
| 1318 |
+
latents=latents,
|
| 1319 |
+
timestep=timestep,
|
| 1320 |
+
context=context,
|
| 1321 |
+
clip_feature=clip_feature,
|
| 1322 |
+
y=y,
|
| 1323 |
+
reference_latents=reference_latents,
|
| 1324 |
+
vace_context=vace_context,
|
| 1325 |
+
vace_scale=vace_scale,
|
| 1326 |
+
tea_cache=tea_cache,
|
| 1327 |
+
use_unified_sequence_parallel=use_unified_sequence_parallel,
|
| 1328 |
+
motion_bucket_id=motion_bucket_id,
|
| 1329 |
+
)
|
| 1330 |
+
return TemporalTiler_BCTHW().run(
|
| 1331 |
+
model_fn_wan_video,
|
| 1332 |
+
sliding_window_size, sliding_window_stride,
|
| 1333 |
+
latents.device, latents.dtype,
|
| 1334 |
+
model_kwargs=model_kwargs,
|
| 1335 |
+
tensor_names=["latents", "y"],
|
| 1336 |
+
batch_size=2 if cfg_merge else 1
|
| 1337 |
+
)
|
| 1338 |
+
|
| 1339 |
+
if use_unified_sequence_parallel:#* skip
|
| 1340 |
+
import torch.distributed as dist
|
| 1341 |
+
from xfuser.core.distributed import (get_sequence_parallel_rank,
|
| 1342 |
+
get_sequence_parallel_world_size,
|
| 1343 |
+
get_sp_group)
|
| 1344 |
+
|
| 1345 |
+
|
| 1346 |
+
# Timestep
|
| 1347 |
+
if dit.seperated_timestep and fuse_vae_embedding_in_latents:
|
| 1348 |
+
timestep = torch.concat([
|
| 1349 |
+
torch.zeros((1, latents.shape[3] * latents.shape[4] // 4), dtype=latents.dtype, device=latents.device),
|
| 1350 |
+
torch.ones((latents.shape[2] - 1, latents.shape[3] * latents.shape[4] // 4), dtype=latents.dtype, device=latents.device) * timestep
|
| 1351 |
+
]).flatten()
|
| 1352 |
+
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep).unsqueeze(0))
|
| 1353 |
+
if use_unified_sequence_parallel and dist.is_initialized() and dist.get_world_size() > 1:
|
| 1354 |
+
t_chunks = torch.chunk(t, get_sequence_parallel_world_size(), dim=1)
|
| 1355 |
+
t_chunks = [torch.nn.functional.pad(chunk, (0, 0, 0, t_chunks[0].shape[1]-chunk.shape[1]), value=0) for chunk in t_chunks]
|
| 1356 |
+
t = t_chunks[get_sequence_parallel_rank()]
|
| 1357 |
+
t_mod = dit.time_projection(t).unflatten(2, (6, dit.dim))
|
| 1358 |
+
else:#* this branch
|
| 1359 |
+
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep)) #* out: torch.Size([1, 1536])
|
| 1360 |
+
t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim)) #* out: torch.Size([1, 6, 1536]); dit.dim: 1536
|
| 1361 |
+
|
| 1362 |
+
|
| 1363 |
+
|
| 1364 |
+
|
| 1365 |
+
if motion_bucket_id is not None and motion_controller is not None: #* skip
|
| 1366 |
+
t_mod = t_mod + motion_controller(motion_bucket_id).unflatten(1, (6, dit.dim))
|
| 1367 |
+
|
| 1368 |
+
context = dit.text_embedding(context)#* text prompt, 比如“depth”, : from torch.Size([1, 512, 4096]) to torch.Size([1, 512, 1536])
|
| 1369 |
+
#todo double check 这个x
|
| 1370 |
+
#* [1, 16, (F-1)/4, H/8, W/8], 纯高斯噪声 或者 加噪后的gt
|
| 1371 |
+
x = latents
|
| 1372 |
+
|
| 1373 |
+
# Merged cfg
|
| 1374 |
+
#* batch 这个维度必须一致, 跟
|
| 1375 |
+
if x.shape[0] != context.shape[0]:
|
| 1376 |
+
x = torch.concat([x] * context.shape[0], dim=0)
|
| 1377 |
+
if timestep.shape[0] != context.shape[0]:
|
| 1378 |
+
timestep = torch.concat([timestep] * context.shape[0], dim=0)
|
| 1379 |
+
|
| 1380 |
+
# Image Embedding
|
| 1381 |
+
"""
|
| 1382 |
+
new parameters:
|
| 1383 |
+
#* require_vae_embedding
|
| 1384 |
+
#* require_clip_embedding
|
| 1385 |
+
"""
|
| 1386 |
+
|
| 1387 |
+
# todo: x 是target video(也就是depth/normal video) 通过噪声调整的结果 / 纯高斯噪声; y是输入的rgb video
|
| 1388 |
+
#todo , double check 这个y, [1, 32, (F-1)/4, H/8, W/8]
|
| 1389 |
+
if y is not None and dit.require_vae_embedding:
|
| 1390 |
+
x = torch.cat([x, y], dim=1)# (b, c_x + c_y, f, h, w) #* [1, 48, (F-1)/4, H/8, W/8]
|
| 1391 |
+
if clip_feature is not None and dit.require_clip_embedding:
|
| 1392 |
+
#* clip_feature is initialized by zero, from torch.Size([1, 257, 1280]) to torch.Size([1, 257, 1536])
|
| 1393 |
+
clip_embdding = dit.img_emb(clip_feature)
|
| 1394 |
+
#* concat 257 and 512 to form torch.Size([1, 769, 1536])
|
| 1395 |
+
context = torch.cat([clip_embdding, context], dim=1)
|
| 1396 |
+
|
| 1397 |
+
# Add camera control
|
| 1398 |
+
#* from torch.Size([1, 48, (F-1)/4, H/8, W/8]),
|
| 1399 |
+
#* to [1, 1536, (F-1)/4, H/16, W/16] (函数内的mlp)
|
| 1400 |
+
#* to [1, 1536, ( (F-1)/4 * H/16 * W/16)]
|
| 1401 |
+
#* x_out: [1, 1536, ( (F-1)/4 * H/16 * W/16)]
|
| 1402 |
+
x, (f, h, w) = dit.patchify(x, control_camera_latents_input)
|
| 1403 |
+
|
| 1404 |
+
# Reference image
|
| 1405 |
+
if reference_latents is not None: #* skip
|
| 1406 |
+
if len(reference_latents.shape) == 5:
|
| 1407 |
+
reference_latents = reference_latents[:, :, 0]
|
| 1408 |
+
reference_latents = dit.ref_conv(reference_latents).flatten(2).transpose(1, 2)
|
| 1409 |
+
x = torch.concat([reference_latents, x], dim=1)
|
| 1410 |
+
f += 1
|
| 1411 |
+
|
| 1412 |
+
#* RoPE position embedding for 3D video, [ ( (F-1)/4 * H/16 * W/16), 1, 64]
|
| 1413 |
+
freqs = torch.cat([
|
| 1414 |
+
dit.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
| 1415 |
+
dit.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
| 1416 |
+
dit.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
| 1417 |
+
], dim=-1).reshape(f * h * w, 1, -1).to(x.device)
|
| 1418 |
+
|
| 1419 |
+
# TeaCache
|
| 1420 |
+
if tea_cache is not None:#*skip
|
| 1421 |
+
tea_cache_update = tea_cache.check(dit, x, t_mod)
|
| 1422 |
+
else:
|
| 1423 |
+
tea_cache_update = False
|
| 1424 |
+
|
| 1425 |
+
if vace_context is not None:#*skip
|
| 1426 |
+
vace_hints = vace(x, vace_context, context, t_mod, freqs)
|
| 1427 |
+
|
| 1428 |
+
# blocks
|
| 1429 |
+
if use_unified_sequence_parallel:#* skip
|
| 1430 |
+
if dist.is_initialized() and dist.get_world_size() > 1:
|
| 1431 |
+
chunks = torch.chunk(x, get_sequence_parallel_world_size(), dim=1)
|
| 1432 |
+
pad_shape = chunks[0].shape[1] - chunks[-1].shape[1]
|
| 1433 |
+
chunks = [torch.nn.functional.pad(chunk, (0, 0, 0, chunks[0].shape[1]-chunk.shape[1]), value=0) for chunk in chunks]
|
| 1434 |
+
x = chunks[get_sequence_parallel_rank()]
|
| 1435 |
+
if tea_cache_update:
|
| 1436 |
+
x = tea_cache.update(x)
|
| 1437 |
+
else:
|
| 1438 |
+
def create_custom_forward(module):
|
| 1439 |
+
def custom_forward(*inputs):
|
| 1440 |
+
return module(*inputs)
|
| 1441 |
+
return custom_forward
|
| 1442 |
+
#* pass through dit blocks 30 times
|
| 1443 |
+
for block_id, block in enumerate(dit.blocks):
|
| 1444 |
+
if use_gradient_checkpointing_offload:
|
| 1445 |
+
with torch.autograd.graph.save_on_cpu():
|
| 1446 |
+
x = torch.utils.checkpoint.checkpoint(
|
| 1447 |
+
create_custom_forward(block),
|
| 1448 |
+
x, context, t_mod, freqs,
|
| 1449 |
+
use_reentrant=False,
|
| 1450 |
+
)
|
| 1451 |
+
elif use_gradient_checkpointing:
|
| 1452 |
+
x = torch.utils.checkpoint.checkpoint(
|
| 1453 |
+
create_custom_forward(block),
|
| 1454 |
+
x, context, t_mod, freqs,
|
| 1455 |
+
use_reentrant=False,
|
| 1456 |
+
)
|
| 1457 |
+
else:
|
| 1458 |
+
x = block(x, context, t_mod, freqs)#* x_in: [1, ( (F-1)/4 * H/16 * W/16), 1536], context_in: [1, 769, 1536], t_mod_in: [1, 6, 1536], freqs_in: [ ( (F-1)/4 * H/16 * W/16), 1, 64], x_out: [1, ( (F-1)/4 * H/16 * W/16), 1536]
|
| 1459 |
+
if vace_context is not None and block_id in vace.vace_layers_mapping:#* skip
|
| 1460 |
+
current_vace_hint = vace_hints[vace.vace_layers_mapping[block_id]]
|
| 1461 |
+
if use_unified_sequence_parallel and dist.is_initialized() and dist.get_world_size() > 1:
|
| 1462 |
+
current_vace_hint = torch.chunk(current_vace_hint, get_sequence_parallel_world_size(), dim=1)[get_sequence_parallel_rank()]
|
| 1463 |
+
current_vace_hint = torch.nn.functional.pad(current_vace_hint, (0, 0, 0, chunks[0].shape[1] - current_vace_hint.shape[1]), value=0)
|
| 1464 |
+
x = x + current_vace_hint * vace_scale
|
| 1465 |
+
if tea_cache is not None:#* skip
|
| 1466 |
+
tea_cache.store(x)
|
| 1467 |
+
|
| 1468 |
+
#* x_in: [1, ( (F-1)/4 * H/16 * W/16), 1536], t_in: [1, 1536],
|
| 1469 |
+
#* x_out: [1, ( (F-1)/4 * H/16 * W/16), 64]
|
| 1470 |
+
x = dit.head(x, t)
|
| 1471 |
+
if use_unified_sequence_parallel:#* skip
|
| 1472 |
+
if dist.is_initialized() and dist.get_world_size() > 1:
|
| 1473 |
+
x = get_sp_group().all_gather(x, dim=1)
|
| 1474 |
+
x = x[:, :-pad_shape] if pad_shape > 0 else x
|
| 1475 |
+
|
| 1476 |
+
# Remove reference latents
|
| 1477 |
+
if reference_latents is not None:#* skip
|
| 1478 |
+
x = x[:, reference_latents.shape[1]:]
|
| 1479 |
+
f -= 1
|
| 1480 |
+
|
| 1481 |
+
#* unpatchify, from [1, ( (F-1)/4 * H/16 * W/16), 64] to [1, 16, (F-1)/4, H/8, W/8]
|
| 1482 |
+
x = dit.unpatchify(x, (f, h, w))
|
| 1483 |
+
return x
|
| 1484 |
+
|
| 1485 |
+
|
| 1486 |
+
|
dkt/prompters/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Only wan_prompter is used by entry files
|
| 2 |
+
# from .prompt_refiners import Translator, BeautifulPrompt, QwenPrompt
|
| 3 |
+
# from .sd_prompter import SDPrompter
|
| 4 |
+
# from .sdxl_prompter import SDXLPrompter
|
| 5 |
+
# from .sd3_prompter import SD3Prompter
|
| 6 |
+
# from .hunyuan_dit_prompter import HunyuanDiTPrompter
|
| 7 |
+
# from .kolors_prompter import KolorsPrompter
|
| 8 |
+
# from .flux_prompter import FluxPrompter
|
| 9 |
+
# from .omost import OmostPromter
|
| 10 |
+
# from .cog_prompter import CogPrompter
|
| 11 |
+
# from .hunyuan_video_prompter import HunyuanVideoPrompter
|
| 12 |
+
# from .stepvideo_prompter import StepVideoPrompter
|
| 13 |
+
from .wan_prompter import WanPrompter
|
dkt/prompters/base_prompter.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ..models.model_manager import ModelManager
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def tokenize_long_prompt(tokenizer, prompt, max_length=None):
|
| 7 |
+
# Get model_max_length from self.tokenizer
|
| 8 |
+
length = tokenizer.model_max_length if max_length is None else max_length
|
| 9 |
+
|
| 10 |
+
# To avoid the warning. set self.tokenizer.model_max_length to +oo.
|
| 11 |
+
tokenizer.model_max_length = 99999999
|
| 12 |
+
|
| 13 |
+
# Tokenize it!
|
| 14 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 15 |
+
|
| 16 |
+
# Determine the real length.
|
| 17 |
+
max_length = (input_ids.shape[1] + length - 1) // length * length
|
| 18 |
+
|
| 19 |
+
# Restore tokenizer.model_max_length
|
| 20 |
+
tokenizer.model_max_length = length
|
| 21 |
+
|
| 22 |
+
# Tokenize it again with fixed length.
|
| 23 |
+
input_ids = tokenizer(
|
| 24 |
+
prompt,
|
| 25 |
+
return_tensors="pt",
|
| 26 |
+
padding="max_length",
|
| 27 |
+
max_length=max_length,
|
| 28 |
+
truncation=True
|
| 29 |
+
).input_ids
|
| 30 |
+
|
| 31 |
+
# Reshape input_ids to fit the text encoder.
|
| 32 |
+
num_sentence = input_ids.shape[1] // length
|
| 33 |
+
input_ids = input_ids.reshape((num_sentence, length))
|
| 34 |
+
|
| 35 |
+
return input_ids
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class BasePrompter:
|
| 40 |
+
def __init__(self):
|
| 41 |
+
self.refiners = []
|
| 42 |
+
self.extenders = []
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def load_prompt_refiners(self, model_manager: ModelManager, refiner_classes=[]):
|
| 46 |
+
for refiner_class in refiner_classes:
|
| 47 |
+
refiner = refiner_class.from_model_manager(model_manager)
|
| 48 |
+
self.refiners.append(refiner)
|
| 49 |
+
|
| 50 |
+
def load_prompt_extenders(self,model_manager:ModelManager,extender_classes=[]):
|
| 51 |
+
for extender_class in extender_classes:
|
| 52 |
+
extender = extender_class.from_model_manager(model_manager)
|
| 53 |
+
self.extenders.append(extender)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@torch.no_grad()
|
| 57 |
+
def process_prompt(self, prompt, positive=True):
|
| 58 |
+
if isinstance(prompt, list):
|
| 59 |
+
prompt = [self.process_prompt(prompt_, positive=positive) for prompt_ in prompt]
|
| 60 |
+
else:
|
| 61 |
+
for refiner in self.refiners:
|
| 62 |
+
prompt = refiner(prompt, positive=positive)
|
| 63 |
+
return prompt
|
| 64 |
+
|
| 65 |
+
@torch.no_grad()
|
| 66 |
+
def extend_prompt(self, prompt:str, positive=True):
|
| 67 |
+
extended_prompt = dict(prompt=prompt)
|
| 68 |
+
for extender in self.extenders:
|
| 69 |
+
extended_prompt = extender(extended_prompt)
|
| 70 |
+
return extended_prompt
|
dkt/prompters/wan_prompter.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .base_prompter import BasePrompter
|
| 2 |
+
from ..models.wan_video_text_encoder import WanTextEncoder
|
| 3 |
+
from transformers import AutoTokenizer
|
| 4 |
+
import os, torch
|
| 5 |
+
import ftfy
|
| 6 |
+
import html
|
| 7 |
+
import string
|
| 8 |
+
import regex as re
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def basic_clean(text):
|
| 12 |
+
text = ftfy.fix_text(text)
|
| 13 |
+
text = html.unescape(html.unescape(text))
|
| 14 |
+
return text.strip()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def whitespace_clean(text):
|
| 18 |
+
text = re.sub(r'\s+', ' ', text)
|
| 19 |
+
text = text.strip()
|
| 20 |
+
return text
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def canonicalize(text, keep_punctuation_exact_string=None):
|
| 24 |
+
text = text.replace('_', ' ')
|
| 25 |
+
if keep_punctuation_exact_string:
|
| 26 |
+
text = keep_punctuation_exact_string.join(
|
| 27 |
+
part.translate(str.maketrans('', '', string.punctuation))
|
| 28 |
+
for part in text.split(keep_punctuation_exact_string))
|
| 29 |
+
else:
|
| 30 |
+
text = text.translate(str.maketrans('', '', string.punctuation))
|
| 31 |
+
text = text.lower()
|
| 32 |
+
text = re.sub(r'\s+', ' ', text)
|
| 33 |
+
return text.strip()
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class HuggingfaceTokenizer:
|
| 37 |
+
|
| 38 |
+
def __init__(self, name, seq_len=None, clean=None, **kwargs):
|
| 39 |
+
assert clean in (None, 'whitespace', 'lower', 'canonicalize')
|
| 40 |
+
self.name = name
|
| 41 |
+
self.seq_len = seq_len
|
| 42 |
+
self.clean = clean
|
| 43 |
+
|
| 44 |
+
# init tokenizer
|
| 45 |
+
self.tokenizer = AutoTokenizer.from_pretrained(name, **kwargs)
|
| 46 |
+
self.vocab_size = self.tokenizer.vocab_size
|
| 47 |
+
|
| 48 |
+
def __call__(self, sequence, **kwargs):
|
| 49 |
+
return_mask = kwargs.pop('return_mask', False)
|
| 50 |
+
|
| 51 |
+
# arguments
|
| 52 |
+
_kwargs = {'return_tensors': 'pt'}
|
| 53 |
+
if self.seq_len is not None:
|
| 54 |
+
_kwargs.update({
|
| 55 |
+
'padding': 'max_length',
|
| 56 |
+
'truncation': True,
|
| 57 |
+
'max_length': self.seq_len
|
| 58 |
+
})
|
| 59 |
+
_kwargs.update(**kwargs)
|
| 60 |
+
|
| 61 |
+
# tokenization
|
| 62 |
+
if isinstance(sequence, str):
|
| 63 |
+
sequence = [sequence]
|
| 64 |
+
if self.clean:
|
| 65 |
+
sequence = [self._clean(u) for u in sequence]
|
| 66 |
+
ids = self.tokenizer(sequence, **_kwargs)
|
| 67 |
+
|
| 68 |
+
# output
|
| 69 |
+
if return_mask:
|
| 70 |
+
return ids.input_ids, ids.attention_mask
|
| 71 |
+
else:
|
| 72 |
+
return ids.input_ids
|
| 73 |
+
|
| 74 |
+
def _clean(self, text):
|
| 75 |
+
if self.clean == 'whitespace':
|
| 76 |
+
text = whitespace_clean(basic_clean(text))
|
| 77 |
+
elif self.clean == 'lower':
|
| 78 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
| 79 |
+
elif self.clean == 'canonicalize':
|
| 80 |
+
text = canonicalize(basic_clean(text))
|
| 81 |
+
return text
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class WanPrompter(BasePrompter):
|
| 85 |
+
|
| 86 |
+
def __init__(self, tokenizer_path=None, text_len=512):
|
| 87 |
+
super().__init__()
|
| 88 |
+
self.text_len = text_len
|
| 89 |
+
self.text_encoder = None
|
| 90 |
+
self.fetch_tokenizer(tokenizer_path)
|
| 91 |
+
|
| 92 |
+
def fetch_tokenizer(self, tokenizer_path=None):
|
| 93 |
+
if tokenizer_path is not None:
|
| 94 |
+
self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=self.text_len, clean='whitespace')
|
| 95 |
+
|
| 96 |
+
def fetch_models(self, text_encoder: WanTextEncoder = None):
|
| 97 |
+
self.text_encoder = text_encoder
|
| 98 |
+
|
| 99 |
+
def encode_prompt(self, prompt, positive=True, device="cuda"):
|
| 100 |
+
prompt = self.process_prompt(prompt, positive=positive)
|
| 101 |
+
|
| 102 |
+
ids, mask = self.tokenizer(prompt, return_mask=True, add_special_tokens=True)
|
| 103 |
+
ids = ids.to(device)
|
| 104 |
+
mask = mask.to(device)
|
| 105 |
+
seq_lens = mask.gt(0).sum(dim=1).long()
|
| 106 |
+
prompt_emb = self.text_encoder(ids, mask)
|
| 107 |
+
for i, v in enumerate(seq_lens):
|
| 108 |
+
prompt_emb[:, v:] = 0
|
| 109 |
+
return prompt_emb
|
dkt/schedulers/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .flow_match import FlowMatchScheduler
|
dkt/schedulers/flow_match.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, math
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class FlowMatchScheduler():
|
| 6 |
+
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
num_inference_steps=100,
|
| 10 |
+
num_train_timesteps=1000,
|
| 11 |
+
shift=3.0,
|
| 12 |
+
sigma_max=1.0,
|
| 13 |
+
sigma_min=0.003/1.002,
|
| 14 |
+
inverse_timesteps=False,
|
| 15 |
+
extra_one_step=False,
|
| 16 |
+
reverse_sigmas=False,
|
| 17 |
+
exponential_shift=False,
|
| 18 |
+
exponential_shift_mu=None,
|
| 19 |
+
shift_terminal=None,
|
| 20 |
+
):
|
| 21 |
+
self.num_train_timesteps = num_train_timesteps
|
| 22 |
+
self.shift = shift
|
| 23 |
+
self.sigma_max = sigma_max
|
| 24 |
+
self.sigma_min = sigma_min
|
| 25 |
+
self.inverse_timesteps = inverse_timesteps
|
| 26 |
+
self.extra_one_step = extra_one_step
|
| 27 |
+
self.reverse_sigmas = reverse_sigmas
|
| 28 |
+
self.exponential_shift = exponential_shift
|
| 29 |
+
self.exponential_shift_mu = exponential_shift_mu
|
| 30 |
+
self.shift_terminal = shift_terminal
|
| 31 |
+
self.set_timesteps(num_inference_steps)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False, shift=None, dynamic_shift_len=None):
|
| 35 |
+
if shift is not None:
|
| 36 |
+
self.shift = shift
|
| 37 |
+
sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength
|
| 38 |
+
if self.extra_one_step:
|
| 39 |
+
self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
|
| 40 |
+
else:
|
| 41 |
+
self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps)
|
| 42 |
+
|
| 43 |
+
if self.inverse_timesteps:
|
| 44 |
+
self.sigmas = torch.flip(self.sigmas, dims=[0])
|
| 45 |
+
if self.exponential_shift:
|
| 46 |
+
mu = self.calculate_shift(dynamic_shift_len) if dynamic_shift_len is not None else self.exponential_shift_mu
|
| 47 |
+
self.sigmas = math.exp(mu) / (math.exp(mu) + (1 / self.sigmas - 1))
|
| 48 |
+
else:
|
| 49 |
+
self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas)
|
| 50 |
+
if self.shift_terminal is not None:
|
| 51 |
+
one_minus_z = 1 - self.sigmas
|
| 52 |
+
scale_factor = one_minus_z[-1] / (1 - self.shift_terminal)
|
| 53 |
+
self.sigmas = 1 - (one_minus_z / scale_factor)
|
| 54 |
+
if self.reverse_sigmas:
|
| 55 |
+
self.sigmas = 1 - self.sigmas
|
| 56 |
+
self.timesteps = self.sigmas * self.num_train_timesteps
|
| 57 |
+
|
| 58 |
+
if training:
|
| 59 |
+
x = self.timesteps
|
| 60 |
+
y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2)
|
| 61 |
+
y_shifted = y - y.min()
|
| 62 |
+
bsmntw_weighing = y_shifted * (num_inference_steps / y_shifted.sum())
|
| 63 |
+
self.linear_timesteps_weights = bsmntw_weighing
|
| 64 |
+
self.training = True
|
| 65 |
+
else:
|
| 66 |
+
self.training = False
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def step(self, model_output, timestep, sample, to_final=False, **kwargs):
|
| 70 |
+
if isinstance(timestep, torch.Tensor):
|
| 71 |
+
timestep = timestep.cpu()
|
| 72 |
+
timestep_id = torch.argmin((self.timesteps - timestep).abs())
|
| 73 |
+
|
| 74 |
+
sigma = self.sigmas[timestep_id] #* 当前的sigma值, 也就是加了多少比例的噪声
|
| 75 |
+
if to_final or timestep_id + 1 >= len(self.timesteps): #* 下一步的噪声比例,
|
| 76 |
+
sigma_ = 1 if (self.inverse_timesteps or self.reverse_sigmas) else 0
|
| 77 |
+
else:
|
| 78 |
+
sigma_ = self.sigmas[timestep_id + 1]
|
| 79 |
+
prev_sample = sample + model_output * (sigma_ - sigma)
|
| 80 |
+
return prev_sample
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def return_to_timestep(self, timestep, sample, sample_stablized):
|
| 84 |
+
if isinstance(timestep, torch.Tensor):
|
| 85 |
+
timestep = timestep.cpu()
|
| 86 |
+
timestep_id = torch.argmin((self.timesteps - timestep).abs())
|
| 87 |
+
sigma = self.sigmas[timestep_id]
|
| 88 |
+
model_output = (sample - sample_stablized) / sigma
|
| 89 |
+
return model_output
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def add_noise(self, original_samples, noise, timestep):
|
| 93 |
+
if isinstance(timestep, torch.Tensor):
|
| 94 |
+
timestep = timestep.cpu()
|
| 95 |
+
timestep_id = torch.argmin((self.timesteps - timestep).abs())
|
| 96 |
+
sigma = self.sigmas[timestep_id]
|
| 97 |
+
sample = (1 - sigma) * original_samples + sigma * noise
|
| 98 |
+
return sample
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def training_target(self, sample, noise, timestep):
|
| 102 |
+
#* so: noise - target = sample
|
| 103 |
+
#* sample + target = noise
|
| 104 |
+
target = noise - sample
|
| 105 |
+
#* noise: is rgb images
|
| 106 |
+
return target
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def training_weight(self, timestep):
|
| 110 |
+
timestep_id = torch.argmin((self.timesteps - timestep.to(self.timesteps.device)).abs())
|
| 111 |
+
weights = self.linear_timesteps_weights[timestep_id]
|
| 112 |
+
return weights
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def calculate_shift(
|
| 116 |
+
self,
|
| 117 |
+
image_seq_len,
|
| 118 |
+
base_seq_len: int = 256,
|
| 119 |
+
max_seq_len: int = 8192,
|
| 120 |
+
base_shift: float = 0.5,
|
| 121 |
+
max_shift: float = 0.9,
|
| 122 |
+
):
|
| 123 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 124 |
+
b = base_shift - m * base_seq_len
|
| 125 |
+
mu = image_seq_len * m + b
|
| 126 |
+
return mu
|
dkt/utils/__init__.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, warnings, glob, os
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from einops import repeat, reduce
|
| 5 |
+
from typing import Optional, Union
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from modelscope import snapshot_download
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from typing import Optional
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class BasePipeline(torch.nn.Module):
|
| 14 |
+
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
device="cuda", torch_dtype=torch.float16,
|
| 18 |
+
height_division_factor=64, width_division_factor=64,
|
| 19 |
+
time_division_factor=None, time_division_remainder=None,
|
| 20 |
+
):
|
| 21 |
+
super().__init__()
|
| 22 |
+
# The device and torch_dtype is used for the storage of intermediate variables, not models.
|
| 23 |
+
self.device = device
|
| 24 |
+
self.torch_dtype = torch_dtype
|
| 25 |
+
# The following parameters are used for shape check.
|
| 26 |
+
self.height_division_factor = height_division_factor
|
| 27 |
+
self.width_division_factor = width_division_factor
|
| 28 |
+
self.time_division_factor = time_division_factor
|
| 29 |
+
self.time_division_remainder = time_division_remainder
|
| 30 |
+
self.vram_management_enabled = False
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def to(self, *args, **kwargs):
|
| 34 |
+
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
|
| 35 |
+
if device is not None:
|
| 36 |
+
self.device = device
|
| 37 |
+
if dtype is not None:
|
| 38 |
+
self.torch_dtype = dtype
|
| 39 |
+
super().to(*args, **kwargs)
|
| 40 |
+
return self
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def check_resize_height_width(self, height, width, num_frames=None):
|
| 44 |
+
# Shape check
|
| 45 |
+
if height % self.height_division_factor != 0:
|
| 46 |
+
height = (height + self.height_division_factor - 1) // self.height_division_factor * self.height_division_factor
|
| 47 |
+
print(f"height % {self.height_division_factor} != 0. We round it up to {height}.")
|
| 48 |
+
if width % self.width_division_factor != 0:
|
| 49 |
+
width = (width + self.width_division_factor - 1) // self.width_division_factor * self.width_division_factor
|
| 50 |
+
print(f"width % {self.width_division_factor} != 0. We round it up to {width}.")
|
| 51 |
+
if num_frames is None:
|
| 52 |
+
return height, width
|
| 53 |
+
else:
|
| 54 |
+
if num_frames % self.time_division_factor != self.time_division_remainder:
|
| 55 |
+
num_frames = (num_frames + self.time_division_factor - 1) // self.time_division_factor * self.time_division_factor + self.time_division_remainder
|
| 56 |
+
print(f"num_frames % {self.time_division_factor} != {self.time_division_remainder}. We round it up to {num_frames}.")
|
| 57 |
+
return height, width, num_frames
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def preprocess_image(self, image, torch_dtype=None, device=None, pattern="B C H W", min_value=-1, max_value=1):
|
| 61 |
+
# Transform a PIL.Image to torch.Tensor
|
| 62 |
+
image = torch.Tensor(np.array(image, dtype=np.float32))
|
| 63 |
+
image = image.to(dtype=torch_dtype or self.torch_dtype, device=device or self.device)
|
| 64 |
+
image = image * ((max_value - min_value) / 255) + min_value
|
| 65 |
+
image = repeat(image, f"H W C -> {pattern}", **({"B": 1} if "B" in pattern else {}))
|
| 66 |
+
return image
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def preprocess_video(self, video, torch_dtype=None, device=None, pattern="B C T H W", min_value=-1, max_value=1):
|
| 70 |
+
# Transform a list of PIL.Image to torch.Tensor
|
| 71 |
+
video = [self.preprocess_image(image, torch_dtype=torch_dtype, device=device, min_value=min_value, max_value=max_value) for image in video]
|
| 72 |
+
video = torch.stack(video, dim=pattern.index("T") // 2)
|
| 73 |
+
return video
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def vae_output_to_image(self, vae_output, pattern="B C H W", min_value=-1, max_value=1):
|
| 77 |
+
# Transform a torch.Tensor to PIL.Image
|
| 78 |
+
if pattern != "H W C":
|
| 79 |
+
vae_output = reduce(vae_output, f"{pattern} -> H W C", reduction="mean")
|
| 80 |
+
image = ((vae_output - min_value) * (255 / (max_value - min_value))).clip(0, 255)
|
| 81 |
+
image = image.to(device="cpu", dtype=torch.uint8)
|
| 82 |
+
image = Image.fromarray(image.numpy())
|
| 83 |
+
return image
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def vae_output_to_video(self, vae_output, pattern="B C T H W", min_value=-1, max_value=1):
|
| 87 |
+
# Transform a torch.Tensor to list of PIL.Image
|
| 88 |
+
if pattern != "T H W C":
|
| 89 |
+
vae_output = reduce(vae_output, f"{pattern} -> T H W C", reduction="mean")
|
| 90 |
+
video = [self.vae_output_to_image(image, pattern="H W C", min_value=min_value, max_value=max_value) for image in vae_output]
|
| 91 |
+
return video
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def load_models_to_device(self, model_names=[]):
|
| 95 |
+
if self.vram_management_enabled:
|
| 96 |
+
# offload models
|
| 97 |
+
for name, model in self.named_children():
|
| 98 |
+
if name not in model_names:
|
| 99 |
+
if hasattr(model, "vram_management_enabled") and model.vram_management_enabled:
|
| 100 |
+
for module in model.modules():
|
| 101 |
+
if hasattr(module, "offload"):
|
| 102 |
+
module.offload()
|
| 103 |
+
else:
|
| 104 |
+
model.cpu()
|
| 105 |
+
torch.cuda.empty_cache()
|
| 106 |
+
# onload models
|
| 107 |
+
for name, model in self.named_children():
|
| 108 |
+
if name in model_names:
|
| 109 |
+
if hasattr(model, "vram_management_enabled") and model.vram_management_enabled:
|
| 110 |
+
for module in model.modules():
|
| 111 |
+
if hasattr(module, "onload"):
|
| 112 |
+
module.onload()
|
| 113 |
+
else:
|
| 114 |
+
model.to(self.device)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def generate_noise(self, shape, seed=None, rand_device="cpu", rand_torch_dtype=torch.float32, device=None, torch_dtype=None):
|
| 118 |
+
# Initialize Gaussian noise
|
| 119 |
+
generator = None if seed is None else torch.Generator(rand_device).manual_seed(seed)
|
| 120 |
+
noise = torch.randn(shape, generator=generator, device=rand_device, dtype=rand_torch_dtype)
|
| 121 |
+
noise = noise.to(dtype=torch_dtype or self.torch_dtype, device=device or self.device)
|
| 122 |
+
return noise
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def enable_cpu_offload(self):
|
| 126 |
+
warnings.warn("`enable_cpu_offload` will be deprecated. Please use `enable_vram_management`.")
|
| 127 |
+
self.vram_management_enabled = True
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def get_vram(self):
|
| 131 |
+
return torch.cuda.mem_get_info(self.device)[1] / (1024 ** 3)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def freeze_except(self, model_names):
|
| 135 |
+
for name, model in self.named_children():
|
| 136 |
+
if name in model_names:
|
| 137 |
+
model.train()
|
| 138 |
+
model.requires_grad_(True)
|
| 139 |
+
else:
|
| 140 |
+
model.eval()
|
| 141 |
+
model.requires_grad_(False)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
@dataclass
|
| 145 |
+
class ModelConfig:
|
| 146 |
+
path: Union[str, list[str]] = None
|
| 147 |
+
model_id: str = None
|
| 148 |
+
origin_file_pattern: Union[str, list[str]] = None
|
| 149 |
+
download_resource: str = "ModelScope"
|
| 150 |
+
offload_device: Optional[Union[str, torch.device]] = None
|
| 151 |
+
offload_dtype: Optional[torch.dtype] = None
|
| 152 |
+
local_model_path: str = None
|
| 153 |
+
skip_download: bool = False
|
| 154 |
+
|
| 155 |
+
def download_if_necessary(self, use_usp=False):
|
| 156 |
+
if self.path is None:
|
| 157 |
+
# Check model_id and origin_file_pattern
|
| 158 |
+
if self.model_id is None:
|
| 159 |
+
raise ValueError(f"""No valid model files. Please use `ModelConfig(path="xxx")` or `ModelConfig(model_id="xxx/yyy", origin_file_pattern="zzz")`.""")
|
| 160 |
+
|
| 161 |
+
# Skip if not in rank 0
|
| 162 |
+
if use_usp:
|
| 163 |
+
import torch.distributed as dist
|
| 164 |
+
skip_download = self.skip_download or dist.get_rank() != 0
|
| 165 |
+
else:
|
| 166 |
+
skip_download = self.skip_download
|
| 167 |
+
|
| 168 |
+
# Check whether the origin path is a folder
|
| 169 |
+
if self.origin_file_pattern is None or self.origin_file_pattern == "":
|
| 170 |
+
self.origin_file_pattern = ""
|
| 171 |
+
allow_file_pattern = None
|
| 172 |
+
is_folder = True
|
| 173 |
+
elif isinstance(self.origin_file_pattern, str) and self.origin_file_pattern.endswith("/"):
|
| 174 |
+
allow_file_pattern = self.origin_file_pattern + "*"
|
| 175 |
+
is_folder = True
|
| 176 |
+
else:
|
| 177 |
+
allow_file_pattern = self.origin_file_pattern
|
| 178 |
+
is_folder = False
|
| 179 |
+
|
| 180 |
+
# Download
|
| 181 |
+
if self.local_model_path is None:
|
| 182 |
+
self.local_model_path = "./models"
|
| 183 |
+
if not skip_download:
|
| 184 |
+
downloaded_files = glob.glob(self.origin_file_pattern, root_dir=os.path.join(self.local_model_path, self.model_id))
|
| 185 |
+
snapshot_download(
|
| 186 |
+
self.model_id,
|
| 187 |
+
local_dir=os.path.join(self.local_model_path, self.model_id),
|
| 188 |
+
allow_file_pattern=allow_file_pattern,
|
| 189 |
+
ignore_file_pattern=downloaded_files,
|
| 190 |
+
local_files_only=False
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# Let rank 1, 2, ... wait for rank 0
|
| 194 |
+
if use_usp:
|
| 195 |
+
import torch.distributed as dist
|
| 196 |
+
dist.barrier(device_ids=[dist.get_rank()])
|
| 197 |
+
|
| 198 |
+
# Return downloaded files
|
| 199 |
+
if is_folder:
|
| 200 |
+
self.path = os.path.join(self.local_model_path, self.model_id, self.origin_file_pattern)
|
| 201 |
+
else:
|
| 202 |
+
self.path = glob.glob(os.path.join(self.local_model_path, self.model_id, self.origin_file_pattern))
|
| 203 |
+
if isinstance(self.path, list) and len(self.path) == 1:
|
| 204 |
+
self.path = self.path[0]
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class PipelineUnit:
|
| 209 |
+
def __init__(
|
| 210 |
+
self,
|
| 211 |
+
seperate_cfg: bool = False,
|
| 212 |
+
take_over: bool = False,
|
| 213 |
+
input_params: tuple[str] = None,
|
| 214 |
+
input_params_posi: dict[str, str] = None,
|
| 215 |
+
input_params_nega: dict[str, str] = None,
|
| 216 |
+
onload_model_names: tuple[str] = None
|
| 217 |
+
):
|
| 218 |
+
self.seperate_cfg = seperate_cfg
|
| 219 |
+
self.take_over = take_over
|
| 220 |
+
self.input_params = input_params
|
| 221 |
+
self.input_params_posi = input_params_posi
|
| 222 |
+
self.input_params_nega = input_params_nega
|
| 223 |
+
self.onload_model_names = onload_model_names
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def process(self, pipe: BasePipeline, inputs: dict, positive=True, **kwargs) -> dict:
|
| 227 |
+
raise NotImplementedError("`process` is not implemented.")
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class PipelineUnitRunner:
|
| 232 |
+
def __init__(self):
|
| 233 |
+
pass
|
| 234 |
+
|
| 235 |
+
def __call__(self, unit: PipelineUnit, pipe: BasePipeline, inputs_shared: dict, inputs_posi: dict, inputs_nega: dict) -> tuple[dict, dict]:
|
| 236 |
+
if unit.take_over:
|
| 237 |
+
# Let the pipeline unit take over this function.
|
| 238 |
+
inputs_shared, inputs_posi, inputs_nega = unit.process(pipe, inputs_shared=inputs_shared, inputs_posi=inputs_posi, inputs_nega=inputs_nega)
|
| 239 |
+
elif unit.seperate_cfg:
|
| 240 |
+
# Positive side
|
| 241 |
+
processor_inputs = {name: inputs_posi.get(name_) for name, name_ in unit.input_params_posi.items()}
|
| 242 |
+
if unit.input_params is not None:
|
| 243 |
+
for name in unit.input_params:
|
| 244 |
+
processor_inputs[name] = inputs_shared.get(name)
|
| 245 |
+
processor_outputs = unit.process(pipe, **processor_inputs)
|
| 246 |
+
inputs_posi.update(processor_outputs)
|
| 247 |
+
# Negative side
|
| 248 |
+
if inputs_shared["cfg_scale"] != 1:
|
| 249 |
+
processor_inputs = {name: inputs_nega.get(name_) for name, name_ in unit.input_params_nega.items()}
|
| 250 |
+
if unit.input_params is not None:
|
| 251 |
+
for name in unit.input_params:
|
| 252 |
+
processor_inputs[name] = inputs_shared.get(name)
|
| 253 |
+
processor_outputs = unit.process(pipe, **processor_inputs)
|
| 254 |
+
inputs_nega.update(processor_outputs)
|
| 255 |
+
else:
|
| 256 |
+
inputs_nega.update(processor_outputs)
|
| 257 |
+
else:
|
| 258 |
+
processor_inputs = {name: inputs_shared.get(name) for name in unit.input_params}
|
| 259 |
+
processor_outputs = unit.process(pipe, **processor_inputs)
|
| 260 |
+
inputs_shared.update(processor_outputs)
|
| 261 |
+
return inputs_shared, inputs_posi, inputs_nega
|
dkt/vram_management/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .layers import *
|
| 2 |
+
from .gradient_checkpointing import *
|
dkt/vram_management/gradient_checkpointing.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def create_custom_forward(module):
|
| 5 |
+
def custom_forward(*inputs, **kwargs):
|
| 6 |
+
return module(*inputs, **kwargs)
|
| 7 |
+
return custom_forward
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def gradient_checkpoint_forward(
|
| 11 |
+
model,
|
| 12 |
+
use_gradient_checkpointing,
|
| 13 |
+
use_gradient_checkpointing_offload,
|
| 14 |
+
*args,
|
| 15 |
+
**kwargs,
|
| 16 |
+
):
|
| 17 |
+
if use_gradient_checkpointing_offload:
|
| 18 |
+
with torch.autograd.graph.save_on_cpu():
|
| 19 |
+
model_output = torch.utils.checkpoint.checkpoint(
|
| 20 |
+
create_custom_forward(model),
|
| 21 |
+
*args,
|
| 22 |
+
**kwargs,
|
| 23 |
+
use_reentrant=False,
|
| 24 |
+
)
|
| 25 |
+
elif use_gradient_checkpointing:
|
| 26 |
+
model_output = torch.utils.checkpoint.checkpoint(
|
| 27 |
+
create_custom_forward(model),
|
| 28 |
+
*args,
|
| 29 |
+
**kwargs,
|
| 30 |
+
use_reentrant=False,
|
| 31 |
+
)
|
| 32 |
+
else:
|
| 33 |
+
model_output = model(*args, **kwargs)
|
| 34 |
+
return model_output
|
dkt/vram_management/layers.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, copy
|
| 2 |
+
from typing import Union
|
| 3 |
+
from ..models.utils import init_weights_on_device
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def cast_to(weight, dtype, device):
|
| 7 |
+
r = torch.empty_like(weight, dtype=dtype, device=device)
|
| 8 |
+
r.copy_(weight)
|
| 9 |
+
return r
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class AutoTorchModule(torch.nn.Module):
|
| 13 |
+
def __init__(self):
|
| 14 |
+
super().__init__()
|
| 15 |
+
|
| 16 |
+
def check_free_vram(self):
|
| 17 |
+
gpu_mem_state = torch.cuda.mem_get_info(self.computation_device)
|
| 18 |
+
used_memory = (gpu_mem_state[1] - gpu_mem_state[0]) / (1024 ** 3)
|
| 19 |
+
return used_memory < self.vram_limit
|
| 20 |
+
|
| 21 |
+
def offload(self):
|
| 22 |
+
if self.state != 0:
|
| 23 |
+
self.to(dtype=self.offload_dtype, device=self.offload_device)
|
| 24 |
+
self.state = 0
|
| 25 |
+
|
| 26 |
+
def onload(self):
|
| 27 |
+
if self.state != 1:
|
| 28 |
+
self.to(dtype=self.onload_dtype, device=self.onload_device)
|
| 29 |
+
self.state = 1
|
| 30 |
+
|
| 31 |
+
def keep(self):
|
| 32 |
+
if self.state != 2:
|
| 33 |
+
self.to(dtype=self.computation_dtype, device=self.computation_device)
|
| 34 |
+
self.state = 2
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class AutoWrappedModule(AutoTorchModule):
|
| 38 |
+
def __init__(self, module: torch.nn.Module, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, **kwargs):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.module = module.to(dtype=offload_dtype, device=offload_device)
|
| 41 |
+
self.offload_dtype = offload_dtype
|
| 42 |
+
self.offload_device = offload_device
|
| 43 |
+
self.onload_dtype = onload_dtype
|
| 44 |
+
self.onload_device = onload_device
|
| 45 |
+
self.computation_dtype = computation_dtype
|
| 46 |
+
self.computation_device = computation_device
|
| 47 |
+
self.vram_limit = vram_limit
|
| 48 |
+
self.state = 0
|
| 49 |
+
|
| 50 |
+
def forward(self, *args, **kwargs):
|
| 51 |
+
if self.state == 2:
|
| 52 |
+
module = self.module
|
| 53 |
+
else:
|
| 54 |
+
if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
|
| 55 |
+
module = self.module
|
| 56 |
+
elif self.vram_limit is not None and self.check_free_vram():
|
| 57 |
+
self.keep()
|
| 58 |
+
module = self.module
|
| 59 |
+
else:
|
| 60 |
+
module = copy.deepcopy(self.module).to(dtype=self.computation_dtype, device=self.computation_device)
|
| 61 |
+
return module(*args, **kwargs)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class WanAutoCastLayerNorm(torch.nn.LayerNorm, AutoTorchModule):
|
| 65 |
+
def __init__(self, module: torch.nn.LayerNorm, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, **kwargs):
|
| 66 |
+
with init_weights_on_device(device=torch.device("meta")):
|
| 67 |
+
super().__init__(module.normalized_shape, eps=module.eps, elementwise_affine=module.elementwise_affine, bias=module.bias is not None, dtype=offload_dtype, device=offload_device)
|
| 68 |
+
self.weight = module.weight
|
| 69 |
+
self.bias = module.bias
|
| 70 |
+
self.offload_dtype = offload_dtype
|
| 71 |
+
self.offload_device = offload_device
|
| 72 |
+
self.onload_dtype = onload_dtype
|
| 73 |
+
self.onload_device = onload_device
|
| 74 |
+
self.computation_dtype = computation_dtype
|
| 75 |
+
self.computation_device = computation_device
|
| 76 |
+
self.vram_limit = vram_limit
|
| 77 |
+
self.state = 0
|
| 78 |
+
|
| 79 |
+
def forward(self, x, *args, **kwargs):
|
| 80 |
+
if self.state == 2:
|
| 81 |
+
weight, bias = self.weight, self.bias
|
| 82 |
+
else:
|
| 83 |
+
if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
|
| 84 |
+
weight, bias = self.weight, self.bias
|
| 85 |
+
elif self.vram_limit is not None and self.check_free_vram():
|
| 86 |
+
self.keep()
|
| 87 |
+
weight, bias = self.weight, self.bias
|
| 88 |
+
else:
|
| 89 |
+
weight = None if self.weight is None else cast_to(self.weight, self.computation_dtype, self.computation_device)
|
| 90 |
+
bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device)
|
| 91 |
+
with torch.amp.autocast(device_type=x.device.type):
|
| 92 |
+
x = torch.nn.functional.layer_norm(x.float(), self.normalized_shape, weight, bias, self.eps).type_as(x)
|
| 93 |
+
return x
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class AutoWrappedLinear(torch.nn.Linear, AutoTorchModule):
|
| 97 |
+
def __init__(self, module: torch.nn.Linear, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, name="", **kwargs):
|
| 98 |
+
with init_weights_on_device(device=torch.device("meta")):
|
| 99 |
+
super().__init__(in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, dtype=offload_dtype, device=offload_device)
|
| 100 |
+
self.weight = module.weight
|
| 101 |
+
self.bias = module.bias
|
| 102 |
+
self.offload_dtype = offload_dtype
|
| 103 |
+
self.offload_device = offload_device
|
| 104 |
+
self.onload_dtype = onload_dtype
|
| 105 |
+
self.onload_device = onload_device
|
| 106 |
+
self.computation_dtype = computation_dtype
|
| 107 |
+
self.computation_device = computation_device
|
| 108 |
+
self.vram_limit = vram_limit
|
| 109 |
+
self.state = 0
|
| 110 |
+
self.name = name
|
| 111 |
+
self.lora_A_weights = []
|
| 112 |
+
self.lora_B_weights = []
|
| 113 |
+
self.lora_merger = None
|
| 114 |
+
self.enable_fp8 = computation_dtype in [torch.float8_e4m3fn, torch.float8_e4m3fnuz]
|
| 115 |
+
|
| 116 |
+
def fp8_linear(
|
| 117 |
+
self,
|
| 118 |
+
input: torch.Tensor,
|
| 119 |
+
weight: torch.Tensor,
|
| 120 |
+
bias: Union[torch.Tensor, None] = None):
|
| 121 |
+
device = input.device
|
| 122 |
+
origin_dtype = input.dtype
|
| 123 |
+
origin_shape = input.shape
|
| 124 |
+
input = input.reshape(-1, origin_shape[-1])
|
| 125 |
+
|
| 126 |
+
x_max = torch.max(torch.abs(input), dim=-1, keepdim=True).values
|
| 127 |
+
fp8_max = 448.0
|
| 128 |
+
# For float8_e4m3fnuz, the maximum representable value is half of that of e4m3fn.
|
| 129 |
+
# To avoid overflow and ensure numerical compatibility during FP8 computation,
|
| 130 |
+
# we scale down the input by 2.0 in advance.
|
| 131 |
+
# This scaling will be compensated later during the final result scaling.
|
| 132 |
+
if self.computation_dtype == torch.float8_e4m3fnuz:
|
| 133 |
+
fp8_max = fp8_max / 2.0
|
| 134 |
+
scale_a = torch.clamp(x_max / fp8_max, min=1.0).float().to(device=device)
|
| 135 |
+
scale_b = torch.ones((weight.shape[0], 1)).to(device=device)
|
| 136 |
+
input = input / (scale_a + 1e-8)
|
| 137 |
+
input = input.to(self.computation_dtype)
|
| 138 |
+
weight = weight.to(self.computation_dtype)
|
| 139 |
+
bias = bias.to(torch.bfloat16)
|
| 140 |
+
|
| 141 |
+
result = torch._scaled_mm(
|
| 142 |
+
input,
|
| 143 |
+
weight.T,
|
| 144 |
+
scale_a=scale_a,
|
| 145 |
+
scale_b=scale_b.T,
|
| 146 |
+
bias=bias,
|
| 147 |
+
out_dtype=origin_dtype,
|
| 148 |
+
)
|
| 149 |
+
new_shape = origin_shape[:-1] + result.shape[-1:]
|
| 150 |
+
result = result.reshape(new_shape)
|
| 151 |
+
return result
|
| 152 |
+
|
| 153 |
+
def forward(self, x, *args, **kwargs):
|
| 154 |
+
# VRAM management
|
| 155 |
+
if self.state == 2:
|
| 156 |
+
weight, bias = self.weight, self.bias
|
| 157 |
+
else:
|
| 158 |
+
if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
|
| 159 |
+
weight, bias = self.weight, self.bias
|
| 160 |
+
elif self.vram_limit is not None and self.check_free_vram():
|
| 161 |
+
self.keep()
|
| 162 |
+
weight, bias = self.weight, self.bias
|
| 163 |
+
else:
|
| 164 |
+
weight = cast_to(self.weight, self.computation_dtype, self.computation_device)
|
| 165 |
+
bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device)
|
| 166 |
+
|
| 167 |
+
# Linear forward
|
| 168 |
+
if self.enable_fp8:
|
| 169 |
+
out = self.fp8_linear(x, weight, bias)
|
| 170 |
+
else:
|
| 171 |
+
out = torch.nn.functional.linear(x, weight, bias)
|
| 172 |
+
|
| 173 |
+
# LoRA
|
| 174 |
+
if len(self.lora_A_weights) == 0:
|
| 175 |
+
# No LoRA
|
| 176 |
+
return out
|
| 177 |
+
elif self.lora_merger is None:
|
| 178 |
+
# Native LoRA inference
|
| 179 |
+
for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights):
|
| 180 |
+
out = out + x @ lora_A.T @ lora_B.T
|
| 181 |
+
else:
|
| 182 |
+
# LoRA fusion
|
| 183 |
+
lora_output = []
|
| 184 |
+
for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights):
|
| 185 |
+
lora_output.append(x @ lora_A.T @ lora_B.T)
|
| 186 |
+
lora_output = torch.stack(lora_output)
|
| 187 |
+
out = self.lora_merger(out, lora_output)
|
| 188 |
+
return out
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0, vram_limit=None, name_prefix=""):
|
| 192 |
+
for name, module in model.named_children():
|
| 193 |
+
layer_name = name if name_prefix == "" else name_prefix + "." + name
|
| 194 |
+
for source_module, target_module in module_map.items():
|
| 195 |
+
if isinstance(module, source_module):
|
| 196 |
+
num_param = sum(p.numel() for p in module.parameters())
|
| 197 |
+
if max_num_param is not None and total_num_param + num_param > max_num_param:
|
| 198 |
+
module_config_ = overflow_module_config
|
| 199 |
+
else:
|
| 200 |
+
module_config_ = module_config
|
| 201 |
+
module_ = target_module(module, **module_config_, vram_limit=vram_limit, name=layer_name)
|
| 202 |
+
setattr(model, name, module_)
|
| 203 |
+
total_num_param += num_param
|
| 204 |
+
break
|
| 205 |
+
else:
|
| 206 |
+
total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param, vram_limit=vram_limit, name_prefix=layer_name)
|
| 207 |
+
return total_num_param
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def enable_vram_management(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, vram_limit=None):
|
| 211 |
+
enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0, vram_limit=vram_limit)
|
| 212 |
+
model.vram_management_enabled = True
|
| 213 |
+
|
examples/1.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:68ae88d1729f13d2eba6b9c3ae265af24ba563c725cd6ec7430fa9cf2a8f3584
|
| 3 |
+
size 695111
|
examples/10.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33faeefd4d21ca9ddc6386f0c7a83523632901d7f791fb5bd307b43739235c3d
|
| 3 |
+
size 3886742
|
examples/178db6e89ab682bfc612a3290fec58dd.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:803bea53274f55f02463af8855585a0e4950ec1ae498ed1e6ef261d83d38b371
|
| 3 |
+
size 1552729
|
examples/1b0daeb776471c7389b36cee53049417.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c89828ebf754c762daa916ba764293193986fde8e2ff0e70be66926fbc9a8d07
|
| 3 |
+
size 1447735
|
examples/2.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6dd9a4527924fa2c26fd5bcc85237951180dcc136bac88d08bcd78635de58848
|
| 3 |
+
size 883548
|
examples/3.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da710ac25e12ef740d0bac04a452d1da6078a7acfe35bd456ab8a659a81401ff
|
| 3 |
+
size 628311
|
examples/30.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f0aee9bbb44a52ffd26424b4a0d804ee236e56edddadbcec5b7b6d79b8b2464e
|
| 3 |
+
size 2677102
|
examples/31.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d0060e4564595ecc6397b7516ffc906beab7ff2a11971be2c9cd0e7807e6772
|
| 3 |
+
size 569935
|
examples/32.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:209d7f97bd9e5c881789d35859c06840a7321db7a1f5cfe285dadf18d84e847c
|
| 3 |
+
size 1593158
|
examples/33.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54c8de91a05ceb1c01c3bcc267e527a55adffcf6dee1714629bb5b09850a38fd
|
| 3 |
+
size 918682
|
examples/35.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9fba530d137d1ebeae598f502c4b59f7693d87738038d6f726512d00b54a6e4
|
| 3 |
+
size 952985
|
examples/36.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eff2bff79f77dadc26bb74623b50ef6f9e6b37b68247a0779f48b57822e5f74d
|
| 3 |
+
size 1008476
|
examples/39.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df7ff152c9835a20d95d3ccf8bd0386ed8fd25ed393b7eb2b0f669f7866124e3
|
| 3 |
+
size 740198
|
examples/40.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:deb684b15a71152cc7377957946042e9e8fa8efce619f7801de8cb91eb3c1e82
|
| 3 |
+
size 1021691
|
examples/5.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:631fc39bbde6f098c4f539f87c7c43de16a0d117ec51d16976d4b4e7e7279bc0
|
| 3 |
+
size 7130292
|
examples/69230f105ad8740e08d743a8ee11c651.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7d2920ef6ab0be19b5459a51aaacff4dbc773a18ecab150939866804d46b98ce
|
| 3 |
+
size 416952
|
examples/7.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2cc7c666bcb736f6c8fca479eb49eb9257ad321db5f0737cea946f1dc831d888
|
| 3 |
+
size 6361240
|