Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,561 Bytes
cf7f9c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
import os
import os
import subprocess
def install(package):
subprocess.check_call([os.sys.executable, "-m", "pip", "install", package])
install("torchvision")
install("loguru")
install("imageio")
install("modelscope")
install("einops")
install("safetensors")
install("transformers")
install("ftfy")
install("accelerate")
install("sentencepiece")
install("spaces")
install("opencv-python")
install("trimesh")
install("gradio_litmodel3d")
install("open3d")
import gradio as gr
import numpy as np
import torch
from PIL import Image
from loguru import logger
from tqdm import tqdm
from tools.common_utils import save_video
from dkt.pipelines.wan_video_new import WanVideoPipeline, ModelConfig
try:
import gradio_client.utils as _gc_utils
if hasattr(_gc_utils, "get_type"):
_orig_get_type = _gc_utils.get_type
def _get_type_safe(schema):
if not isinstance(schema, dict):
return "Any"
return _orig_get_type(schema)
_gc_utils.get_type = _get_type_safe
except Exception:
pass
# Additional guard: handle boolean JSON Schemas and parsing errors
try:
import gradio_client.utils as _gc_utils
# Wrap the internal _json_schema_to_python_type if present
if hasattr(_gc_utils, "_json_schema_to_python_type"):
_orig_internal = _gc_utils._json_schema_to_python_type
def _json_schema_to_python_type_safe(schema, defs=None):
if isinstance(schema, bool):
return "Any"
try:
return _orig_internal(schema, defs)
except Exception:
return "Any"
_gc_utils._json_schema_to_python_type = _json_schema_to_python_type_safe
# Also wrap the public json_schema_to_python_type to be extra defensive
if hasattr(_gc_utils, "json_schema_to_python_type"):
_orig_public = _gc_utils.json_schema_to_python_type
def json_schema_to_python_type_safe(schema):
try:
return _orig_public(schema)
except Exception:
return "Any"
_gc_utils.json_schema_to_python_type = json_schema_to_python_type_safe
except Exception:
pass
import cv2
import copy
import trimesh
from gradio_litmodel3d import LitModel3D
from os.path import join
from tools.depth2pcd import depth2pcd
try:
from moge.model.v2 import MoGeModel
except:
os.system('pip install git+https://github.com/microsoft/MoGe.git -i https://pypi.org/simple/ --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host files.pythonhosted.org')
from moge.model.v2 import MoGeModel
from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
import glob
import datetime
import shutil
import tempfile
import spaces
PIPE_1_3B = None
MOGE_MODULE = None
#* better for bg: logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
PROMPT = 'depth'
NEGATIVE_PROMPT = ''
def resize_frame(frame, height, width):
frame = np.array(frame)
frame = torch.from_numpy(frame).permute(2, 0, 1).unsqueeze(0).float() / 255.0
frame = torch.nn.functional.interpolate(frame, (height, width), mode="bicubic", align_corners=False, antialias=True)
frame = (frame.squeeze(0).permute(1, 2, 0).clamp(0, 1) * 255).byte().numpy()
frame = Image.fromarray(frame)
return frame
def pmap_to_glb(point_map, valid_mask, frame) -> trimesh.Scene:
pts_3d = point_map[valid_mask] * np.array([-1, -1, 1])
pts_rgb = frame[valid_mask]
# Initialize a 3D scene
scene_3d = trimesh.Scene()
# Add point cloud data to the scene
point_cloud_data = trimesh.PointCloud(
vertices=pts_3d, colors=pts_rgb
)
scene_3d.add_geometry(point_cloud_data)
return scene_3d
def create_simple_glb_from_pointcloud(points, colors, glb_filename):
try:
if len(points) == 0:
logger.warning(f"No valid points to create GLB for {glb_filename}")
return False
if colors is not None:
# logger.info(f"Adding colors to GLB: shape={colors.shape}, range=[{colors.min():.3f}, {colors.max():.3f}]")
pts_rgb = colors
else:
logger.info("No colors provided, adding default white colors")
pts_rgb = np.ones((len(points), 3))
valid_mask = np.ones(len(points), dtype=bool)
scene_3d = pmap_to_glb(points, valid_mask, pts_rgb)
scene_3d.export(glb_filename)
# logger.info(f"Saved GLB file using trimesh: {glb_filename}")
return True
except Exception as e:
logger.error(f"Error creating GLB from pointcloud using trimesh: {str(e)}")
return False
def extract_frames_from_video_file(video_path):
try:
cap = cv2.VideoCapture(video_path)
frames = []
fps = cap.get(cv2.CAP_PROP_FPS)
if fps <= 0:
fps = 15.0
while True:
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_rgb = Image.fromarray(frame_rgb)
frames.append(frame_rgb)
cap.release()
return frames, fps
except Exception as e:
logger.error(f"Error extracting frames from {video_path}: {str(e)}")
return [], 15.0
def load_moge_model(device="cuda:0"):
global MOGE_MODULE
if MOGE_MODULE is not None:
return MOGE_MODULE
logger.info(f"Loading MoGe model on {device}...")
MOGE_MODULE = MoGeModel.from_pretrained('Ruicheng/moge-2-vitl-normal').to(device)
return MOGE_MODULE
def load_model_1_3b(device="cuda:0"):
global PIPE_1_3B
if PIPE_1_3B is not None:
return PIPE_1_3B
logger.info(f"Loading 1.3B model on {device}...")
pipe = WanVideoPipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device=device,
model_configs=[
ModelConfig(
model_id="PAI/Wan2.1-Fun-1.3B-Control",
origin_file_pattern="diffusion_pytorch_model*.safetensors",
offload_device="cpu",
),
ModelConfig(
model_id="PAI/Wan2.1-Fun-1.3B-Control",
origin_file_pattern="models_t5_umt5-xxl-enc-bf16.pth",
offload_device="cpu",
),
ModelConfig(
model_id="PAI/Wan2.1-Fun-1.3B-Control",
origin_file_pattern="Wan2.1_VAE.pth",
offload_device="cpu",
),
ModelConfig(
model_id="PAI/Wan2.1-Fun-1.3B-Control",
origin_file_pattern="models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
offload_device="cpu",
),
],
training_strategy="origin",
)
lora_config = ModelConfig(
model_id="Daniellesry/DKT-Depth-1-3B",
origin_file_pattern="dkt-1-3B.safetensors",
offload_device="cpu",
)
lora_config.download_if_necessary(use_usp=False)
pipe.load_lora(pipe.dit, lora_config.path, alpha=1.0)#todo is it work?
pipe.enable_vram_management()
PIPE_1_3B = pipe
return pipe
def get_model(model_size):
if model_size == "1.3B":
assert PIPE_1_3B is not None, "1.3B model not initialized"
return PIPE_1_3B
else:
raise ValueError(f"Unsupported model size: {model_size}")
def process_video(
video_file,
model_size,
height,
width,
num_inference_steps,
window_size,
overlap
):
try:
pipe = get_model(model_size)
if pipe is None:
return None, f"Model {model_size} not initialized. Please restart the application."
tmp_video_path = video_file
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# 使用临时目录存储所有文件
cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
original_filename = f"input_{timestamp}.mp4"
dst_path = os.path.join(cur_save_dir, original_filename)
shutil.copy2(tmp_video_path, dst_path)
origin_frames, input_fps = extract_frames_from_video_file(tmp_video_path)
if not origin_frames:
return None, "Failed to extract frames from video"
logger.info(f"Extracted {len(origin_frames)} frames from video")
original_width, original_height = origin_frames[0].size
ROTATE = False
if original_width < original_height:
ROTATE = True
origin_frames = [x.transpose(Image.ROTATE_90) for x in origin_frames]
tmp = original_width
original_width = original_height
original_height = tmp
frames = [resize_frame(frame, height, width) for frame in origin_frames]
frame_length = len(frames)
if (frame_length - 1) % 4 != 0:
new_len = ((frame_length - 1) // 4 + 1) * 4 + 1
frames = frames + [copy.deepcopy(frames[-1]) for _ in range(new_len - frame_length)]
control_video = frames
video, vae_outs = pipe(
prompt=PROMPT,
negative_prompt=NEGATIVE_PROMPT,
control_video=control_video,
height=height,
width=width,
num_frames=len(control_video),
seed=1,
tiled=False,
num_inference_steps=num_inference_steps,
sliding_window_size=window_size,
sliding_window_stride=window_size - overlap,
cfg_scale=1.0,
)
#* moge process
torch.cuda.empty_cache()
processed_video = video[:frame_length]
processed_video = [resize_frame(frame, original_height, original_width) for frame in processed_video]
if ROTATE:
processed_video = [x.transpose(Image.ROTATE_270) for x in processed_video]
origin_frames = [x.transpose(Image.ROTATE_270) for x in origin_frames]
output_filename = f"output_{timestamp}.mp4"
output_path = os.path.join(cur_save_dir, output_filename)
color_predictions = []
if PROMPT == 'depth':
prediced_depth_map_np = [np.array(item).astype(np.float32).mean(-1) for item in processed_video]
prediced_depth_map_np = np.stack(prediced_depth_map_np)
prediced_depth_map_np = prediced_depth_map_np/ 255.0
__min = prediced_depth_map_np.min()
__max = prediced_depth_map_np.max()
prediced_depth_map_np = (prediced_depth_map_np - __min) / (__max - __min)
color_predictions = [colorize_depth_map(item) for item in prediced_depth_map_np]
else:
color_predictions = processed_video
save_video(color_predictions, output_path, fps=input_fps, quality=5)
frame_num = len(origin_frames)
resize_W,resize_H = origin_frames[0].size
vis_pc_num = 4
indices = np.linspace(0, frame_num-1, vis_pc_num)
indices = np.round(indices).astype(np.int32)
pc_save_dir = os.path.join(cur_save_dir, 'pointclouds')
os.makedirs(pc_save_dir, exist_ok=True)
glb_files = []
moge_device = MOGE_MODULE.device if MOGE_MODULE is not None else torch.device("cuda:0")
for idx in tqdm(indices):
orgin_rgb_frame = origin_frames[idx]
predicted_depth = processed_video[idx]
# Read the input image and convert to tensor (3, H, W) with RGB values normalized to [0, 1]
input_image_np = np.array(orgin_rgb_frame) # Convert PIL Image to numpy array
input_image = torch.tensor(input_image_np / 255, dtype=torch.float32, device=moge_device).permute(2, 0, 1)
output = MOGE_MODULE.infer(input_image)
#* "dict_keys(['points', 'intrinsics', 'depth', 'mask', 'normal'])"
moge_intrinsics = output['intrinsics'].cpu().numpy()
moge_mask = output['mask'].cpu().numpy()
moge_depth = output['depth'].cpu().numpy()
predicted_depth = np.array(predicted_depth)
predicted_depth = predicted_depth.mean(-1) / 255.0
metric_depth = transfer_pred_disp2depth(predicted_depth, moge_depth, moge_mask)
moge_intrinsics[0, 0] *= resize_W
moge_intrinsics[1, 1] *= resize_H
moge_intrinsics[0, 2] *= resize_W
moge_intrinsics[1, 2] *= resize_H
# pcd = depth2pcd(metric_depth, moge_intrinsics, color=cv2.cvtColor(input_image_np, cv2.COLOR_BGR2RGB), input_mask=moge_mask, ret_pcd=True)
pcd = depth2pcd(metric_depth, moge_intrinsics, color=input_image_np, input_mask=moge_mask, ret_pcd=True)
# pcd.points = o3d.utility.Vector3dVector(np.asarray(pcd.points) * np.array([1, -1, -1], dtype=np.float32))
apply_filter = True
if apply_filter:
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=3.0)
pcd = pcd.select_by_index(ind)
#* save pcd: o3d.io.write_point_cloud(f'{pc_save_dir}/{timestamp}_{idx:02d}.ply', pcd)
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors) if pcd.has_colors() else None
glb_filename = os.path.join(pc_save_dir, f'{timestamp}_{idx:02d}.glb')
success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
if not success:
logger.warning(f"Failed to save GLB file: {glb_filename}")
glb_files.append(glb_filename)
return output_path, glb_files
except Exception as e:
logger.error(f"Error processing video: {str(e)}")
return None, f"Error: {str(e)}"
def main():
#* gradio creation and initialization
css = """
#video-display-container {
max-height: 100vh;
}
#video-display-input {
max-height: 80vh;
}
#video-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
.title {
text-align: center;
}
.description {
text-align: center;
}
.gradio-examples {
max-height: 400px;
overflow-y: auto;
}
.gradio-examples .examples-container {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 10px;
padding: 10px;
}
.gradio-container .gradio-examples .pagination,
.gradio-container .gradio-examples .pagination button,
div[data-testid="examples"] .pagination,
div[data-testid="examples"] .pagination button {
font-size: 28px !important;
font-weight: bold !important;
padding: 15px 20px !important;
min-width: 60px !important;
height: 60px !important;
border-radius: 10px !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
border: none !important;
cursor: pointer !important;
margin: 8px !important;
display: inline-block !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
transition: all 0.3s ease !important;
}
div[data-testid="examples"] .pagination button:not(.active),
.gradio-container .gradio-examples .pagination button:not(.active) {
font-size: 32px !important;
font-weight: bold !important;
padding: 15px 20px !important;
min-width: 60px !important;
height: 60px !important;
background: linear-gradient(135deg, #8a9cf0 0%, #9a6bb2 100%) !important;
opacity: 0.8 !important;
}
div[data-testid="examples"] .pagination button:hover,
.gradio-container .gradio-examples .pagination button:hover {
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%) !important;
transform: translateY(-2px) !important;
box-shadow: 0 6px 12px rgba(0,0,0,0.3) !important;
opacity: 1 !important;
}
div[data-testid="examples"] .pagination button.active,
.gradio-container .gradio-examples .pagination button.active {
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%) !important;
box-shadow: 0 4px 8px rgba(17,153,142,0.4) !important;
opacity: 1 !important;
}
button[class*="pagination"],
button[class*="page"] {
font-size: 28px !important;
font-weight: bold !important;
padding: 15px 20px !important;
min-width: 60px !important;
height: 60px !important;
border-radius: 10px !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
border: none !important;
cursor: pointer !important;
margin: 8px !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
transition: all 0.3s ease !important;
}
"""
head_html = """
<link rel="icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<link rel="shortcut icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<link rel="icon" type="image/png" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
"""
# title = "# Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation "
# description = """Official demo for **DKT **."""
# with gr.Blocks(css=css, title="DKT - Diffusion Knows Transparency", favicon_path="favicon.ico") as demo:
height = 480
width = 832
window_size = 21
with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
# gr.Markdown(title, elem_classes=["title"])
# gr.Markdown(description, elem_classes=["description"])
# gr.Markdown("### Video Processing Demo", elem_classes=["description"])
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video", elem_id='video-display-input')
model_size = gr.Radio(
choices=["1.3B", "14B"],
value="1.3B",
label="Model Size"
)
with gr.Accordion("Advanced Parameters", open=False):
num_inference_steps = gr.Slider(
minimum=1, maximum=50, value=5, step=1,
label="Number of Inference Steps"
)
overlap = gr.Slider(
minimum=1, maximum=20, value=3, step=1,
label="Overlap"
)
submit = gr.Button(value="Compute Depth", variant="primary")
with gr.Column():
output_video = gr.Video(
label="Depth Outputs",
elem_id='video-display-output',
autoplay=True
)
vis_video = gr.Video(
label="Visualization Video",
visible=False,
autoplay=True
)
with gr.Row():
gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
with gr.Row(equal_height=True):
with gr.Column(scale=1):
output_point_map0 = LitModel3D(
label="Point Cloud Key Frame 1",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False,
# height=400,
)
with gr.Column(scale=1):
output_point_map1 = LitModel3D(
label="Point Cloud Key Frame 2",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
output_point_map2 = LitModel3D(
label="Point Cloud Key Frame 3",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
with gr.Column(scale=1):
output_point_map3 = LitModel3D(
label="Point Cloud Key Frame 4",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
def on_submit(video_file, model_size, num_inference_steps, overlap):
if video_file is None:
return None, None, None, None, None, None, "Please upload a video file"
try:
output_path, glb_files = process_video(
video_file, model_size, height, width, num_inference_steps, window_size, overlap
)
if output_path is None:
return None, None, None, None, None, None, glb_files
model3d_outputs = [None] * 4
if glb_files:
for i, glb_file in enumerate(glb_files[:4]):
if os.path.exists(glb_file):
model3d_outputs[i] = glb_file
return output_path, None, *model3d_outputs
except Exception as e:
return None, None, None, None, None, None, f"Error: {str(e)}"
submit.click(
on_submit,
inputs=[
input_video, model_size, num_inference_steps, overlap
],
outputs=[
output_video, vis_video,
output_point_map0, output_point_map1, output_point_map2, output_point_map3
]
)
example_files = glob.glob('examples/*')
if example_files:
example_inputs = []
for file_path in example_files:
example_inputs.append([file_path, "1.3B"])
examples = gr.Examples(
examples=example_inputs,
inputs=[input_video, model_size],
outputs=[
output_video, vis_video,
output_point_map0, output_point_map1, output_point_map2, output_point_map3
],
fn=on_submit,
examples_per_page=6
)
#* main code, model and moge model initialization
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
load_model_1_3b(device=device)
load_moge_model(device=device)
torch.cuda.empty_cache()
demo.queue().launch(share = True,server_name="0.0.0.0", server_port=7860)
if __name__ == '__main__':
process_video = spaces.GPU(process_video)
main()
|