File size: 9,186 Bytes
cf7f9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
from .wan_video_dit import WanModel



class LoRAFromCivitai:
    def __init__(self):
        self.supported_model_classes = []
        self.lora_prefix = []
        self.renamed_lora_prefix = {}
        self.special_keys = {}


    def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
        for key in state_dict:
            if ".lora_up" in key:
                return self.convert_state_dict_up_down(state_dict, lora_prefix, alpha)
        return self.convert_state_dict_AB(state_dict, lora_prefix, alpha)


    def convert_state_dict_up_down(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
        renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "")
        state_dict_ = {}
        for key in state_dict:
            if ".lora_up" not in key:
                continue
            if not key.startswith(lora_prefix):
                continue
            weight_up = state_dict[key].to(device="cuda", dtype=torch.float16)
            weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16)
            if len(weight_up.shape) == 4:
                weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32)
                weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32)
                lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
            else:
                lora_weight = alpha * torch.mm(weight_up, weight_down)
            target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight"
            for special_key in self.special_keys:
                target_name = target_name.replace(special_key, self.special_keys[special_key])
            state_dict_[target_name] = lora_weight.cpu()
        return state_dict_
    

    def convert_state_dict_AB(self, state_dict, lora_prefix="", alpha=1.0, device="cuda", torch_dtype=torch.float16):
        state_dict_ = {}
        for key in state_dict:
            if ".lora_B." not in key:
                continue
            if not key.startswith(lora_prefix):
                continue
            weight_up = state_dict[key].to(device=device, dtype=torch_dtype)
            weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype)
            if len(weight_up.shape) == 4:
                weight_up = weight_up.squeeze(3).squeeze(2)
                weight_down = weight_down.squeeze(3).squeeze(2)
                lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
            else:
                lora_weight = alpha * torch.mm(weight_up, weight_down)
            keys = key.split(".")
            keys.pop(keys.index("lora_B"))
            target_name = ".".join(keys)
            target_name = target_name[len(lora_prefix):]
            state_dict_[target_name] = lora_weight.cpu()
        return state_dict_
    

    def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None):
        state_dict_model = model.state_dict()
        state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha)
        if model_resource == "diffusers":
            state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora)
        elif model_resource == "civitai":
            state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora)
        if isinstance(state_dict_lora, tuple):
            state_dict_lora = state_dict_lora[0]
        if len(state_dict_lora) > 0:
            print(f"    {len(state_dict_lora)} tensors are updated.")
            for name in state_dict_lora:
                fp8=False
                if state_dict_model[name].dtype == torch.float8_e4m3fn:
                    state_dict_model[name]= state_dict_model[name].to(state_dict_lora[name].dtype)
                    fp8=True
                state_dict_model[name] += state_dict_lora[name].to(
                    dtype=state_dict_model[name].dtype, device=state_dict_model[name].device)
                if fp8:
                    state_dict_model[name] = state_dict_model[name].to(torch.float8_e4m3fn)
            model.load_state_dict(state_dict_model)
    

    def match(self, model, state_dict_lora):
        for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes):
            if not isinstance(model, model_class):
                continue
            state_dict_model = model.state_dict()
            for model_resource in ["diffusers", "civitai"]:
                try:
                    state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0)
                    converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \
                        else model.__class__.state_dict_converter().from_civitai
                    state_dict_lora_ = converter_fn(state_dict_lora_)
                    if isinstance(state_dict_lora_, tuple):
                        state_dict_lora_ = state_dict_lora_[0]
                    if len(state_dict_lora_) == 0:
                        continue
                    for name in state_dict_lora_:
                        if name not in state_dict_model:
                            break
                    else:
                        return lora_prefix, model_resource
                except:
                    pass
        return None


class GeneralLoRAFromPeft:
    def __init__(self):
        self.supported_model_classes = [ WanModel]
    
    
    def get_name_dict(self, lora_state_dict):
        lora_name_dict = {}
        for key in lora_state_dict:
            if ".lora_B." not in key:
                continue
            keys = key.split(".")
            if len(keys) > keys.index("lora_B") + 2:
                keys.pop(keys.index("lora_B") + 1)
            keys.pop(keys.index("lora_B"))
            if keys[0] == "diffusion_model":
                keys.pop(0)
            target_name = ".".join(keys)
            lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A."))
        return lora_name_dict
    
    
    def match(self, model: torch.nn.Module, state_dict_lora):
        lora_name_dict = self.get_name_dict(state_dict_lora)
        model_name_dict = {name: None for name, _ in model.named_parameters()}
        matched_num = sum([i in model_name_dict for i in lora_name_dict])
        if matched_num == len(lora_name_dict):
            return "", ""
        else:
            return None
    
    
    def fetch_device_and_dtype(self, state_dict):
        device, dtype = None, None
        for name, param in state_dict.items():
            device, dtype = param.device, param.dtype
            break
        computation_device = device
        computation_dtype = dtype
        if computation_device == torch.device("cpu"):
            if torch.cuda.is_available():
                computation_device = torch.device("cuda")
        if computation_dtype == torch.float8_e4m3fn:
            computation_dtype = torch.float32
        return device, dtype, computation_device, computation_dtype


    def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""):
        state_dict_model = model.state_dict()
        device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model)
        lora_name_dict = self.get_name_dict(state_dict_lora)
        for name in lora_name_dict:
            weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype)
            weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype)
            if len(weight_up.shape) == 4:
                weight_up = weight_up.squeeze(3).squeeze(2)
                weight_down = weight_down.squeeze(3).squeeze(2)
                weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
            else:
                weight_lora = alpha * torch.mm(weight_up, weight_down)
            weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype)
            weight_patched = weight_model + weight_lora
            state_dict_model[name] = weight_patched.to(device=device, dtype=dtype)
        print(f"    {len(lora_name_dict)} tensors are updated.")
        model.load_state_dict(state_dict_model)
    
    

class WanLoRAConverter:
    def __init__(self):
        pass

    @staticmethod
    def align_to_opensource_format(state_dict, **kwargs):
        state_dict = {"diffusion_model." + name.replace(".default.", "."): param for name, param in state_dict.items()}
        return state_dict
    
    @staticmethod
    def align_to_dkt_format(state_dict, **kwargs):
        state_dict = {name.replace("diffusion_model.", "").replace(".lora_A.weight", ".lora_A.default.weight").replace(".lora_B.weight", ".lora_B.default.weight"): param for name, param in state_dict.items()}
        return state_dict

def get_lora_loaders():
    return [GeneralLoRAFromPeft()]