Spaces:
Runtime error
Runtime error
Create main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
from fastapi import FastAPI, File
|
| 3 |
+
from faster_whisper import WhisperModel
|
| 4 |
+
from utils import ffmpeg_read, stt
|
| 5 |
+
from sentence_transformers import SentenceTransformer, util
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
app = FastAPI()
|
| 9 |
+
|
| 10 |
+
whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
|
| 11 |
+
audio_model = WhisperModel("base", compute_type="int8", device="cpu")
|
| 12 |
+
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 13 |
+
corpus_embeddings = torch.load('corpus_embeddings.pt')
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def speech_to_text(upload_audio, model_type="whisper"):
|
| 17 |
+
"""
|
| 18 |
+
Transcribe audio using whisper model.
|
| 19 |
+
"""
|
| 20 |
+
audio_path = ffmpeg_read(upload_audio, sampling_rate=16000)
|
| 21 |
+
# Transcribe audio
|
| 22 |
+
if model_type == "whisper":
|
| 23 |
+
transcribe_options = dict(task="transcribe", language="ja", beam_size=5, best_of=5, vad_filter=True)
|
| 24 |
+
segments_raw, info = audio_model.transcribe(audio_path, **transcribe_options)
|
| 25 |
+
segments = [segment.text for segment in segments_raw]
|
| 26 |
+
return ' '.join(segments)
|
| 27 |
+
else:
|
| 28 |
+
text = stt(audio_path)
|
| 29 |
+
return text
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@app.get("/")
|
| 33 |
+
def read_root():
|
| 34 |
+
return {"Message": "Application startup complete"}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@app.post("/voice_detect/")
|
| 38 |
+
async def voice_detect_api(
|
| 39 |
+
voice_input: bytes = File(None),
|
| 40 |
+
threshold: float = 0.8,
|
| 41 |
+
model_type: str = "whisper"
|
| 42 |
+
):
|
| 43 |
+
"""
|
| 44 |
+
API to detect voice from audio file.
|
| 45 |
+
"""
|
| 46 |
+
start = time.time()
|
| 47 |
+
text = speech_to_text(voice_input, model_type)
|
| 48 |
+
query_embedding = text_model.encode(text, convert_to_tensor=True)
|
| 49 |
+
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=1)[0]
|
| 50 |
+
if hits[0]['score'] > threshold:
|
| 51 |
+
similar = 1
|
| 52 |
+
else:
|
| 53 |
+
similar = 0
|
| 54 |
+
end = time.time()
|
| 55 |
+
return {"text": text,
|
| 56 |
+
"similar": similar,
|
| 57 |
+
"time_taken": end - start}
|