Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import cv2 | |
| import torch | |
| import requests | |
| import itertools | |
| import folder_paths | |
| import psutil | |
| import numpy as np | |
| from comfy.utils import common_upscale | |
| from io import BytesIO | |
| from PIL import Image, ImageSequence, ImageOps | |
| def pil2tensor(img): | |
| output_images = [] | |
| output_masks = [] | |
| for i in ImageSequence.Iterator(img): | |
| i = ImageOps.exif_transpose(i) | |
| if i.mode == 'I': | |
| i = i.point(lambda i: i * (1 / 255)) | |
| image = i.convert("RGB") | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = torch.from_numpy(image)[None,] | |
| if 'A' in i.getbands(): | |
| mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 | |
| mask = 1. - torch.from_numpy(mask) | |
| else: | |
| mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") | |
| output_images.append(image) | |
| output_masks.append(mask.unsqueeze(0)) | |
| if len(output_images) > 1: | |
| output_image = torch.cat(output_images, dim=0) | |
| output_mask = torch.cat(output_masks, dim=0) | |
| else: | |
| output_image = output_images[0] | |
| output_mask = output_masks[0] | |
| return (output_image, output_mask) | |
| def load_image(image_source): | |
| if image_source.startswith('http'): | |
| print(image_source) | |
| response = requests.get(image_source) | |
| img = Image.open(BytesIO(response.content)) | |
| file_name = image_source.split('/')[-1] | |
| else: | |
| img = Image.open(image_source) | |
| file_name = os.path.basename(image_source) | |
| return img, file_name | |
| class LoadImageNode: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "path": ("STRING", {"multiline": True, "dynamicPrompts": False}) | |
| } | |
| } | |
| RETURN_TYPES = ("IMAGE", "MASK") | |
| FUNCTION = "load_image" | |
| CATEGORY = "tbox/Image" | |
| def load_image(self, path): | |
| filepaht = path.split('\n')[0] | |
| img, name = load_image(filepaht) | |
| img_out, mask_out = pil2tensor(img) | |
| return (img_out, mask_out) | |
| if __name__ == "__main__": | |
| img, name = load_image("https://creativestorage.blob.core.chinacloudapi.cn/test/bird.png") | |
| img_out, mask_out = pil2tensor(img) | |