Spaces:
Running
on
Zero
Running
on
Zero
| from ..utils import common_annotator_call, create_node_input_types | |
| import comfy.model_management as model_management | |
| import numpy as np | |
| class MIDAS_Depth_Map_Preprocessor: | |
| def INPUT_TYPES(s): | |
| return create_node_input_types( | |
| a = ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.05}), | |
| bg_threshold = ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.05}) | |
| ) | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "execute" | |
| CATEGORY = "tbox/ControlNet Preprocessors" | |
| def execute(self, image, a, bg_threshold, resolution=512, **kwargs): | |
| from midas import MidasDetector | |
| # Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py | |
| model = MidasDetector.from_pretrained().to(model_management.get_torch_device()) | |
| out = common_annotator_call(model, image, resolution=resolution, a=a, bg_th=bg_threshold) | |
| del model | |
| return (out, ) | |