Spaces:
Running
on
Zero
Running
on
Zero
| """ Global Context ViT | |
| From scratch implementation of GCViT in the style of timm swin_transformer_v2_cr.py | |
| Global Context Vision Transformers -https://arxiv.org/abs/2206.09959 | |
| @article{hatamizadeh2022global, | |
| title={Global Context Vision Transformers}, | |
| author={Hatamizadeh, Ali and Yin, Hongxu and Kautz, Jan and Molchanov, Pavlo}, | |
| journal={arXiv preprint arXiv:2206.09959}, | |
| year={2022} | |
| } | |
| Free of any code related to NVIDIA GCVit impl at https://github.com/NVlabs/GCVit. | |
| The license for this code release is Apache 2.0 with no commercial restrictions. | |
| However, weight files adapted from NVIDIA GCVit impl ARE under a non-commercial share-alike license | |
| (https://creativecommons.org/licenses/by-nc-sa/4.0/) until I have a chance to train new ones... | |
| Hacked together by / Copyright 2022, Ross Wightman | |
| """ | |
| import math | |
| from functools import partial | |
| from typing import Callable, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as checkpoint | |
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| from .fx_features import register_notrace_function | |
| from .helpers import build_model_with_cfg, named_apply | |
| from .layers import DropPath, to_2tuple, to_ntuple, Mlp, ClassifierHead, LayerNorm2d,\ | |
| get_attn, get_act_layer, get_norm_layer, _assert | |
| from .registry import register_model | |
| from .vision_transformer_relpos import RelPosMlp, RelPosBias # FIXME move to common location | |
| __all__ = ['GlobalContextVit'] | |
| def _cfg(url='', **kwargs): | |
| return { | |
| 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
| 'crop_pct': 0.875, 'interpolation': 'bicubic', | |
| 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
| 'first_conv': 'stem.conv1', 'classifier': 'head.fc', | |
| 'fixed_input_size': True, | |
| **kwargs | |
| } | |
| default_cfgs = { | |
| 'gcvit_xxtiny': _cfg( | |
| url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xxtiny_224_nvidia-d1d86009.pth'), | |
| 'gcvit_xtiny': _cfg( | |
| url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xtiny_224_nvidia-274b92b7.pth'), | |
| 'gcvit_tiny': _cfg( | |
| url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_tiny_224_nvidia-ac783954.pth'), | |
| 'gcvit_small': _cfg( | |
| url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_small_224_nvidia-4e98afa2.pth'), | |
| 'gcvit_base': _cfg( | |
| url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_base_224_nvidia-f009139b.pth'), | |
| } | |
| class MbConvBlock(nn.Module): | |
| """ A depthwise separable / fused mbconv style residual block with SE, `no norm. | |
| """ | |
| def __init__( | |
| self, | |
| in_chs, | |
| out_chs=None, | |
| expand_ratio=1.0, | |
| attn_layer='se', | |
| bias=False, | |
| act_layer=nn.GELU, | |
| ): | |
| super().__init__() | |
| attn_kwargs = dict(act_layer=act_layer) | |
| if isinstance(attn_layer, str) and attn_layer == 'se' or attn_layer == 'eca': | |
| attn_kwargs['rd_ratio'] = 0.25 | |
| attn_kwargs['bias'] = False | |
| attn_layer = get_attn(attn_layer) | |
| out_chs = out_chs or in_chs | |
| mid_chs = int(expand_ratio * in_chs) | |
| self.conv_dw = nn.Conv2d(in_chs, mid_chs, 3, 1, 1, groups=in_chs, bias=bias) | |
| self.act = act_layer() | |
| self.se = attn_layer(mid_chs, **attn_kwargs) | |
| self.conv_pw = nn.Conv2d(mid_chs, out_chs, 1, 1, 0, bias=bias) | |
| def forward(self, x): | |
| shortcut = x | |
| x = self.conv_dw(x) | |
| x = self.act(x) | |
| x = self.se(x) | |
| x = self.conv_pw(x) | |
| x = x + shortcut | |
| return x | |
| class Downsample2d(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| dim_out=None, | |
| reduction='conv', | |
| act_layer=nn.GELU, | |
| norm_layer=LayerNorm2d, # NOTE in NCHW | |
| ): | |
| super().__init__() | |
| dim_out = dim_out or dim | |
| self.norm1 = norm_layer(dim) if norm_layer is not None else nn.Identity() | |
| self.conv_block = MbConvBlock(dim, act_layer=act_layer) | |
| assert reduction in ('conv', 'max', 'avg') | |
| if reduction == 'conv': | |
| self.reduction = nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False) | |
| elif reduction == 'max': | |
| assert dim == dim_out | |
| self.reduction = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| else: | |
| assert dim == dim_out | |
| self.reduction = nn.AvgPool2d(kernel_size=2) | |
| self.norm2 = norm_layer(dim_out) if norm_layer is not None else nn.Identity() | |
| def forward(self, x): | |
| x = self.norm1(x) | |
| x = self.conv_block(x) | |
| x = self.reduction(x) | |
| x = self.norm2(x) | |
| return x | |
| class FeatureBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| levels=0, | |
| reduction='max', | |
| act_layer=nn.GELU, | |
| ): | |
| super().__init__() | |
| reductions = levels | |
| levels = max(1, levels) | |
| if reduction == 'avg': | |
| pool_fn = partial(nn.AvgPool2d, kernel_size=2) | |
| else: | |
| pool_fn = partial(nn.MaxPool2d, kernel_size=3, stride=2, padding=1) | |
| self.blocks = nn.Sequential() | |
| for i in range(levels): | |
| self.blocks.add_module(f'conv{i+1}', MbConvBlock(dim, act_layer=act_layer)) | |
| if reductions: | |
| self.blocks.add_module(f'pool{i+1}', pool_fn()) | |
| reductions -= 1 | |
| def forward(self, x): | |
| return self.blocks(x) | |
| class Stem(nn.Module): | |
| def __init__( | |
| self, | |
| in_chs: int = 3, | |
| out_chs: int = 96, | |
| act_layer: Callable = nn.GELU, | |
| norm_layer: Callable = LayerNorm2d, # NOTE stem in NCHW | |
| ): | |
| super().__init__() | |
| self.conv1 = nn.Conv2d(in_chs, out_chs, kernel_size=3, stride=2, padding=1) | |
| self.down = Downsample2d(out_chs, act_layer=act_layer, norm_layer=norm_layer) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.down(x) | |
| return x | |
| class WindowAttentionGlobal(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_heads: int, | |
| window_size: Tuple[int, int], | |
| use_global: bool = True, | |
| qkv_bias: bool = True, | |
| attn_drop: float = 0., | |
| proj_drop: float = 0., | |
| ): | |
| super().__init__() | |
| window_size = to_2tuple(window_size) | |
| self.window_size = window_size | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.scale = self.head_dim ** -0.5 | |
| self.use_global = use_global | |
| self.rel_pos = RelPosBias(window_size=window_size, num_heads=num_heads) | |
| if self.use_global: | |
| self.qkv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
| else: | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def forward(self, x, q_global: Optional[torch.Tensor] = None): | |
| B, N, C = x.shape | |
| if self.use_global and q_global is not None: | |
| _assert(x.shape[-1] == q_global.shape[-1], 'x and q_global seq lengths should be equal') | |
| kv = self.qkv(x) | |
| kv = kv.reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
| k, v = kv.unbind(0) | |
| q = q_global.repeat(B // q_global.shape[0], 1, 1, 1) | |
| q = q.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) | |
| else: | |
| qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv.unbind(0) | |
| q = q * self.scale | |
| attn = (q @ k.transpose(-2, -1)) | |
| attn = self.rel_pos(attn) | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| def window_partition(x, window_size: Tuple[int, int]): | |
| B, H, W, C = x.shape | |
| x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) | |
| windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) | |
| return windows | |
| # reason: int argument is a Proxy | |
| def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]): | |
| H, W = img_size | |
| B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1])) | |
| x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1) | |
| x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
| return x | |
| class LayerScale(nn.Module): | |
| def __init__(self, dim, init_values=1e-5, inplace=False): | |
| super().__init__() | |
| self.inplace = inplace | |
| self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
| def forward(self, x): | |
| return x.mul_(self.gamma) if self.inplace else x * self.gamma | |
| class GlobalContextVitBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| feat_size: Tuple[int, int], | |
| num_heads: int, | |
| window_size: int = 7, | |
| mlp_ratio: float = 4., | |
| use_global: bool = True, | |
| qkv_bias: bool = True, | |
| layer_scale: Optional[float] = None, | |
| proj_drop: float = 0., | |
| attn_drop: float = 0., | |
| drop_path: float = 0., | |
| attn_layer: Callable = WindowAttentionGlobal, | |
| act_layer: Callable = nn.GELU, | |
| norm_layer: Callable = nn.LayerNorm, | |
| ): | |
| super().__init__() | |
| feat_size = to_2tuple(feat_size) | |
| window_size = to_2tuple(window_size) | |
| self.window_size = window_size | |
| self.num_windows = int((feat_size[0] // window_size[0]) * (feat_size[1] // window_size[1])) | |
| self.norm1 = norm_layer(dim) | |
| self.attn = attn_layer( | |
| dim, | |
| num_heads=num_heads, | |
| window_size=window_size, | |
| use_global=use_global, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=proj_drop, | |
| ) | |
| self.ls1 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() | |
| self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) | |
| self.ls2 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() | |
| self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| def _window_attn(self, x, q_global: Optional[torch.Tensor] = None): | |
| B, H, W, C = x.shape | |
| x_win = window_partition(x, self.window_size) | |
| x_win = x_win.view(-1, self.window_size[0] * self.window_size[1], C) | |
| attn_win = self.attn(x_win, q_global) | |
| x = window_reverse(attn_win, self.window_size, (H, W)) | |
| return x | |
| def forward(self, x, q_global: Optional[torch.Tensor] = None): | |
| x = x + self.drop_path1(self.ls1(self._window_attn(self.norm1(x), q_global))) | |
| x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
| return x | |
| class GlobalContextVitStage(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| depth: int, | |
| num_heads: int, | |
| feat_size: Tuple[int, int], | |
| window_size: Tuple[int, int], | |
| downsample: bool = True, | |
| global_norm: bool = False, | |
| stage_norm: bool = False, | |
| mlp_ratio: float = 4., | |
| qkv_bias: bool = True, | |
| layer_scale: Optional[float] = None, | |
| proj_drop: float = 0., | |
| attn_drop: float = 0., | |
| drop_path: Union[List[float], float] = 0.0, | |
| act_layer: Callable = nn.GELU, | |
| norm_layer: Callable = nn.LayerNorm, | |
| norm_layer_cl: Callable = LayerNorm2d, | |
| ): | |
| super().__init__() | |
| if downsample: | |
| self.downsample = Downsample2d( | |
| dim=dim, | |
| dim_out=dim * 2, | |
| norm_layer=norm_layer, | |
| ) | |
| dim = dim * 2 | |
| feat_size = (feat_size[0] // 2, feat_size[1] // 2) | |
| else: | |
| self.downsample = nn.Identity() | |
| self.feat_size = feat_size | |
| window_size = to_2tuple(window_size) | |
| feat_levels = int(math.log2(min(feat_size) / min(window_size))) | |
| self.global_block = FeatureBlock(dim, feat_levels) | |
| self.global_norm = norm_layer_cl(dim) if global_norm else nn.Identity() | |
| self.blocks = nn.ModuleList([ | |
| GlobalContextVitBlock( | |
| dim=dim, | |
| num_heads=num_heads, | |
| feat_size=feat_size, | |
| window_size=window_size, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| use_global=(i % 2 != 0), | |
| layer_scale=layer_scale, | |
| proj_drop=proj_drop, | |
| attn_drop=attn_drop, | |
| drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
| act_layer=act_layer, | |
| norm_layer=norm_layer_cl, | |
| ) | |
| for i in range(depth) | |
| ]) | |
| self.norm = norm_layer_cl(dim) if stage_norm else nn.Identity() | |
| self.dim = dim | |
| self.feat_size = feat_size | |
| self.grad_checkpointing = False | |
| def forward(self, x): | |
| # input NCHW, downsample & global block are 2d conv + pooling | |
| x = self.downsample(x) | |
| global_query = self.global_block(x) | |
| # reshape NCHW --> NHWC for transformer blocks | |
| x = x.permute(0, 2, 3, 1) | |
| global_query = self.global_norm(global_query.permute(0, 2, 3, 1)) | |
| for blk in self.blocks: | |
| if self.grad_checkpointing and not torch.jit.is_scripting(): | |
| x = checkpoint.checkpoint(blk, x) | |
| else: | |
| x = blk(x, global_query) | |
| x = self.norm(x) | |
| x = x.permute(0, 3, 1, 2).contiguous() # back to NCHW | |
| return x | |
| class GlobalContextVit(nn.Module): | |
| def __init__( | |
| self, | |
| in_chans: int = 3, | |
| num_classes: int = 1000, | |
| global_pool: str = 'avg', | |
| img_size: Tuple[int, int] = 224, | |
| window_ratio: Tuple[int, ...] = (32, 32, 16, 32), | |
| window_size: Tuple[int, ...] = None, | |
| embed_dim: int = 64, | |
| depths: Tuple[int, ...] = (3, 4, 19, 5), | |
| num_heads: Tuple[int, ...] = (2, 4, 8, 16), | |
| mlp_ratio: float = 3.0, | |
| qkv_bias: bool = True, | |
| layer_scale: Optional[float] = None, | |
| drop_rate: float = 0., | |
| proj_drop_rate: float = 0., | |
| attn_drop_rate: float = 0., | |
| drop_path_rate: float = 0., | |
| weight_init='', | |
| act_layer: str = 'gelu', | |
| norm_layer: str = 'layernorm2d', | |
| norm_layer_cl: str = 'layernorm', | |
| norm_eps: float = 1e-5, | |
| ): | |
| super().__init__() | |
| act_layer = get_act_layer(act_layer) | |
| norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps) | |
| norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps) | |
| img_size = to_2tuple(img_size) | |
| feat_size = tuple(d // 4 for d in img_size) # stem reduction by 4 | |
| self.global_pool = global_pool | |
| self.num_classes = num_classes | |
| self.drop_rate = drop_rate | |
| num_stages = len(depths) | |
| self.num_features = int(embed_dim * 2 ** (num_stages - 1)) | |
| if window_size is not None: | |
| window_size = to_ntuple(num_stages)(window_size) | |
| else: | |
| assert window_ratio is not None | |
| window_size = tuple([(img_size[0] // r, img_size[1] // r) for r in to_ntuple(num_stages)(window_ratio)]) | |
| self.stem = Stem( | |
| in_chs=in_chans, | |
| out_chs=embed_dim, | |
| act_layer=act_layer, | |
| norm_layer=norm_layer | |
| ) | |
| dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] | |
| stages = [] | |
| for i in range(num_stages): | |
| last_stage = i == num_stages - 1 | |
| stage_scale = 2 ** max(i - 1, 0) | |
| stages.append(GlobalContextVitStage( | |
| dim=embed_dim * stage_scale, | |
| depth=depths[i], | |
| num_heads=num_heads[i], | |
| feat_size=(feat_size[0] // stage_scale, feat_size[1] // stage_scale), | |
| window_size=window_size[i], | |
| downsample=i != 0, | |
| stage_norm=last_stage, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| layer_scale=layer_scale, | |
| proj_drop=proj_drop_rate, | |
| attn_drop=attn_drop_rate, | |
| drop_path=dpr[i], | |
| act_layer=act_layer, | |
| norm_layer=norm_layer, | |
| norm_layer_cl=norm_layer_cl, | |
| )) | |
| self.stages = nn.Sequential(*stages) | |
| # Classifier head | |
| self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) | |
| if weight_init: | |
| named_apply(partial(self._init_weights, scheme=weight_init), self) | |
| def _init_weights(self, module, name, scheme='vit'): | |
| # note Conv2d left as default init | |
| if scheme == 'vit': | |
| if isinstance(module, nn.Linear): | |
| nn.init.xavier_uniform_(module.weight) | |
| if module.bias is not None: | |
| if 'mlp' in name: | |
| nn.init.normal_(module.bias, std=1e-6) | |
| else: | |
| nn.init.zeros_(module.bias) | |
| else: | |
| if isinstance(module, nn.Linear): | |
| nn.init.normal_(module.weight, std=.02) | |
| if module.bias is not None: | |
| nn.init.zeros_(module.bias) | |
| def no_weight_decay(self): | |
| return { | |
| k for k, _ in self.named_parameters() | |
| if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])} | |
| def group_matcher(self, coarse=False): | |
| matcher = dict( | |
| stem=r'^stem', # stem and embed | |
| blocks=r'^stages\.(\d+)' | |
| ) | |
| return matcher | |
| def set_grad_checkpointing(self, enable=True): | |
| for s in self.stages: | |
| s.grad_checkpointing = enable | |
| def get_classifier(self): | |
| return self.head.fc | |
| def reset_classifier(self, num_classes, global_pool=None): | |
| self.num_classes = num_classes | |
| if global_pool is None: | |
| global_pool = self.head.global_pool.pool_type | |
| self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) | |
| def forward_features(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.stem(x) | |
| x = self.stages(x) | |
| return x | |
| def forward_head(self, x, pre_logits: bool = False): | |
| return self.head(x, pre_logits=pre_logits) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.forward_features(x) | |
| x = self.forward_head(x) | |
| return x | |
| def _create_gcvit(variant, pretrained=False, **kwargs): | |
| if kwargs.get('features_only', None): | |
| raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
| model = build_model_with_cfg(GlobalContextVit, variant, pretrained, **kwargs) | |
| return model | |
| def gcvit_xxtiny(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(2, 2, 6, 2), | |
| num_heads=(2, 4, 8, 16), | |
| **kwargs) | |
| return _create_gcvit('gcvit_xxtiny', pretrained=pretrained, **model_kwargs) | |
| def gcvit_xtiny(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(3, 4, 6, 5), | |
| num_heads=(2, 4, 8, 16), | |
| **kwargs) | |
| return _create_gcvit('gcvit_xtiny', pretrained=pretrained, **model_kwargs) | |
| def gcvit_tiny(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(3, 4, 19, 5), | |
| num_heads=(2, 4, 8, 16), | |
| **kwargs) | |
| return _create_gcvit('gcvit_tiny', pretrained=pretrained, **model_kwargs) | |
| def gcvit_small(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(3, 4, 19, 5), | |
| num_heads=(3, 6, 12, 24), | |
| embed_dim=96, | |
| mlp_ratio=2, | |
| layer_scale=1e-5, | |
| **kwargs) | |
| return _create_gcvit('gcvit_small', pretrained=pretrained, **model_kwargs) | |
| def gcvit_base(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(3, 4, 19, 5), | |
| num_heads=(4, 8, 16, 32), | |
| embed_dim=128, | |
| mlp_ratio=2, | |
| layer_scale=1e-5, | |
| **kwargs) | |
| return _create_gcvit('gcvit_base', pretrained=pretrained, **model_kwargs) | |