Spaces:
Running
on
Zero
Running
on
Zero
| """ Pyramid Vision Transformer v2 | |
| @misc{wang2021pvtv2, | |
| title={PVTv2: Improved Baselines with Pyramid Vision Transformer}, | |
| author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and | |
| Tong Lu and Ping Luo and Ling Shao}, | |
| year={2021}, | |
| eprint={2106.13797}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CV} | |
| } | |
| Based on Apache 2.0 licensed code at https://github.com/whai362/PVT | |
| Modifications and timm support by / Copyright 2022, Ross Wightman | |
| """ | |
| import math | |
| from functools import partial | |
| from typing import Tuple, List, Callable, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as checkpoint | |
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| from .helpers import build_model_with_cfg | |
| from .layers import DropPath, to_2tuple, to_ntuple, trunc_normal_ | |
| from .registry import register_model | |
| __all__ = ['PyramidVisionTransformerV2'] | |
| def _cfg(url='', **kwargs): | |
| return { | |
| 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
| 'crop_pct': 0.9, 'interpolation': 'bicubic', | |
| 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
| 'first_conv': 'patch_embed.proj', 'classifier': 'head', 'fixed_input_size': False, | |
| **kwargs | |
| } | |
| default_cfgs = { | |
| 'pvt_v2_b0': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b0.pth'), | |
| 'pvt_v2_b1': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b1.pth'), | |
| 'pvt_v2_b2': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth'), | |
| 'pvt_v2_b3': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b3.pth'), | |
| 'pvt_v2_b4': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b4.pth'), | |
| 'pvt_v2_b5': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b5.pth'), | |
| 'pvt_v2_b2_li': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2_li.pth') | |
| } | |
| class MlpWithDepthwiseConv(nn.Module): | |
| def __init__( | |
| self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, | |
| drop=0., extra_relu=False): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.relu = nn.ReLU() if extra_relu else nn.Identity() | |
| self.dwconv = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, bias=True, groups=hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x, feat_size: List[int]): | |
| x = self.fc1(x) | |
| B, N, C = x.shape | |
| x = x.transpose(1, 2).view(B, C, feat_size[0], feat_size[1]) | |
| x = self.relu(x) | |
| x = self.dwconv(x) | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class Attention(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads=8, | |
| sr_ratio=1, | |
| linear_attn=False, | |
| qkv_bias=True, | |
| attn_drop=0., | |
| proj_drop=0. | |
| ): | |
| super().__init__() | |
| assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.scale = self.head_dim ** -0.5 | |
| self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| if not linear_attn: | |
| self.pool = None | |
| if sr_ratio > 1: | |
| self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) | |
| self.norm = nn.LayerNorm(dim) | |
| else: | |
| self.sr = None | |
| self.norm = None | |
| self.act = None | |
| else: | |
| self.pool = nn.AdaptiveAvgPool2d(7) | |
| self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1) | |
| self.norm = nn.LayerNorm(dim) | |
| self.act = nn.GELU() | |
| def forward(self, x, feat_size: List[int]): | |
| B, N, C = x.shape | |
| H, W = feat_size | |
| q = self.q(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) | |
| if self.pool is not None: | |
| x_ = x.permute(0, 2, 1).reshape(B, C, H, W) | |
| x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1) | |
| x_ = self.norm(x_) | |
| x_ = self.act(x_) | |
| kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
| else: | |
| if self.sr is not None: | |
| x_ = x.permute(0, 2, 1).reshape(B, C, H, W) | |
| x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) | |
| x_ = self.norm(x_) | |
| kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
| else: | |
| kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
| k, v = kv.unbind(0) | |
| attn = (q @ k.transpose(-2, -1)) * self.scale | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__( | |
| self, dim, num_heads, mlp_ratio=4., sr_ratio=1, linear_attn=False, qkv_bias=False, | |
| drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, | |
| sr_ratio=sr_ratio, | |
| linear_attn=linear_attn, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=drop, | |
| ) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| self.mlp = MlpWithDepthwiseConv( | |
| in_features=dim, | |
| hidden_features=int(dim * mlp_ratio), | |
| act_layer=act_layer, | |
| drop=drop, | |
| extra_relu=linear_attn | |
| ) | |
| def forward(self, x, feat_size: List[int]): | |
| x = x + self.drop_path(self.attn(self.norm1(x), feat_size)) | |
| x = x + self.drop_path(self.mlp(self.norm2(x), feat_size)) | |
| return x | |
| class OverlapPatchEmbed(nn.Module): | |
| """ Image to Patch Embedding | |
| """ | |
| def __init__(self, patch_size=7, stride=4, in_chans=3, embed_dim=768): | |
| super().__init__() | |
| patch_size = to_2tuple(patch_size) | |
| assert max(patch_size) > stride, "Set larger patch_size than stride" | |
| self.patch_size = patch_size | |
| self.proj = nn.Conv2d( | |
| in_chans, embed_dim, kernel_size=patch_size, stride=stride, | |
| padding=(patch_size[0] // 2, patch_size[1] // 2)) | |
| self.norm = nn.LayerNorm(embed_dim) | |
| def forward(self, x): | |
| x = self.proj(x) | |
| feat_size = x.shape[-2:] | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.norm(x) | |
| return x, feat_size | |
| class PyramidVisionTransformerStage(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| dim_out: int, | |
| depth: int, | |
| downsample: bool = True, | |
| num_heads: int = 8, | |
| sr_ratio: int = 1, | |
| linear_attn: bool = False, | |
| mlp_ratio: float = 4.0, | |
| qkv_bias: bool = True, | |
| drop: float = 0., | |
| attn_drop: float = 0., | |
| drop_path: Union[List[float], float] = 0.0, | |
| norm_layer: Callable = nn.LayerNorm, | |
| ): | |
| super().__init__() | |
| self.grad_checkpointing = False | |
| if downsample: | |
| self.downsample = OverlapPatchEmbed( | |
| patch_size=3, | |
| stride=2, | |
| in_chans=dim, | |
| embed_dim=dim_out) | |
| else: | |
| assert dim == dim_out | |
| self.downsample = None | |
| self.blocks = nn.ModuleList([Block( | |
| dim=dim_out, | |
| num_heads=num_heads, | |
| sr_ratio=sr_ratio, | |
| linear_attn=linear_attn, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| drop=drop, | |
| attn_drop=attn_drop, | |
| drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
| norm_layer=norm_layer, | |
| ) for i in range(depth)]) | |
| self.norm = norm_layer(dim_out) | |
| def forward(self, x, feat_size: List[int]) -> Tuple[torch.Tensor, List[int]]: | |
| if self.downsample is not None: | |
| x, feat_size = self.downsample(x) | |
| for blk in self.blocks: | |
| if self.grad_checkpointing and not torch.jit.is_scripting(): | |
| x = checkpoint.checkpoint(blk, x, feat_size) | |
| else: | |
| x = blk(x, feat_size) | |
| x = self.norm(x) | |
| x = x.reshape(x.shape[0], feat_size[0], feat_size[1], -1).permute(0, 3, 1, 2).contiguous() | |
| return x, feat_size | |
| class PyramidVisionTransformerV2(nn.Module): | |
| def __init__( | |
| self, | |
| img_size=None, | |
| in_chans=3, | |
| num_classes=1000, | |
| global_pool='avg', | |
| depths=(3, 4, 6, 3), | |
| embed_dims=(64, 128, 256, 512), | |
| num_heads=(1, 2, 4, 8), | |
| sr_ratios=(8, 4, 2, 1), | |
| mlp_ratios=(8., 8., 4., 4.), | |
| qkv_bias=True, | |
| linear=False, | |
| drop_rate=0., | |
| attn_drop_rate=0., | |
| drop_path_rate=0., | |
| norm_layer=nn.LayerNorm, | |
| ): | |
| super().__init__() | |
| self.num_classes = num_classes | |
| assert global_pool in ('avg', '') | |
| self.global_pool = global_pool | |
| self.depths = depths | |
| num_stages = len(depths) | |
| mlp_ratios = to_ntuple(num_stages)(mlp_ratios) | |
| num_heads = to_ntuple(num_stages)(num_heads) | |
| sr_ratios = to_ntuple(num_stages)(sr_ratios) | |
| assert(len(embed_dims)) == num_stages | |
| self.patch_embed = OverlapPatchEmbed( | |
| patch_size=7, | |
| stride=4, | |
| in_chans=in_chans, | |
| embed_dim=embed_dims[0]) | |
| dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] | |
| cur = 0 | |
| prev_dim = embed_dims[0] | |
| self.stages = nn.ModuleList() | |
| for i in range(num_stages): | |
| self.stages.append(PyramidVisionTransformerStage( | |
| dim=prev_dim, | |
| dim_out=embed_dims[i], | |
| depth=depths[i], | |
| downsample=i > 0, | |
| num_heads=num_heads[i], | |
| sr_ratio=sr_ratios[i], | |
| mlp_ratio=mlp_ratios[i], | |
| linear_attn=linear, | |
| qkv_bias=qkv_bias, | |
| drop=drop_rate, | |
| attn_drop=attn_drop_rate, | |
| drop_path=dpr[i], | |
| norm_layer=norm_layer | |
| )) | |
| prev_dim = embed_dims[i] | |
| cur += depths[i] | |
| # classification head | |
| self.num_features = embed_dims[-1] | |
| self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def freeze_patch_emb(self): | |
| self.patch_embed.requires_grad = False | |
| def no_weight_decay(self): | |
| return {} | |
| def group_matcher(self, coarse=False): | |
| matcher = dict( | |
| stem=r'^patch_embed', # stem and embed | |
| blocks=r'^stages\.(\d+)' | |
| ) | |
| return matcher | |
| def set_grad_checkpointing(self, enable=True): | |
| for s in self.stages: | |
| s.grad_checkpointing = enable | |
| def get_classifier(self): | |
| return self.head | |
| def reset_classifier(self, num_classes, global_pool=None): | |
| self.num_classes = num_classes | |
| if global_pool is not None: | |
| assert global_pool in ('avg', '') | |
| self.global_pool = global_pool | |
| self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward_features(self, x): | |
| x, feat_size = self.patch_embed(x) | |
| for stage in self.stages: | |
| x, feat_size = stage(x, feat_size=feat_size) | |
| return x | |
| def forward_head(self, x, pre_logits: bool = False): | |
| if self.global_pool: | |
| x = x.mean(dim=(-1, -2)) | |
| return x if pre_logits else self.head(x) | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| x = self.forward_head(x) | |
| return x | |
| def _checkpoint_filter_fn(state_dict, model): | |
| """ Remap original checkpoints -> timm """ | |
| if 'patch_embed.proj.weight' in state_dict: | |
| return state_dict # non-original checkpoint, no remapping needed | |
| out_dict = {} | |
| import re | |
| for k, v in state_dict.items(): | |
| if k.startswith('patch_embed'): | |
| k = k.replace('patch_embed1', 'patch_embed') | |
| k = k.replace('patch_embed2', 'stages.1.downsample') | |
| k = k.replace('patch_embed3', 'stages.2.downsample') | |
| k = k.replace('patch_embed4', 'stages.3.downsample') | |
| k = k.replace('dwconv.dwconv', 'dwconv') | |
| k = re.sub(r'block(\d+).(\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.blocks.{x.group(2)}', k) | |
| k = re.sub(r'^norm(\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.norm', k) | |
| out_dict[k] = v | |
| return out_dict | |
| def _create_pvt2(variant, pretrained=False, **kwargs): | |
| if kwargs.get('features_only', None): | |
| raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
| model = build_model_with_cfg( | |
| PyramidVisionTransformerV2, variant, pretrained, | |
| pretrained_filter_fn=_checkpoint_filter_fn, | |
| **kwargs | |
| ) | |
| return model | |
| def pvt_v2_b0(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(2, 2, 2, 2), embed_dims=(32, 64, 160, 256), num_heads=(1, 2, 5, 8), | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| return _create_pvt2('pvt_v2_b0', pretrained=pretrained, **model_kwargs) | |
| def pvt_v2_b1(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(2, 2, 2, 2), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| return _create_pvt2('pvt_v2_b1', pretrained=pretrained, **model_kwargs) | |
| def pvt_v2_b2(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| return _create_pvt2('pvt_v2_b2', pretrained=pretrained, **model_kwargs) | |
| def pvt_v2_b3(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(3, 4, 18, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| return _create_pvt2('pvt_v2_b3', pretrained=pretrained, **model_kwargs) | |
| def pvt_v2_b4(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(3, 8, 27, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| return _create_pvt2('pvt_v2_b4', pretrained=pretrained, **model_kwargs) | |
| def pvt_v2_b5(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(3, 6, 40, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), | |
| mlp_ratios=(4, 4, 4, 4), norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| **kwargs) | |
| return _create_pvt2('pvt_v2_b5', pretrained=pretrained, **model_kwargs) | |
| def pvt_v2_b2_li(pretrained=False, **kwargs): | |
| model_kwargs = dict( | |
| depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), linear=True, **kwargs) | |
| return _create_pvt2('pvt_v2_b2_li', pretrained=pretrained, **model_kwargs) | |