Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| """ | |
| For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| # Fine-Tuning GPT-2 on Hugging Face Spaces (Streaming 40GB Dataset, No Storage Issues) | |
| # Install required libraries | |
| # Install required libraries (Run this separately in a terminal or notebook cell) | |
| # !pip install transformers datasets peft accelerate bitsandbytes torch torchvision torchaudio gradio -q | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments | |
| from datasets import load_dataset | |
| from peft import LoraConfig, get_peft_model | |
| import torch | |
| # Authenticate Hugging Face | |
| from huggingface_hub import notebook_login | |
| notebook_login() | |
| # Load GPT-2 model and tokenizer | |
| model_name = "gpt2" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| # Load the OpenWebText dataset using streaming (No download required) | |
| # Custom Dataset (Predefined Q&A Pairs for Project Expo) | |
| custom_data = [ | |
| {"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."}, | |
| {"prompt": "What is your name?", "response": "I am Eva, how can I help you?"}, | |
| {"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"}, | |
| {"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."}, | |
| {"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"}, | |
| {"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."}, | |
| {"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."} | |
| ] | |
| # Convert custom dataset to Hugging Face Dataset | |
| dataset_custom = load_dataset("json", data_files={"train": custom_data}) | |
| # Merge with OpenWebText dataset | |
| dataset = load_dataset("Skylion007/openwebtext", split="train[:50%]") # Load 5% to avoid streaming issues | |
| # Tokenization function | |
| def tokenize_function(examples): | |
| return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512) | |
| tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
| # Apply LoRA for efficient fine-tuning | |
| lora_config = LoraConfig( | |
| r=8, lora_alpha=32, lora_dropout=0.05, bias="none", | |
| target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers | |
| ) | |
| model = get_peft_model(model, lora_config) | |
| # Enable gradient checkpointing to reduce memory usage | |
| model.gradient_checkpointing_enable() | |
| # Training arguments | |
| training_args = TrainingArguments( | |
| output_dir="gpt2_finetuned", | |
| auto_find_batch_size=True, | |
| gradient_accumulation_steps=4, | |
| learning_rate=5e-5, | |
| num_train_epochs=3, | |
| save_strategy="epoch", | |
| logging_dir="logs", | |
| bf16=True, | |
| push_to_hub=True | |
| ) | |
| # Trainer setup | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=tokenized_datasets | |
| ) | |
| # Start fine-tuning | |
| trainer.train() | |
| # Save and push the model to Hugging Face Hub | |
| trainer.save_model("gpt2_finetuned") | |
| tokenizer.save_pretrained("gpt2_finetuned") | |
| trainer.push_to_hub() | |
| # Deploy as Gradio Interface | |
| def generate_response(prompt): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate(**inputs, max_length=100) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| demo = gr.Interface(fn=generate_response, inputs="text", outputs="text") | |
| demo.launch(share=True) |