Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,16 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import pipeline
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def get_pipeline_prediction(pil_image):
|
| 8 |
# first get the pipeline output given the pil image
|
|
@@ -10,6 +18,7 @@ def get_pipeline_prediction(pil_image):
|
|
| 10 |
# Then Process the image using the pipeline output
|
| 11 |
processed_image = render_results_in_image(pil_image,
|
| 12 |
pipeline_output)
|
|
|
|
| 13 |
return processed_image
|
| 14 |
|
| 15 |
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import pipeline
|
| 4 |
+
from transformers import DetrForSegmentation, DetrConfig
|
| 5 |
|
| 6 |
+
# Initialize the configuration for DetrForObjectDetection
|
| 7 |
+
config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
|
| 8 |
+
|
| 9 |
+
# Create the model for object detection using the specified configuration
|
| 10 |
+
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50", config=config)
|
| 11 |
+
|
| 12 |
+
# Updated function call
|
| 13 |
+
results = processed_image(model, image, size={'longest_edge': 800})
|
| 14 |
|
| 15 |
def get_pipeline_prediction(pil_image):
|
| 16 |
# first get the pipeline output given the pil image
|
|
|
|
| 18 |
# Then Process the image using the pipeline output
|
| 19 |
processed_image = render_results_in_image(pil_image,
|
| 20 |
pipeline_output)
|
| 21 |
+
|
| 22 |
return processed_image
|
| 23 |
|
| 24 |
|