Spaces:
Runtime error
Runtime error
Adding files
Browse filesSigned-off-by: Taejin Park <tango4j@gmail.com>
- __pycache__/app.cpython-310.pyc +0 -0
- __pycache__/app.cpython-39.pyc +0 -0
- __pycache__/app_new.cpython-310.pyc +0 -0
- __pycache__/app_new.cpython-39.pyc +0 -0
- __pycache__/content.cpython-310.pyc +0 -0
- __pycache__/scorer.cpython-310.pyc +0 -0
- app.py +15 -13
- app_new.py +301 -0
- app_old.py +281 -0
- beam_search_utils.py +339 -0
- entry_data/dev_set_data.csv +2 -0
- entry_data/dev_set_data_1.csv +2 -0
- hyper_optim.py +196 -0
- requirements.txt +1 -0
- scorer.py +29 -6
- seglst_files/err_dev.hyp.seglst.json +0 -0
- seglst_files/err_dev.ref.list +13 -0
- seglst_files/err_dev.ref.seglst.json +0 -0
- seglst_files/err_dev.src.list +13 -0
- seglst_files/err_dev.src.seglst.json +0 -0
__pycache__/app.cpython-310.pyc
ADDED
|
Binary file (7.58 kB). View file
|
|
|
__pycache__/app.cpython-39.pyc
ADDED
|
Binary file (7.96 kB). View file
|
|
|
__pycache__/app_new.cpython-310.pyc
ADDED
|
Binary file (6.49 kB). View file
|
|
|
__pycache__/app_new.cpython-39.pyc
ADDED
|
Binary file (7.45 kB). View file
|
|
|
__pycache__/content.cpython-310.pyc
ADDED
|
Binary file (5.47 kB). View file
|
|
|
__pycache__/scorer.cpython-310.pyc
ADDED
|
Binary file (1.94 kB). View file
|
|
|
app.py
CHANGED
|
@@ -27,6 +27,8 @@ api = HfApi()
|
|
| 27 |
|
| 28 |
YEAR_VERSION = "2024"
|
| 29 |
|
|
|
|
|
|
|
| 30 |
def read_json_file(filepath):
|
| 31 |
with open(filepath) as infile:
|
| 32 |
data_dict = json.load(infile)
|
|
@@ -38,17 +40,17 @@ def save_json_file(filepath, data_dict):
|
|
| 38 |
|
| 39 |
os.makedirs("scored", exist_ok=True)
|
| 40 |
|
| 41 |
-
test_data_files = {"test": "contextual_test.csv"}
|
| 42 |
-
test_dataset = load_dataset(TEST_DATASET, data_files=test_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 43 |
|
| 44 |
-
val_data_files = {"val": "contextual_val.csv"}
|
| 45 |
-
val_dataset = load_dataset(VAL_DATASET, data_files=val_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 46 |
|
| 47 |
-
results_data_files = {"test": "contextual_test_results.csv", "val": "contextual_val_results.csv"}
|
| 48 |
-
results = load_dataset(RESULTS_DATASET, data_files=results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 49 |
|
| 50 |
-
contacts_data_files = {"contacts": "contacts.csv"}
|
| 51 |
-
contact_infos = load_dataset(CONTACT_DATASET, data_files=contacts_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 52 |
|
| 53 |
def get_dataframe_from_results(results, split):
|
| 54 |
df = results[split].to_pandas()
|
|
@@ -56,13 +58,13 @@ def get_dataframe_from_results(results, split):
|
|
| 56 |
df = df.sort_values(by=["All"], ascending=False)
|
| 57 |
return df
|
| 58 |
|
| 59 |
-
test_dataset_dataframe = test_dataset["test"].to_pandas()
|
| 60 |
-
val_dataset_dataframe = val_dataset["val"].to_pandas()
|
| 61 |
|
| 62 |
-
contacts_dataframe = contact_infos["contacts"].to_pandas()
|
| 63 |
|
| 64 |
-
val_results_dataframe = get_dataframe_from_results(results=results, split="val")
|
| 65 |
-
test_results_dataframe = get_dataframe_from_results(results=results, split="test")
|
| 66 |
|
| 67 |
def restart_space():
|
| 68 |
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
|
|
|
|
| 27 |
|
| 28 |
YEAR_VERSION = "2024"
|
| 29 |
|
| 30 |
+
results = {"dev": {"cpWER": 0, "W
|
| 31 |
+
|
| 32 |
def read_json_file(filepath):
|
| 33 |
with open(filepath) as infile:
|
| 34 |
data_dict = json.load(infile)
|
|
|
|
| 40 |
|
| 41 |
os.makedirs("scored", exist_ok=True)
|
| 42 |
|
| 43 |
+
# test_data_files = {"test": "contextual_test.csv"}
|
| 44 |
+
# test_dataset = load_dataset(TEST_DATASET, data_files=test_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 45 |
|
| 46 |
+
# val_data_files = {"val": "contextual_val.csv"}
|
| 47 |
+
# val_dataset = load_dataset(VAL_DATASET, data_files=val_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 48 |
|
| 49 |
+
# results_data_files = {"test": "contextual_test_results.csv", "val": "contextual_val_results.csv"}
|
| 50 |
+
# results = load_dataset(RESULTS_DATASET, data_files=results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 51 |
|
| 52 |
+
# contacts_data_files = {"contacts": "contacts.csv"}
|
| 53 |
+
# contact_infos = load_dataset(CONTACT_DATASET, data_files=contacts_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 54 |
|
| 55 |
def get_dataframe_from_results(results, split):
|
| 56 |
df = results[split].to_pandas()
|
|
|
|
| 58 |
df = df.sort_values(by=["All"], ascending=False)
|
| 59 |
return df
|
| 60 |
|
| 61 |
+
# test_dataset_dataframe = test_dataset["test"].to_pandas()
|
| 62 |
+
# val_dataset_dataframe = val_dataset["val"].to_pandas()
|
| 63 |
|
| 64 |
+
# contacts_dataframe = contact_infos["contacts"].to_pandas()
|
| 65 |
|
| 66 |
+
# val_results_dataframe = get_dataframe_from_results(results=results, split="val")
|
| 67 |
+
# test_results_dataframe = get_dataframe_from_results(results=results, split="test")
|
| 68 |
|
| 69 |
def restart_space():
|
| 70 |
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
|
app_new.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import csv
|
| 4 |
+
import datetime
|
| 5 |
+
from email.utils import parseaddr
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
from datasets import load_dataset
|
| 12 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 13 |
+
from huggingface_hub import HfApi
|
| 14 |
+
|
| 15 |
+
from scorer import instruction_scorer
|
| 16 |
+
from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink
|
| 17 |
+
|
| 18 |
+
TOKEN = os.environ.get("TOKEN", None)
|
| 19 |
+
# OWNER="ucla-contextual"
|
| 20 |
+
OWNER="Taejin"
|
| 21 |
+
# TEST_DATASET = f"{OWNER}/contextual_test"
|
| 22 |
+
# VAL_DATASET = f"{OWNER}/contextual_val"
|
| 23 |
+
# SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
|
| 24 |
+
# CONTACT_DATASET = f"{OWNER}/contact_info"
|
| 25 |
+
# RESULTS_DATASET = f"{OWNER}/results"
|
| 26 |
+
# LEADERBOARD_PATH = f"{OWNER}/leaderboard"
|
| 27 |
+
|
| 28 |
+
RESULTS_DATASET = f"{OWNER}/spk_tag_results"
|
| 29 |
+
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
|
| 30 |
+
SUBMISSION_DATASET = f"{OWNER}/submission_leaderboard"
|
| 31 |
+
api = HfApi()
|
| 32 |
+
|
| 33 |
+
YEAR_VERSION = "2024"
|
| 34 |
+
|
| 35 |
+
def read_json_file(filepath):
|
| 36 |
+
with open(filepath) as infile:
|
| 37 |
+
data_dict = json.load(infile)
|
| 38 |
+
return data_dict
|
| 39 |
+
|
| 40 |
+
def save_json_file(filepath, data_dict):
|
| 41 |
+
with open(filepath, "w") as outfile:
|
| 42 |
+
json.dump(data_dict, outfile)
|
| 43 |
+
|
| 44 |
+
os.makedirs("scored", exist_ok=True)
|
| 45 |
+
|
| 46 |
+
# test_data_files = {"test": "contextual_test.csv"}
|
| 47 |
+
# test_dataset = load_dataset(TEST_DATASET, data_files=test_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 48 |
+
|
| 49 |
+
# val_data_files = {"val": "contextual_val.csv"}
|
| 50 |
+
# val_dataset = load_dataset(VAL_DATASET, data_files=val_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 51 |
+
|
| 52 |
+
# results_data_files = {"test": "contextual_test_results.csv", "val": "contextual_val_results.csv"}
|
| 53 |
+
# results = load_dataset(RESULTS_DATASET, data_files=results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 54 |
+
|
| 55 |
+
# contacts_data_files = {"contacts": "contacts.csv"}
|
| 56 |
+
# contact_infos = load_dataset(CONTACT_DATASET, data_files=contacts_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 57 |
+
|
| 58 |
+
# BASE_PATH="entry_data"
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# results_data_files = {"dev": f"{BASE_PATH}/dev_set_data.csv", "val": "contextual_val_results.csv"}
|
| 63 |
+
results_data_files = {"dev": "dev_set_data.csv"}
|
| 64 |
+
results = load_dataset(RESULTS_DATASET, data_files=results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 65 |
+
|
| 66 |
+
# contacts_data_files = {"contacts": "contacts.csv"}
|
| 67 |
+
# contact_infos = load_dataset(CONTACT_DATASET, data_files=contacts_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 68 |
+
|
| 69 |
+
def get_dataframe_from_results(results, split):
|
| 70 |
+
df = results[split].to_pandas()
|
| 71 |
+
# df.drop(columns=['URL'], inplace=True)
|
| 72 |
+
df = df.sort_values(by=["cpWER"], ascending=False)
|
| 73 |
+
return df
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# test_dataset_dataframe = test_dataset["test"].to_pandas()
|
| 78 |
+
# val_dataset_dataframe = val_dataset["val"].to_pandas()
|
| 79 |
+
|
| 80 |
+
# contacts_dataframe = contact_infos["contacts"].to_pandas()
|
| 81 |
+
|
| 82 |
+
# val_results_dataframe = get_dataframe_from_results(results=results, split="val")
|
| 83 |
+
# test_results_dataframe = get_dataframe_from_results(results=results, split="test")
|
| 84 |
+
|
| 85 |
+
def restart_space():
|
| 86 |
+
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
|
| 87 |
+
|
| 88 |
+
# TYPES = ["markdown", "markdown", "markdown", "number", "number", "number","number", "number", "number", "number", "number", "number"]
|
| 89 |
+
TYPES = ["markdown", "markdown", "markdown", "markdown", "number", "number"]
|
| 90 |
+
|
| 91 |
+
# file_path = "dev_set_data.csv"
|
| 92 |
+
# dev_dataframe= pd.read_csv(file_path)
|
| 93 |
+
dev_dataset_dataframe= get_dataframe_from_results(results=results, split="dev")
|
| 94 |
+
|
| 95 |
+
def add_new_eval(
|
| 96 |
+
system_name: str,
|
| 97 |
+
method: str,
|
| 98 |
+
path_to_file: str,
|
| 99 |
+
organisation: str,
|
| 100 |
+
mail: str,
|
| 101 |
+
):
|
| 102 |
+
print("printing all inputs:", system_name, method, path_to_file, organisation, mail)
|
| 103 |
+
|
| 104 |
+
if len(system_name)==0:
|
| 105 |
+
print("system_name none")
|
| 106 |
+
raise gr.Error("Please provide a system_name name. Field empty!")
|
| 107 |
+
|
| 108 |
+
if len(method)==0:
|
| 109 |
+
print("method none")
|
| 110 |
+
raise gr.Error("Please provide a method. Field empty!")
|
| 111 |
+
|
| 112 |
+
if len(organisation)==0:
|
| 113 |
+
print("org none")
|
| 114 |
+
raise gr.Error("Please provide organisation information. Field empty!")
|
| 115 |
+
|
| 116 |
+
# Very basic email parsing
|
| 117 |
+
_, parsed_mail = parseaddr(mail)
|
| 118 |
+
if not "@" in parsed_mail:
|
| 119 |
+
print("email here")
|
| 120 |
+
raise gr.Error("Please provide a valid email address.")
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
# Check if the combination system_name/org already exists and prints a warning message if yes
|
| 124 |
+
# if system_name.lower() in set([m.lower() for m in results["dev"]["System_name"]]) and organisation.lower() in set([o.lower() for o in results["dev"]["Organisation"]]):
|
| 125 |
+
# print("system_name org combo here")
|
| 126 |
+
# raise gr.Error("This system_name has been already submitted.")
|
| 127 |
+
|
| 128 |
+
if path_to_file is None:
|
| 129 |
+
print("file missing here")
|
| 130 |
+
raise gr.Error("Please attach a file.")
|
| 131 |
+
|
| 132 |
+
tmp_file_output = read_json_file(path_to_file.name)
|
| 133 |
+
|
| 134 |
+
if len(tmp_file_output.keys())!=1:
|
| 135 |
+
print("file format wrong here")
|
| 136 |
+
raise gr.Error("Submission file format incorrect. Please refer to the format description!")
|
| 137 |
+
|
| 138 |
+
tmp_output_key = list(tmp_file_output.keys())[0]
|
| 139 |
+
if len(tmp_file_output[tmp_output_key].keys())!=100:
|
| 140 |
+
print("file not 100 here")
|
| 141 |
+
raise gr.Error("File must contain exactly 100 predictions.")
|
| 142 |
+
|
| 143 |
+
# Save submitted file
|
| 144 |
+
time_atm = datetime.datetime.today()
|
| 145 |
+
api.upload_file(
|
| 146 |
+
repo_id=SUBMISSION_DATASET,
|
| 147 |
+
path_or_fileobj=path_to_file.name,
|
| 148 |
+
path_in_repo=f"{organisation}/{system_name}/{YEAR_VERSION}_raw_{time_atm}.json",
|
| 149 |
+
repo_type="dataset",
|
| 150 |
+
token=TOKEN
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Compute score
|
| 154 |
+
file_path = path_to_file.name
|
| 155 |
+
# scores = instruction_scorer(val_dataset_dataframe, file_path , system_name)
|
| 156 |
+
ref_file_path="seglst_files/err_dev.ref.seglst.json"
|
| 157 |
+
scores = instruction_scorer(file_path_input= path_to_file.name, ref_file_path=ref_file_path, system_name=system_name)
|
| 158 |
+
|
| 159 |
+
path_or_fileobj=f"scored/{organisation}_{system_name}.json"
|
| 160 |
+
save_json_file(path_or_fileobj, scores)
|
| 161 |
+
|
| 162 |
+
# Save scored file
|
| 163 |
+
api.upload_file(
|
| 164 |
+
repo_id=SUBMISSION_DATASET,
|
| 165 |
+
path_or_fileobj=path_or_fileobj,
|
| 166 |
+
path_in_repo=f"{organisation}/{system_name}/{YEAR_VERSION}_scored_{time_atm}.json",
|
| 167 |
+
repo_type="dataset",
|
| 168 |
+
token=TOKEN
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
# Actual submission
|
| 172 |
+
eval_entry = {
|
| 173 |
+
"System_name": system_name,
|
| 174 |
+
"Method":method,
|
| 175 |
+
"Organisation": organisation,
|
| 176 |
+
"cpWER":scores["cpWER"],
|
| 177 |
+
"WER":scores["WER"],
|
| 178 |
+
}
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
dev_set_data_csv = "dev_set_data.csv"
|
| 182 |
+
|
| 183 |
+
val_results_dataframe = get_dataframe_from_results(results=results, split="val")
|
| 184 |
+
val_results_dataframe = pd.concat([val_results_dataframe, pd.DataFrame([eval_entry])], ignore_index=True)
|
| 185 |
+
val_results_dataframe.to_csv(dev_set_data_csv, index=False)
|
| 186 |
+
|
| 187 |
+
api.upload_file(
|
| 188 |
+
repo_id=RESULTS_DATASET,
|
| 189 |
+
path_or_fileobj=dev_set_data_csv,
|
| 190 |
+
path_in_repo=dev_set_data_csv,
|
| 191 |
+
repo_type="dataset",
|
| 192 |
+
token=TOKEN
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# contact_info = {
|
| 196 |
+
# "System_name": system_name,
|
| 197 |
+
# "Organisation": organisation,
|
| 198 |
+
# "Mail": mail,
|
| 199 |
+
# }
|
| 200 |
+
|
| 201 |
+
# contacts_dataframe = contact_infos["contacts"].to_pandas()
|
| 202 |
+
# contacts_dataframe = pd.concat([contacts_dataframe, pd.DataFrame([contact_info])], ignore_index=True)
|
| 203 |
+
# contacts_dataframe.to_csv('contacts.csv', index=False)
|
| 204 |
+
|
| 205 |
+
# api.upload_file(
|
| 206 |
+
# repo_id=CONTACT_DATASET,
|
| 207 |
+
# path_or_fileobj="contacts.csv",
|
| 208 |
+
# path_in_repo=f"contacts.csv",
|
| 209 |
+
# repo_type="dataset",
|
| 210 |
+
# token=TOKEN
|
| 211 |
+
# )
|
| 212 |
+
|
| 213 |
+
return format_log(f"System_name {system_name} submitted by {organisation} successfully! \nPlease refresh the val leaderboard, and wait a bit to see the score displayed")
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
# def refresh():
|
| 217 |
+
# results_data_files = {"test": "contextual_test_results.csv", "val": "contextual_val_results.csv"}
|
| 218 |
+
# results = load_dataset(RESULTS_DATASET, data_files=
|
| 219 |
+
# results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 220 |
+
# val_results_dataframe = get_dataframe_from_results(results=results, split="val")
|
| 221 |
+
# test_results_dataframe = get_dataframe_from_results(results=results, split="test")
|
| 222 |
+
# return val_results_dataframe, test_results_dataframe
|
| 223 |
+
|
| 224 |
+
def refresh():
|
| 225 |
+
results_data_files = {"dev": "dev_set_data.csv"}
|
| 226 |
+
results = load_dataset(RESULTS_DATASET, data_files=
|
| 227 |
+
results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 228 |
+
dev_results_dataframe = get_dataframe_from_results(results=results, split="dev")
|
| 229 |
+
# test_results_dataframe = get_dataframe_from_results(results=results, split="test")
|
| 230 |
+
return dev_results_dataframe
|
| 231 |
+
|
| 232 |
+
def upload_file(files):
|
| 233 |
+
file_paths = [file.name for file in files]
|
| 234 |
+
return file_paths
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
demo = gr.Blocks()
|
| 240 |
+
with demo:
|
| 241 |
+
gr.HTML(TITLE)
|
| 242 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 243 |
+
|
| 244 |
+
with gr.Row():
|
| 245 |
+
with gr.Accordion("🧐 Introduction", open=False):
|
| 246 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 247 |
+
|
| 248 |
+
with gr.Row():
|
| 249 |
+
with gr.Accordion("🎯 Submission Guidelines", open=False):
|
| 250 |
+
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
|
| 251 |
+
|
| 252 |
+
with gr.Row():
|
| 253 |
+
with gr.Accordion("📙 Citation", open=False):
|
| 254 |
+
citation_button = gr.TextArea(
|
| 255 |
+
value=CITATION_BUTTON_TEXT,
|
| 256 |
+
label=CITATION_BUTTON_LABEL,
|
| 257 |
+
elem_id="citation-button",
|
| 258 |
+
)
|
| 259 |
+
with gr.Tab("Results: Dev"):
|
| 260 |
+
leaderboard_table_dev = gr.components.Dataframe(
|
| 261 |
+
value=dev_dataset_dataframe, datatype=TYPES, interactive=False,
|
| 262 |
+
column_widths=["20%"]
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
refresh_button = gr.Button("Refresh")
|
| 266 |
+
refresh_button.click(
|
| 267 |
+
refresh,
|
| 268 |
+
inputs=[],
|
| 269 |
+
outputs=[
|
| 270 |
+
leaderboard_table_dev,
|
| 271 |
+
],
|
| 272 |
+
)
|
| 273 |
+
with gr.Accordion("Submit a new system_name for evaluation"):
|
| 274 |
+
with gr.Row():
|
| 275 |
+
with gr.Column():
|
| 276 |
+
system_name_textbox = gr.Textbox(label="System name", type='text')
|
| 277 |
+
method_textbox = gr.Textbox(label="Method (LLM with prompt, beam-search, etc)", type='text')
|
| 278 |
+
with gr.Column():
|
| 279 |
+
organisation = gr.Textbox(label="Organisation or Team Name", type='text')
|
| 280 |
+
mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)", type='email')
|
| 281 |
+
file_output = gr.File()
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
submit_button = gr.Button("Submit Eval")
|
| 285 |
+
submission_result = gr.Markdown()
|
| 286 |
+
submit_button.click(
|
| 287 |
+
add_new_eval,
|
| 288 |
+
[
|
| 289 |
+
system_name_textbox,
|
| 290 |
+
method_textbox,
|
| 291 |
+
file_output,
|
| 292 |
+
organisation,
|
| 293 |
+
mail
|
| 294 |
+
],
|
| 295 |
+
submission_result,
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
scheduler = BackgroundScheduler()
|
| 299 |
+
scheduler.add_job(restart_space, "interval", seconds=3600)
|
| 300 |
+
scheduler.start()
|
| 301 |
+
demo.launch(debug=True)
|
app_old.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import csv
|
| 4 |
+
import datetime
|
| 5 |
+
from email.utils import parseaddr
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
from datasets import load_dataset
|
| 12 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 13 |
+
from huggingface_hub import HfApi
|
| 14 |
+
|
| 15 |
+
from scorer import instruction_scorer
|
| 16 |
+
from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink
|
| 17 |
+
|
| 18 |
+
TOKEN = os.environ.get("TOKEN", None)
|
| 19 |
+
OWNER="ucla-contextual"
|
| 20 |
+
TEST_DATASET = f"{OWNER}/contextual_test"
|
| 21 |
+
VAL_DATASET = f"{OWNER}/contextual_val"
|
| 22 |
+
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
|
| 23 |
+
CONTACT_DATASET = f"{OWNER}/contact_info"
|
| 24 |
+
RESULTS_DATASET = f"{OWNER}/results"
|
| 25 |
+
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
|
| 26 |
+
api = HfApi()
|
| 27 |
+
|
| 28 |
+
YEAR_VERSION = "2024"
|
| 29 |
+
|
| 30 |
+
def read_json_file(filepath):
|
| 31 |
+
with open(filepath) as infile:
|
| 32 |
+
data_dict = json.load(infile)
|
| 33 |
+
return data_dict
|
| 34 |
+
|
| 35 |
+
def save_json_file(filepath, data_dict):
|
| 36 |
+
with open(filepath, "w") as outfile:
|
| 37 |
+
json.dump(data_dict, outfile)
|
| 38 |
+
|
| 39 |
+
os.makedirs("scored", exist_ok=True)
|
| 40 |
+
|
| 41 |
+
# test_data_files = {"test": "contextual_test.csv"}
|
| 42 |
+
# test_dataset = load_dataset(TEST_DATASET, data_files=test_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 43 |
+
|
| 44 |
+
# val_data_files = {"val": "contextual_val.csv"}
|
| 45 |
+
# val_dataset = load_dataset(VAL_DATASET, data_files=val_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 46 |
+
|
| 47 |
+
# results_data_files = {"test": "contextual_test_results.csv", "val": "contextual_val_results.csv"}
|
| 48 |
+
# results = load_dataset(RESULTS_DATASET, data_files=results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 49 |
+
|
| 50 |
+
# contacts_data_files = {"contacts": "contacts.csv"}
|
| 51 |
+
# contact_infos = load_dataset(CONTACT_DATASET, data_files=contacts_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 52 |
+
|
| 53 |
+
def get_dataframe_from_results(results, split):
|
| 54 |
+
df = results[split].to_pandas()
|
| 55 |
+
df.drop(columns=['URL'], inplace=True)
|
| 56 |
+
df = df.sort_values(by=["All"], ascending=False)
|
| 57 |
+
return df
|
| 58 |
+
|
| 59 |
+
# test_dataset_dataframe = test_dataset["test"].to_pandas()
|
| 60 |
+
# val_dataset_dataframe = val_dataset["val"].to_pandas()
|
| 61 |
+
|
| 62 |
+
# contacts_dataframe = contact_infos["contacts"].to_pandas()
|
| 63 |
+
|
| 64 |
+
# val_results_dataframe = get_dataframe_from_results(results=results, split="val")
|
| 65 |
+
# test_results_dataframe = get_dataframe_from_results(results=results, split="test")
|
| 66 |
+
|
| 67 |
+
def restart_space():
|
| 68 |
+
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
|
| 69 |
+
|
| 70 |
+
TYPES = ["markdown", "markdown", "markdown", "number", "number", "number","number", "number", "number", "number", "number", "number"]
|
| 71 |
+
|
| 72 |
+
def add_new_eval(
|
| 73 |
+
model: str,
|
| 74 |
+
method: str,
|
| 75 |
+
url: str,
|
| 76 |
+
path_to_file: str,
|
| 77 |
+
organisation: str,
|
| 78 |
+
mail: str,
|
| 79 |
+
):
|
| 80 |
+
print("printing all inputs:", model, method, url, path_to_file, organisation, mail)
|
| 81 |
+
|
| 82 |
+
if len(model)==0:
|
| 83 |
+
print("model none")
|
| 84 |
+
raise gr.Error("Please provide a model name. Field empty!")
|
| 85 |
+
|
| 86 |
+
if len(method)==0:
|
| 87 |
+
print("method none")
|
| 88 |
+
raise gr.Error("Please provide a method. Field empty!")
|
| 89 |
+
|
| 90 |
+
if len(organisation)==0:
|
| 91 |
+
print("org none")
|
| 92 |
+
raise gr.Error("Please provide organisation information. Field empty!")
|
| 93 |
+
|
| 94 |
+
# Very basic email parsing
|
| 95 |
+
_, parsed_mail = parseaddr(mail)
|
| 96 |
+
if not "@" in parsed_mail:
|
| 97 |
+
print("email here")
|
| 98 |
+
raise gr.Error("Please provide a valid email address.")
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# Check if the combination model/org already exists and prints a warning message if yes
|
| 102 |
+
if model.lower() in set([m.lower() for m in results["val"]["Model"]]) and organisation.lower() in set([o.lower() for o in results["val"]["Organisation"]]):
|
| 103 |
+
print("model org combo here")
|
| 104 |
+
raise gr.Error("This model has been already submitted.")
|
| 105 |
+
|
| 106 |
+
if path_to_file is None:
|
| 107 |
+
print("file missing here")
|
| 108 |
+
raise gr.Error("Please attach a file.")
|
| 109 |
+
|
| 110 |
+
tmp_file_output = read_json_file(path_to_file.name)
|
| 111 |
+
|
| 112 |
+
if len(tmp_file_output.keys())!=1:
|
| 113 |
+
print("file format wrong here")
|
| 114 |
+
raise gr.Error("Submission file format incorrect. Please refer to the format description!")
|
| 115 |
+
|
| 116 |
+
tmp_output_key = list(tmp_file_output.keys())[0]
|
| 117 |
+
if len(tmp_file_output[tmp_output_key].keys())!=100:
|
| 118 |
+
print("file not 100 here")
|
| 119 |
+
raise gr.Error("File must contain exactly 100 predictions.")
|
| 120 |
+
|
| 121 |
+
# Save submitted file
|
| 122 |
+
time_atm = datetime.datetime.today()
|
| 123 |
+
api.upload_file(
|
| 124 |
+
repo_id=SUBMISSION_DATASET,
|
| 125 |
+
path_or_fileobj=path_to_file.name,
|
| 126 |
+
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_raw_{time_atm}.json",
|
| 127 |
+
repo_type="dataset",
|
| 128 |
+
token=TOKEN
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Compute score
|
| 132 |
+
file_path = path_to_file.name
|
| 133 |
+
scores = instruction_scorer(val_dataset_dataframe, file_path , model)
|
| 134 |
+
|
| 135 |
+
path_or_fileobj=f"scored/{organisation}_{model}.json"
|
| 136 |
+
save_json_file(path_or_fileobj, scores)
|
| 137 |
+
|
| 138 |
+
# Save scored file
|
| 139 |
+
api.upload_file(
|
| 140 |
+
repo_id=SUBMISSION_DATASET,
|
| 141 |
+
path_or_fileobj=path_or_fileobj,
|
| 142 |
+
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_scored_{time_atm}.json",
|
| 143 |
+
repo_type="dataset",
|
| 144 |
+
token=TOKEN
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# Actual submission
|
| 148 |
+
eval_entry = {
|
| 149 |
+
"Model": model,
|
| 150 |
+
"Method":method,
|
| 151 |
+
"Organisation": organisation,
|
| 152 |
+
"URL": url,
|
| 153 |
+
"All":scores["average"],
|
| 154 |
+
"Time":scores["time"],
|
| 155 |
+
"Shopping":scores["shopping"],
|
| 156 |
+
"Navigation":scores["navigation-transportation"],
|
| 157 |
+
"Abstract":scores["abstract"],
|
| 158 |
+
"Application Usage":scores["app"],
|
| 159 |
+
"Web Usage":scores["web"],
|
| 160 |
+
"Infographic":scores["infographics"],
|
| 161 |
+
"Miscellaneous Natural Scenes": scores["misc"]
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
val_results_dataframe = get_dataframe_from_results(results=results, split="val")
|
| 165 |
+
val_results_dataframe = pd.concat([val_results_dataframe, pd.DataFrame([eval_entry])], ignore_index=True)
|
| 166 |
+
val_results_dataframe.to_csv('contextual_val_results.csv', index=False)
|
| 167 |
+
|
| 168 |
+
api.upload_file(
|
| 169 |
+
repo_id=RESULTS_DATASET,
|
| 170 |
+
path_or_fileobj="contextual_val_results.csv",
|
| 171 |
+
path_in_repo=f"contextual_val_results.csv",
|
| 172 |
+
repo_type="dataset",
|
| 173 |
+
token=TOKEN
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
contact_info = {
|
| 177 |
+
"Model": model,
|
| 178 |
+
"URL": url,
|
| 179 |
+
"Organisation": organisation,
|
| 180 |
+
"Mail": mail,
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
contacts_dataframe = contact_infos["contacts"].to_pandas()
|
| 184 |
+
contacts_dataframe = pd.concat([contacts_dataframe, pd.DataFrame([contact_info])], ignore_index=True)
|
| 185 |
+
contacts_dataframe.to_csv('contacts.csv', index=False)
|
| 186 |
+
|
| 187 |
+
api.upload_file(
|
| 188 |
+
repo_id=CONTACT_DATASET,
|
| 189 |
+
path_or_fileobj="contacts.csv",
|
| 190 |
+
path_in_repo=f"contacts.csv",
|
| 191 |
+
repo_type="dataset",
|
| 192 |
+
token=TOKEN
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
return format_log(f"Model {model} submitted by {organisation} successfully! \nPlease refresh the val leaderboard, and wait a bit to see the score displayed")
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def refresh():
|
| 199 |
+
results_data_files = {"test": "contextual_test_results.csv", "val": "contextual_val_results.csv"}
|
| 200 |
+
results = load_dataset(RESULTS_DATASET, data_files=
|
| 201 |
+
results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
|
| 202 |
+
val_results_dataframe = get_dataframe_from_results(results=results, split="val")
|
| 203 |
+
test_results_dataframe = get_dataframe_from_results(results=results, split="test")
|
| 204 |
+
return val_results_dataframe, test_results_dataframe
|
| 205 |
+
|
| 206 |
+
def upload_file(files):
|
| 207 |
+
file_paths = [file.name for file in files]
|
| 208 |
+
return file_paths
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
demo = gr.Blocks()
|
| 212 |
+
with demo:
|
| 213 |
+
gr.HTML(TITLE)
|
| 214 |
+
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 215 |
+
|
| 216 |
+
with gr.Row():
|
| 217 |
+
with gr.Accordion("🧐 Introduction", open=False):
|
| 218 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 219 |
+
|
| 220 |
+
with gr.Row():
|
| 221 |
+
with gr.Accordion("🎯 Submission Guidelines", open=False):
|
| 222 |
+
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
|
| 223 |
+
|
| 224 |
+
with gr.Row():
|
| 225 |
+
with gr.Accordion("📙 Citation", open=False):
|
| 226 |
+
citation_button = gr.TextArea(
|
| 227 |
+
value=CITATION_BUTTON_TEXT,
|
| 228 |
+
label=CITATION_BUTTON_LABEL,
|
| 229 |
+
elem_id="citation-button",
|
| 230 |
+
)
|
| 231 |
+
with gr.Tab("Results: Test"):
|
| 232 |
+
leaderboard_table_test = gr.components.Dataframe(
|
| 233 |
+
value=test_results_dataframe, datatype=TYPES, interactive=False,
|
| 234 |
+
column_widths=["20%"]
|
| 235 |
+
)
|
| 236 |
+
with gr.Tab("Results: Val"):
|
| 237 |
+
leaderboard_table_val = gr.components.Dataframe(
|
| 238 |
+
value=val_results_dataframe, datatype=TYPES, interactive=False,
|
| 239 |
+
column_widths=["20%"]
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
refresh_button = gr.Button("Refresh")
|
| 243 |
+
refresh_button.click(
|
| 244 |
+
refresh,
|
| 245 |
+
inputs=[],
|
| 246 |
+
outputs=[
|
| 247 |
+
leaderboard_table_val,
|
| 248 |
+
leaderboard_table_test,
|
| 249 |
+
],
|
| 250 |
+
)
|
| 251 |
+
with gr.Accordion("Submit a new model for evaluation"):
|
| 252 |
+
with gr.Row():
|
| 253 |
+
with gr.Column():
|
| 254 |
+
model_name_textbox = gr.Textbox(label="Model name", type='text')
|
| 255 |
+
method_textbox = gr.Textbox(label="Method (LMM or Aug LLM or any other)", type='text')
|
| 256 |
+
url_textbox = gr.Textbox(label="URL to model information", type='text')
|
| 257 |
+
with gr.Column():
|
| 258 |
+
organisation = gr.Textbox(label="Organisation", type='text')
|
| 259 |
+
mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)", type='email')
|
| 260 |
+
file_output = gr.File()
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
submit_button = gr.Button("Submit Eval")
|
| 264 |
+
submission_result = gr.Markdown()
|
| 265 |
+
submit_button.click(
|
| 266 |
+
add_new_eval,
|
| 267 |
+
[
|
| 268 |
+
model_name_textbox,
|
| 269 |
+
method_textbox,
|
| 270 |
+
url_textbox,
|
| 271 |
+
file_output,
|
| 272 |
+
organisation,
|
| 273 |
+
mail
|
| 274 |
+
],
|
| 275 |
+
submission_result,
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
scheduler = BackgroundScheduler()
|
| 279 |
+
scheduler.add_job(restart_space, "interval", seconds=3600)
|
| 280 |
+
scheduler.start()
|
| 281 |
+
demo.launch(debug=True)
|
beam_search_utils.py
ADDED
|
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from tqdm import tqdm
|
| 2 |
+
from typing import Dict, List
|
| 3 |
+
from pydiardecode import build_diardecoder
|
| 4 |
+
import numpy as np
|
| 5 |
+
import copy
|
| 6 |
+
import os
|
| 7 |
+
import json
|
| 8 |
+
import concurrent.futures
|
| 9 |
+
import kenlm
|
| 10 |
+
|
| 11 |
+
__INFO_TAG__ = "[BeamSearchUtil INFO]"
|
| 12 |
+
|
| 13 |
+
class SpeakerTaggingBeamSearchDecoder:
|
| 14 |
+
def __init__(self, loaded_kenlm_model: kenlm, cfg: dict):
|
| 15 |
+
self.realigning_lm_params = cfg
|
| 16 |
+
self.realigning_lm = self._load_realigning_LM(loaded_kenlm_model=loaded_kenlm_model)
|
| 17 |
+
self._SPLITSYM = "@"
|
| 18 |
+
|
| 19 |
+
def _load_realigning_LM(self, loaded_kenlm_model: kenlm):
|
| 20 |
+
"""
|
| 21 |
+
Load ARPA language model for realigning speaker labels for words.
|
| 22 |
+
"""
|
| 23 |
+
diar_decoder = None
|
| 24 |
+
return diar_decoder
|
| 25 |
+
|
| 26 |
+
def realign_words_with_lm(self, word_dict_seq_list: List[Dict[str, float]], speaker_count: int = None, port_num=None) -> List[Dict[str, float]]:
|
| 27 |
+
if speaker_count is None:
|
| 28 |
+
spk_list = []
|
| 29 |
+
for k, line_dict in enumerate(word_dict_seq_list):
|
| 30 |
+
_, spk_label = line_dict['word'], line_dict['speaker']
|
| 31 |
+
spk_list.append(spk_label)
|
| 32 |
+
else:
|
| 33 |
+
spk_list = [ f"speaker_{k}" for k in range(speaker_count)]
|
| 34 |
+
|
| 35 |
+
realigned_list = self.realigning_lm.decode_beams(beam_width=self.realigning_lm_params['beam_width'],
|
| 36 |
+
speaker_list=sorted(list(set(spk_list))),
|
| 37 |
+
word_dict_seq_list=word_dict_seq_list,
|
| 38 |
+
port_num=port_num)
|
| 39 |
+
return realigned_list
|
| 40 |
+
|
| 41 |
+
def beam_search_diarization(
|
| 42 |
+
self,
|
| 43 |
+
trans_info_dict: Dict[str, Dict[str, list]],
|
| 44 |
+
port_num: List[int] = None,
|
| 45 |
+
) -> Dict[str, Dict[str, float]]:
|
| 46 |
+
"""
|
| 47 |
+
Match the diarization result with the ASR output.
|
| 48 |
+
The words and the timestamps for the corresponding words are matched in a for loop.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
trans_info_dict (dict):
|
| 54 |
+
Dictionary containing word timestamps, speaker labels and words from all sessions.
|
| 55 |
+
Each session is indexed by a unique ID.
|
| 56 |
+
"""
|
| 57 |
+
for uniq_id, session_dict in tqdm(trans_info_dict.items(), total=len(trans_info_dict), disable=True):
|
| 58 |
+
# print(f"{__INFO_TAG__} Processing session {uniq_id}")
|
| 59 |
+
word_dict_seq_list = session_dict['words']
|
| 60 |
+
output_beams = self.realign_words_with_lm(word_dict_seq_list=word_dict_seq_list, speaker_count=session_dict['speaker_count'], port_num=port_num)
|
| 61 |
+
word_dict_seq_list = output_beams[0][2]
|
| 62 |
+
trans_info_dict[uniq_id]['words'] = word_dict_seq_list
|
| 63 |
+
return trans_info_dict
|
| 64 |
+
|
| 65 |
+
def merge_div_inputs(self, div_trans_info_dict, org_trans_info_dict, win_len=250, word_window=16, limit_max_spks=8):
|
| 66 |
+
"""
|
| 67 |
+
Merge the outputs of parallel processing.
|
| 68 |
+
"""
|
| 69 |
+
uniq_id_list = list(org_trans_info_dict.keys())
|
| 70 |
+
sub_div_dict = {}
|
| 71 |
+
for seq_id in div_trans_info_dict.keys():
|
| 72 |
+
div_info = seq_id.split(self._SPLITSYM)
|
| 73 |
+
uniq_id, sub_idx, total_count = div_info[0], int(div_info[1]), int(div_info[2])
|
| 74 |
+
if uniq_id not in sub_div_dict:
|
| 75 |
+
sub_div_dict[uniq_id] = [None] * total_count
|
| 76 |
+
sub_div_dict[uniq_id][sub_idx] = div_trans_info_dict[seq_id]['words']
|
| 77 |
+
|
| 78 |
+
processed_trans_info_dict = {}
|
| 79 |
+
for uniq_id in uniq_id_list:
|
| 80 |
+
processed_trans_info_dict[uniq_id] = {'words': []}
|
| 81 |
+
|
| 82 |
+
if uniq_id in sub_div_dict:
|
| 83 |
+
for k, div_words in enumerate(sub_div_dict[uniq_id]):
|
| 84 |
+
if k == 0:
|
| 85 |
+
div_words = div_words[:win_len]
|
| 86 |
+
else:
|
| 87 |
+
div_words = div_words[word_window:]
|
| 88 |
+
processed_trans_info_dict[uniq_id]['words'].extend(div_words)
|
| 89 |
+
|
| 90 |
+
org_trans_info_dict[uniq_id]['words'] = processed_trans_info_dict[uniq_id]['words']
|
| 91 |
+
else:
|
| 92 |
+
processed_trans_info_dict[uniq_id]['words'] = org_trans_info_dict[uniq_id]['words']
|
| 93 |
+
return processed_trans_info_dict
|
| 94 |
+
# return org_trans_info_dict
|
| 95 |
+
|
| 96 |
+
def divide_chunks(self, trans_info_dict, win_len, word_window, limit_max_spks, port):
|
| 97 |
+
"""
|
| 98 |
+
Divide word sequence into chunks of length `win_len` for parallel processing.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
trans_info_dict (_type_): _description_
|
| 102 |
+
diar_logits (_type_): _description_
|
| 103 |
+
win_len (int, optional): _description_. Defaults to 250.
|
| 104 |
+
"""
|
| 105 |
+
if len(port) > 1:
|
| 106 |
+
num_workers = len(port)
|
| 107 |
+
else:
|
| 108 |
+
num_workers = 25
|
| 109 |
+
div_trans_info_dict = {}
|
| 110 |
+
for uniq_id in trans_info_dict.keys():
|
| 111 |
+
|
| 112 |
+
uniq_trans = trans_info_dict[uniq_id]
|
| 113 |
+
if 'status' in uniq_trans:
|
| 114 |
+
del uniq_trans['status']
|
| 115 |
+
if 'transcription' in uniq_trans:
|
| 116 |
+
del uniq_trans['transcription']
|
| 117 |
+
if 'sentences' in uniq_trans:
|
| 118 |
+
del uniq_trans['sentences']
|
| 119 |
+
word_seq = uniq_trans['words']
|
| 120 |
+
num_spks = len(set([x['speaker'] for x in word_seq]))
|
| 121 |
+
if num_spks > limit_max_spks:
|
| 122 |
+
continue
|
| 123 |
+
|
| 124 |
+
div_word_seq = []
|
| 125 |
+
if win_len is None:
|
| 126 |
+
win_len = int(np.ceil(len(word_seq)/num_workers))
|
| 127 |
+
n_chunks = int(np.ceil(len(word_seq)/win_len))
|
| 128 |
+
|
| 129 |
+
for k in range(n_chunks):
|
| 130 |
+
div_word_seq.append(word_seq[max(k*win_len - word_window, 0):(k+1)*win_len])
|
| 131 |
+
|
| 132 |
+
total_count = len(div_word_seq)
|
| 133 |
+
for k, w_seq in enumerate(div_word_seq):
|
| 134 |
+
seq_id = uniq_id + f"{self._SPLITSYM}{k}{self._SPLITSYM}{total_count}"
|
| 135 |
+
div_trans_info_dict[seq_id] = dict(uniq_trans)
|
| 136 |
+
div_trans_info_dict[seq_id]['words'] = w_seq
|
| 137 |
+
return div_trans_info_dict
|
| 138 |
+
|
| 139 |
+
def run_mp_beam_search_decoding(
|
| 140 |
+
speaker_beam_search_decoder,
|
| 141 |
+
loaded_kenlm_model,
|
| 142 |
+
div_trans_info_dict,
|
| 143 |
+
org_trans_info_dict,
|
| 144 |
+
div_mp,
|
| 145 |
+
win_len,
|
| 146 |
+
word_window,
|
| 147 |
+
limit_max_spks,
|
| 148 |
+
port=None,
|
| 149 |
+
use_ngram=False
|
| 150 |
+
):
|
| 151 |
+
if len(port) > 1:
|
| 152 |
+
port = [int(p) for p in port]
|
| 153 |
+
if use_ngram:
|
| 154 |
+
port = [None]
|
| 155 |
+
num_workers = 24
|
| 156 |
+
else:
|
| 157 |
+
num_workers = len(port)
|
| 158 |
+
uniq_id_list = sorted(list(div_trans_info_dict.keys() ))
|
| 159 |
+
tp = concurrent.futures.ProcessPoolExecutor(max_workers=num_workers)
|
| 160 |
+
futures = []
|
| 161 |
+
|
| 162 |
+
count = 0
|
| 163 |
+
print(f"{__INFO_TAG__} Number of unique chunks to process: {len(uniq_id_list)}")
|
| 164 |
+
for uniq_id in uniq_id_list:
|
| 165 |
+
print(f"{__INFO_TAG__} Running beam search decoding for {uniq_id}...")
|
| 166 |
+
if port is not None:
|
| 167 |
+
port_num = port[count % len(port)]
|
| 168 |
+
else:
|
| 169 |
+
port_num = None
|
| 170 |
+
count += 1
|
| 171 |
+
uniq_trans_info_dict = {uniq_id: div_trans_info_dict[uniq_id]}
|
| 172 |
+
futures.append(tp.submit(speaker_beam_search_decoder.beam_search_diarization, uniq_trans_info_dict, port_num=port_num))
|
| 173 |
+
|
| 174 |
+
pbar = tqdm(total=len(uniq_id_list), desc="Running beam search decoding", unit="files")
|
| 175 |
+
count = 0
|
| 176 |
+
output_trans_info_dict = {}
|
| 177 |
+
for done_future in concurrent.futures.as_completed(futures):
|
| 178 |
+
count += 1
|
| 179 |
+
pbar.update()
|
| 180 |
+
output_trans_info_dict.update(done_future.result())
|
| 181 |
+
pbar.close()
|
| 182 |
+
tp.shutdown()
|
| 183 |
+
if div_mp:
|
| 184 |
+
output_trans_info_dict = speaker_beam_search_decoder.merge_div_inputs(div_trans_info_dict=output_trans_info_dict,
|
| 185 |
+
org_trans_info_dict=org_trans_info_dict,
|
| 186 |
+
win_len=win_len,
|
| 187 |
+
word_window=word_window,
|
| 188 |
+
limit_max_spks=limit_max_spks)
|
| 189 |
+
return output_trans_info_dict
|
| 190 |
+
|
| 191 |
+
def count_num_of_spks(json_trans_list):
|
| 192 |
+
spk_set = set()
|
| 193 |
+
for sentence_dict in json_trans_list:
|
| 194 |
+
spk_set.add(sentence_dict['speaker'])
|
| 195 |
+
speaker_map = { spk_str: idx for idx, spk_str in enumerate(spk_set)}
|
| 196 |
+
return speaker_map
|
| 197 |
+
|
| 198 |
+
def add_placeholder_speaker_softmax(json_trans_list, peak_prob=0.94 ,max_spks=4):
|
| 199 |
+
nemo_json_dict = {}
|
| 200 |
+
word_dict_seq_list = []
|
| 201 |
+
if peak_prob > 1 or peak_prob < 0:
|
| 202 |
+
raise ValueError(f"peak_prob must be between 0 and 1 but got {peak_prob}")
|
| 203 |
+
speaker_map = count_num_of_spks(json_trans_list)
|
| 204 |
+
base_array = np.ones(max_spks) * (1 - peak_prob)/(max_spks-1)
|
| 205 |
+
stt_sec, end_sec = None, None
|
| 206 |
+
for sentence_dict in json_trans_list:
|
| 207 |
+
word_list = sentence_dict['words'].split()
|
| 208 |
+
speaker = sentence_dict['speaker']
|
| 209 |
+
for word in word_list:
|
| 210 |
+
speaker_softmax = copy.deepcopy(base_array)
|
| 211 |
+
speaker_softmax[speaker_map[speaker]] = peak_prob
|
| 212 |
+
word_dict_seq_list.append({'word': word,
|
| 213 |
+
'start_time': stt_sec,
|
| 214 |
+
'end_time': end_sec,
|
| 215 |
+
'speaker': speaker_map[speaker],
|
| 216 |
+
'speaker_softmax': speaker_softmax}
|
| 217 |
+
)
|
| 218 |
+
nemo_json_dict.update({'words': word_dict_seq_list,
|
| 219 |
+
'status': "success",
|
| 220 |
+
'sentences': json_trans_list,
|
| 221 |
+
'speaker_count': len(speaker_map),
|
| 222 |
+
'transcription': None}
|
| 223 |
+
)
|
| 224 |
+
return nemo_json_dict
|
| 225 |
+
|
| 226 |
+
def convert_nemo_json_to_seglst(trans_info_dict):
|
| 227 |
+
seglst_seq_list = []
|
| 228 |
+
seg_lst_dict, spk_wise_trans_sessions = {}, {}
|
| 229 |
+
for uniq_id in trans_info_dict.keys():
|
| 230 |
+
spk_wise_trans_sessions[uniq_id] = {}
|
| 231 |
+
seglst_seq_list = []
|
| 232 |
+
word_seq_list = trans_info_dict[uniq_id]['words']
|
| 233 |
+
prev_speaker, sentence = None, ''
|
| 234 |
+
for widx, word_dict in enumerate(word_seq_list):
|
| 235 |
+
curr_speaker = word_dict['speaker']
|
| 236 |
+
|
| 237 |
+
# For making speaker wise transcriptions
|
| 238 |
+
word = word_dict['word']
|
| 239 |
+
if curr_speaker not in spk_wise_trans_sessions[uniq_id]:
|
| 240 |
+
spk_wise_trans_sessions[uniq_id][curr_speaker] = word
|
| 241 |
+
elif curr_speaker in spk_wise_trans_sessions[uniq_id]:
|
| 242 |
+
spk_wise_trans_sessions[uniq_id][curr_speaker] = f"{spk_wise_trans_sessions[uniq_id][curr_speaker]} {word_dict['word']}"
|
| 243 |
+
|
| 244 |
+
# For making segment wise transcriptions
|
| 245 |
+
if curr_speaker!= prev_speaker and prev_speaker is not None:
|
| 246 |
+
seglst_seq_list.append({'session_id': uniq_id,
|
| 247 |
+
'words': sentence.strip(),
|
| 248 |
+
'start_time': 0.0,
|
| 249 |
+
'end_time': 0.0,
|
| 250 |
+
'speaker': prev_speaker,
|
| 251 |
+
})
|
| 252 |
+
sentence = word_dict['word']
|
| 253 |
+
else:
|
| 254 |
+
sentence = f"{sentence} {word_dict['word']}"
|
| 255 |
+
prev_speaker = curr_speaker
|
| 256 |
+
|
| 257 |
+
# For the last word:
|
| 258 |
+
# (1) If there is no speaker change, add the existing sentence and exit the loop
|
| 259 |
+
# (2) If there is a speaker change, add the last word and exit the loop
|
| 260 |
+
if widx == len(word_seq_list) - 1:
|
| 261 |
+
seglst_seq_list.append({'session_id': uniq_id,
|
| 262 |
+
'words': sentence.strip(),
|
| 263 |
+
'start_time': 0.0,
|
| 264 |
+
'end_time': 0.0,
|
| 265 |
+
'speaker': curr_speaker,
|
| 266 |
+
})
|
| 267 |
+
seg_lst_dict[uniq_id] = seglst_seq_list
|
| 268 |
+
return seg_lst_dict
|
| 269 |
+
|
| 270 |
+
def load_input_jsons(input_error_src_list_path, ext_str=".seglst.json", peak_prob=0.94, max_spks=4):
|
| 271 |
+
trans_info_dict = {}
|
| 272 |
+
json_filepath_list = open(input_error_src_list_path).readlines()
|
| 273 |
+
for json_path in json_filepath_list:
|
| 274 |
+
json_path = json_path.strip()
|
| 275 |
+
uniq_id = os.path.split(json_path)[-1].split(ext_str)[0]
|
| 276 |
+
if os.path.exists(json_path):
|
| 277 |
+
with open(json_path, "r") as file:
|
| 278 |
+
json_trans = json.load(file)
|
| 279 |
+
else:
|
| 280 |
+
raise FileNotFoundError(f"{json_path} does not exist. Aborting.")
|
| 281 |
+
nemo_json_dict = add_placeholder_speaker_softmax(json_trans, peak_prob=peak_prob, max_spks=max_spks)
|
| 282 |
+
trans_info_dict[uniq_id] = nemo_json_dict
|
| 283 |
+
return trans_info_dict
|
| 284 |
+
|
| 285 |
+
def load_reference_jsons(reference_seglst_list_path, ext_str=".seglst.json"):
|
| 286 |
+
reference_info_dict = {}
|
| 287 |
+
json_filepath_list = open(reference_seglst_list_path).readlines()
|
| 288 |
+
for json_path in json_filepath_list:
|
| 289 |
+
json_path = json_path.strip()
|
| 290 |
+
uniq_id = os.path.split(json_path)[-1].split(ext_str)[0]
|
| 291 |
+
if os.path.exists(json_path):
|
| 292 |
+
with open(json_path, "r") as file:
|
| 293 |
+
json_trans = json.load(file)
|
| 294 |
+
else:
|
| 295 |
+
raise FileNotFoundError(f"{json_path} does not exist. Aborting.")
|
| 296 |
+
json_trans_uniq_id = []
|
| 297 |
+
for sentence_dict in json_trans:
|
| 298 |
+
sentence_dict['session_id'] = uniq_id
|
| 299 |
+
json_trans_uniq_id.append(sentence_dict)
|
| 300 |
+
reference_info_dict[uniq_id] = json_trans_uniq_id
|
| 301 |
+
return reference_info_dict
|
| 302 |
+
|
| 303 |
+
def write_seglst_jsons(
|
| 304 |
+
seg_lst_sessions_dict: dict,
|
| 305 |
+
input_error_src_list_path: str,
|
| 306 |
+
diar_out_path: str,
|
| 307 |
+
ext_str: str,
|
| 308 |
+
write_individual_seglst_jsons=True
|
| 309 |
+
):
|
| 310 |
+
"""
|
| 311 |
+
Writes the segment list (seglst) JSON files to the output directory.
|
| 312 |
+
|
| 313 |
+
Parameters:
|
| 314 |
+
seg_lst_sessions_dict (dict): A dictionary containing session IDs as keys and their corresponding segment lists as values.
|
| 315 |
+
input_error_src_list_path (str): The path to the input error source list file.
|
| 316 |
+
diar_out_path (str): The path to the output directory where the seglst JSON files will be written.
|
| 317 |
+
type_string (str): A string representing the type of the seglst JSON files (e.g., 'hyp' for hypothesis or 'ef' for reference).
|
| 318 |
+
write_individual_seglst_jsons (bool, optional): A flag indicating whether to write individual seglst JSON files for each session. Defaults to True.
|
| 319 |
+
|
| 320 |
+
Returns:
|
| 321 |
+
None
|
| 322 |
+
"""
|
| 323 |
+
total_infer_list = []
|
| 324 |
+
total_output_filename = os.path.split(input_error_src_list_path)[-1].replace(".list", "")
|
| 325 |
+
for session_id, seg_lst_list in seg_lst_sessions_dict.items():
|
| 326 |
+
total_infer_list.extend(seg_lst_list)
|
| 327 |
+
if write_individual_seglst_jsons:
|
| 328 |
+
print(f"{__INFO_TAG__} Writing {diar_out_path}/{session_id}.seglst.json")
|
| 329 |
+
with open(f'{diar_out_path}/{session_id}.seglst.json', 'w') as file:
|
| 330 |
+
json.dump(seg_lst_list, file, indent=4) # indent=4 for pretty printing
|
| 331 |
+
|
| 332 |
+
print(f"{__INFO_TAG__} Writing {diar_out_path}/{session_id}.seglst.json")
|
| 333 |
+
total_output_filename = total_output_filename.replace("src", ext_str).replace("ref", ext_str)
|
| 334 |
+
write_fn = f"{diar_out_path}/{total_output_filename}.seglst.json"
|
| 335 |
+
if os.path.exists(write_fn):
|
| 336 |
+
print(f"{__INFO_TAG__} {write_fn} already exists. Deleting it.")
|
| 337 |
+
os.remove(write_fn)
|
| 338 |
+
with open(write_fn, 'w') as file:
|
| 339 |
+
json.dump(total_infer_list, file, indent=4) # indent=4 for pretty printing
|
entry_data/dev_set_data.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
system_name,method,organisation,mail,cpWER,WER
|
| 2 |
+
baseline_system,beam_search_ngram,SLT_Task2,tango4j@gmail.com,0.24536675570166427,0.21231591
|
entry_data/dev_set_data_1.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
baseline_system,0.24536675570166427,0.21231591
|
| 2 |
+
baseline_system_2,0.01234,0.1234
|
hyper_optim.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import optuna
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
import time
|
| 5 |
+
import json
|
| 6 |
+
import subprocess
|
| 7 |
+
import logging
|
| 8 |
+
from beam_search_utils import (
|
| 9 |
+
write_seglst_jsons,
|
| 10 |
+
run_mp_beam_search_decoding,
|
| 11 |
+
convert_nemo_json_to_seglst,
|
| 12 |
+
SpeakerTaggingBeamSearchDecoder,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
from speaker_tagging_cpwer_jsons import process_session_data
|
| 16 |
+
|
| 17 |
+
def evaluate(cfg, temp_out_dir, asrdiar_file_name, source_info_dict, hypothesis_sessions_dict, reference_info_dict):
|
| 18 |
+
write_seglst_jsons(hypothesis_sessions_dict, input_error_src_list_path=cfg.input_error_src_list_path, diar_out_path=temp_out_dir, ext_str='hyp')
|
| 19 |
+
write_seglst_jsons(reference_info_dict, input_error_src_list_path=cfg.groundtruth_ref_list_path, diar_out_path=temp_out_dir, ext_str='ref')
|
| 20 |
+
write_seglst_jsons(source_info_dict, input_error_src_list_path=cfg.groundtruth_ref_list_path, diar_out_path=temp_out_dir, ext_str='src')
|
| 21 |
+
|
| 22 |
+
# Construct the file paths
|
| 23 |
+
# src_seglst_json = os.path.join(temp_out_dir, f"{asrdiar_file_name}.src.seglst.json")
|
| 24 |
+
hyp_seglst_json = os.path.join(temp_out_dir, f"{asrdiar_file_name}.hyp.seglst.json")
|
| 25 |
+
ref_seglst_json = os.path.join(temp_out_dir, f"{asrdiar_file_name}.ref.seglst.json")
|
| 26 |
+
|
| 27 |
+
# Construct the output JSON file path
|
| 28 |
+
output_cpwer_hyp_json_file = os.path.join(temp_out_dir, f"{asrdiar_file_name}.hyp.seglst_cpwer.json")
|
| 29 |
+
# output_cpwer_src_json_file = os.path.join(temp_out_dir, f"{asrdiar_file_name}.src.seglst_cpwer.json")
|
| 30 |
+
|
| 31 |
+
# Run meeteval-wer command
|
| 32 |
+
cmd_hyp = [
|
| 33 |
+
"meeteval-wer",
|
| 34 |
+
"cpwer",
|
| 35 |
+
"-h", hyp_seglst_json,
|
| 36 |
+
"-r", ref_seglst_json
|
| 37 |
+
]
|
| 38 |
+
subprocess.run(cmd_hyp)
|
| 39 |
+
|
| 40 |
+
# Read the JSON file and print the cpWER
|
| 41 |
+
try:
|
| 42 |
+
with open(output_cpwer_hyp_json_file, "r") as file:
|
| 43 |
+
data_h = json.load(file)
|
| 44 |
+
print("Hypothesis cpWER:", data_h["error_rate"])
|
| 45 |
+
cpwer = data_h["error_rate"]
|
| 46 |
+
logging.info(f"-> HYPOTHESIS cpWER={cpwer:.4f}")
|
| 47 |
+
except FileNotFoundError:
|
| 48 |
+
raise FileNotFoundError(f"Output JSON: {output_cpwer_hyp_json_file}\nfile not found.")
|
| 49 |
+
|
| 50 |
+
return cpwer
|
| 51 |
+
|
| 52 |
+
def evaluate_diff(cfg, temp_out_dir, asrdiar_file_name, source_info_dict, hypothesis_sessions_dict, reference_info_dict):
|
| 53 |
+
write_seglst_jsons(hypothesis_sessions_dict, input_error_src_list_path=cfg.input_error_src_list_path, diar_out_path=temp_out_dir, ext_str='hyp')
|
| 54 |
+
write_seglst_jsons(reference_info_dict, input_error_src_list_path=cfg.groundtruth_ref_list_path, diar_out_path=temp_out_dir, ext_str='ref')
|
| 55 |
+
write_seglst_jsons(source_info_dict, input_error_src_list_path=cfg.groundtruth_ref_list_path, diar_out_path=temp_out_dir, ext_str='src')
|
| 56 |
+
|
| 57 |
+
# Construct the file paths
|
| 58 |
+
src_seglst_json = os.path.join(temp_out_dir, f"{asrdiar_file_name}.src.seglst.json")
|
| 59 |
+
hyp_seglst_json = os.path.join(temp_out_dir, f"{asrdiar_file_name}.hyp.seglst.json")
|
| 60 |
+
ref_seglst_json = os.path.join(temp_out_dir, f"{asrdiar_file_name}.ref.seglst.json")
|
| 61 |
+
|
| 62 |
+
# Run meeteval-wer command
|
| 63 |
+
cmd_hyp = [
|
| 64 |
+
"meeteval-wer",
|
| 65 |
+
"cpwer",
|
| 66 |
+
"-h", hyp_seglst_json,
|
| 67 |
+
"-r", ref_seglst_json
|
| 68 |
+
]
|
| 69 |
+
subprocess.run(cmd_hyp)
|
| 70 |
+
|
| 71 |
+
cmd_src = [
|
| 72 |
+
"meeteval-wer",
|
| 73 |
+
"cpwer",
|
| 74 |
+
"-h", src_seglst_json,
|
| 75 |
+
"-r", ref_seglst_json
|
| 76 |
+
]
|
| 77 |
+
subprocess.run(cmd_src)
|
| 78 |
+
# Construct the output JSON file path
|
| 79 |
+
output_cpwer_hyp_json_file = os.path.join(temp_out_dir, f"{asrdiar_file_name}.hyp.seglst_cpwer.json")
|
| 80 |
+
output_cpwer_src_json_file = os.path.join(temp_out_dir, f"{asrdiar_file_name}.src.seglst_cpwer.json")
|
| 81 |
+
output_cpwer_hyp_json_file_per_reco = os.path.join(temp_out_dir, f"{asrdiar_file_name}.hyp.seglst_cpwer_per_reco.json")
|
| 82 |
+
output_cpwer_src_json_file_per_reco = os.path.join(temp_out_dir, f"{asrdiar_file_name}.src.seglst_cpwer_per_reco.json")
|
| 83 |
+
|
| 84 |
+
avg_cpwer_diff = process_session_data(output_cpwer_hyp_json_file_per_reco, output_cpwer_src_json_file_per_reco)
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
with open(output_cpwer_hyp_json_file, "r") as file:
|
| 88 |
+
data_h = json.load(file)
|
| 89 |
+
hyp_cpwer = data_h["error_rate"]
|
| 90 |
+
logging.info(f"-> HYPOTHESIS cpWER={hyp_cpwer:.4f}")
|
| 91 |
+
except FileNotFoundError:
|
| 92 |
+
raise FileNotFoundError(f"Output JSON: {output_cpwer_hyp_json_file}\nfile not found.")
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
with open(output_cpwer_src_json_file, "r") as file:
|
| 96 |
+
data_h = json.load(file)
|
| 97 |
+
src_cpwer = data_h["error_rate"]
|
| 98 |
+
logging.info(f"-> SOURCE cpWER={src_cpwer:.4f}")
|
| 99 |
+
except FileNotFoundError:
|
| 100 |
+
raise FileNotFoundError(f"Output JSON: {output_cpwer_src_json_file}\nfile not found.")
|
| 101 |
+
diff_cpwer = (hyp_cpwer - src_cpwer)
|
| 102 |
+
logging.info(f"-> Average cpWER DIFF={avg_cpwer_diff:.4f}")
|
| 103 |
+
logging.info(f"-> HYPOTHESIS Improved cpWER={diff_cpwer:.4f}")
|
| 104 |
+
return diff_cpwer
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def optuna_suggest_params(cfg, trial):
|
| 108 |
+
cfg.alpha = trial.suggest_float("alpha", 0.5, 1.5)
|
| 109 |
+
cfg.beta = trial.suggest_float("beta", 0.02, 0.4)
|
| 110 |
+
cfg.beam_width = trial.suggest_int("beam_width", 2, 12)
|
| 111 |
+
cfg.word_window = trial.suggest_int("word_window", 10, 50, step=10)
|
| 112 |
+
cfg.use_ngram = True
|
| 113 |
+
cfg.parallel_chunk_word_len = trial.suggest_int("parallel_chunk_word_len", 50, 250, step=25)
|
| 114 |
+
cfg.peak_prob = trial.suggest_float("peak_prob", 0.96, 0.96)
|
| 115 |
+
return cfg
|
| 116 |
+
|
| 117 |
+
def beamsearch_objective(
|
| 118 |
+
trial,
|
| 119 |
+
cfg,
|
| 120 |
+
speaker_beam_search_decoder,
|
| 121 |
+
loaded_kenlm_model,
|
| 122 |
+
org_trans_info_dict,
|
| 123 |
+
source_info_dict,
|
| 124 |
+
reference_info_dict,
|
| 125 |
+
):
|
| 126 |
+
with tempfile.TemporaryDirectory(dir=cfg.temp_out_dir, prefix="GenSEC_") as local_temp_out_dir:
|
| 127 |
+
start_time2 = time.time()
|
| 128 |
+
|
| 129 |
+
if trial is not None:
|
| 130 |
+
cfg = optuna_suggest_params(cfg, trial)
|
| 131 |
+
speaker_beam_search_decoder = SpeakerTaggingBeamSearchDecoder(loaded_kenlm_model=loaded_kenlm_model, cfg=cfg)
|
| 132 |
+
div_trans_info_dict = speaker_beam_search_decoder.divide_chunks(trans_info_dict=org_trans_info_dict,
|
| 133 |
+
win_len=cfg.parallel_chunk_word_len,
|
| 134 |
+
word_window=cfg.word_window,
|
| 135 |
+
limit_max_spks=cfg.limit_max_spks,
|
| 136 |
+
port=cfg.port,)
|
| 137 |
+
result_trans_info_dict = run_mp_beam_search_decoding(speaker_beam_search_decoder,
|
| 138 |
+
loaded_kenlm_model=loaded_kenlm_model,
|
| 139 |
+
div_trans_info_dict=div_trans_info_dict,
|
| 140 |
+
org_trans_info_dict=org_trans_info_dict,
|
| 141 |
+
div_mp=True,
|
| 142 |
+
win_len=cfg.parallel_chunk_word_len,
|
| 143 |
+
word_window=cfg.word_window,
|
| 144 |
+
limit_max_spks=cfg.limit_max_spks,
|
| 145 |
+
port=cfg.port,
|
| 146 |
+
use_ngram=cfg.use_ngram,
|
| 147 |
+
)
|
| 148 |
+
hypothesis_sessions_dict = convert_nemo_json_to_seglst(result_trans_info_dict)
|
| 149 |
+
cpwer = evaluate_diff(cfg, local_temp_out_dir, cfg.asrdiar_file_name, source_info_dict, hypothesis_sessions_dict, reference_info_dict)
|
| 150 |
+
logging.info(f"Beam Search time taken for trial {trial}: {(time.time() - start_time2)/60:.2f} mins")
|
| 151 |
+
if trial is not None:
|
| 152 |
+
logging.info(f"Trial: {trial.number}")
|
| 153 |
+
logging.info(f"[ cpWER={cpwer:.4f} ]")
|
| 154 |
+
logging.info("-----------------------------------------------")
|
| 155 |
+
return cpwer
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def optuna_hyper_optim(
|
| 159 |
+
cfg,
|
| 160 |
+
speaker_beam_search_decoder,
|
| 161 |
+
loaded_kenlm_model,
|
| 162 |
+
# div_trans_info_dict,
|
| 163 |
+
org_trans_info_dict,
|
| 164 |
+
source_info_dict,
|
| 165 |
+
reference_info_dict,
|
| 166 |
+
):
|
| 167 |
+
"""
|
| 168 |
+
Optuna hyper-parameter optimization function.
|
| 169 |
+
|
| 170 |
+
Parameters:
|
| 171 |
+
cfg (dict): A dictionary containing the configuration parameters.
|
| 172 |
+
|
| 173 |
+
"""
|
| 174 |
+
worker_function = lambda trial: beamsearch_objective( # noqa: E731
|
| 175 |
+
trial=trial,
|
| 176 |
+
cfg=cfg,
|
| 177 |
+
speaker_beam_search_decoder=speaker_beam_search_decoder,
|
| 178 |
+
loaded_kenlm_model=loaded_kenlm_model,
|
| 179 |
+
# div_trans_info_dict=div_trans_info_dict,
|
| 180 |
+
org_trans_info_dict=org_trans_info_dict,
|
| 181 |
+
source_info_dict=source_info_dict,
|
| 182 |
+
reference_info_dict=reference_info_dict,
|
| 183 |
+
)
|
| 184 |
+
study = optuna.create_study(
|
| 185 |
+
direction="minimize",
|
| 186 |
+
study_name=cfg.optuna_study_name,
|
| 187 |
+
storage=cfg.storage,
|
| 188 |
+
load_if_exists=True
|
| 189 |
+
)
|
| 190 |
+
logger = logging.getLogger()
|
| 191 |
+
logger.setLevel(logging.INFO) # Setup the root logger.
|
| 192 |
+
if cfg.output_log_file is not None:
|
| 193 |
+
logger.addHandler(logging.FileHandler(cfg.output_log_file, mode="a"))
|
| 194 |
+
logger.addHandler(logging.StreamHandler())
|
| 195 |
+
optuna.logging.enable_propagation() # Propagate logs to the root logger.
|
| 196 |
+
study.optimize(worker_function, n_trials=cfg.optuna_n_trials)
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
datasets==2.14.5
|
|
|
|
| 2 |
gradio==4.19.2
|
| 3 |
huggingface-hub==0.19.3
|
| 4 |
numpy==1.24.2
|
|
|
|
| 1 |
datasets==2.14.5
|
| 2 |
+
meeteval
|
| 3 |
gradio==4.19.2
|
| 4 |
huggingface-hub==0.19.3
|
| 5 |
numpy==1.24.2
|
scorer.py
CHANGED
|
@@ -1,12 +1,35 @@
|
|
| 1 |
import json
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import numpy as np
|
| 7 |
import os
|
| 8 |
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
df = data
|
| 12 |
img_dict = {}
|
|
|
|
| 1 |
import json
|
| 2 |
+
import tempfile
|
| 3 |
+
import json
|
| 4 |
+
import subprocess
|
| 5 |
+
import logging
|
|
|
|
| 6 |
import os
|
| 7 |
|
| 8 |
+
|
| 9 |
+
def instruction_scorer(file_path_input, ref_file_path, system_name):
|
| 10 |
+
cmd_hyp = [
|
| 11 |
+
"meeteval-wer",
|
| 12 |
+
"cpwer",
|
| 13 |
+
"-h", file_path_input,
|
| 14 |
+
"-r", ref_file_path,
|
| 15 |
+
]
|
| 16 |
+
subprocess.run(cmd_hyp)
|
| 17 |
+
|
| 18 |
+
# Read the JSON file and print the cpWER
|
| 19 |
+
asrdiar_file_name="err_dev"
|
| 20 |
+
output_cpwer_hyp_json_file = os.path.join(f"{asrdiar_file_name}.hyp.seglst_cpwer.json")
|
| 21 |
+
with open(output_cpwer_hyp_json_file, "r") as temp_file:
|
| 22 |
+
data_h = json.load(temp_file)
|
| 23 |
+
print("Hypothesis cpWER:", data_h["error_rate"])
|
| 24 |
+
cpwer = data_h["error_rate"]
|
| 25 |
+
logging.info(f"-> HYPOTHESIS cpWER={cpwer:.4f}")
|
| 26 |
+
|
| 27 |
+
scores_dict = {"cpWER": cpwer, "WER": cpwer}
|
| 28 |
+
return scores_dict
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def __instruction_scorer(data, judgment_file, model_name):
|
| 33 |
|
| 34 |
df = data
|
| 35 |
img_dict = {}
|
seglst_files/err_dev.hyp.seglst.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
seglst_files/err_dev.ref.list
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_e992c01d.seglst.json
|
| 2 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_17dba297.seglst.json
|
| 3 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_e6e6ca6b.seglst.json
|
| 4 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_197ddec4.seglst.json
|
| 5 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_ac417036.seglst.json
|
| 6 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_0edd751f.seglst.json
|
| 7 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_327770bf.seglst.json
|
| 8 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_1b20cec4.seglst.json
|
| 9 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_fa752d9e.seglst.json
|
| 10 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_ed8a6f55.seglst.json
|
| 11 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_75e7876e.seglst.json
|
| 12 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_405fe47b.seglst.json
|
| 13 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/ref_annotated_text/dev/session_7fe82ea3.seglst.json
|
seglst_files/err_dev.ref.seglst.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
seglst_files/err_dev.src.list
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_e992c01d.seglst.json
|
| 2 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_17dba297.seglst.json
|
| 3 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_e6e6ca6b.seglst.json
|
| 4 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_197ddec4.seglst.json
|
| 5 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_ac417036.seglst.json
|
| 6 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_0edd751f.seglst.json
|
| 7 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_327770bf.seglst.json
|
| 8 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_1b20cec4.seglst.json
|
| 9 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_fa752d9e.seglst.json
|
| 10 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_ed8a6f55.seglst.json
|
| 11 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_75e7876e.seglst.json
|
| 12 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_405fe47b.seglst.json
|
| 13 |
+
/home/taejinp/projects/update_llm_speaker_tagging/llm_speaker_tagging/SLT-Task2-Post-ASR-Speaker-Tagging/err_source_text/dev/session_7fe82ea3.seglst.json
|
seglst_files/err_dev.src.seglst.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|