Spaces:
Sleeping
Sleeping
| import torch | |
| from transformers import AutoTokenizer | |
| from evo_model import EvoTransformerV22 | |
| from search_utils import web_search | |
| import openai | |
| import os | |
| # Load Evo model and tokenizer | |
| model = EvoTransformerV22() | |
| model.load_state_dict(torch.load("evo_hellaswag.pt", map_location="cpu")) | |
| model.eval() | |
| tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
| # GPT Setup | |
| openai.api_key = os.getenv("OPENAI_API_KEY") # 🔒 Load securely from environment | |
| def get_evo_response(query, options, user_context=""): | |
| context_texts = web_search(query) + ([user_context] if user_context else []) | |
| context_str = "\n".join(context_texts) | |
| input_pairs = [f"{query} [SEP] {opt} [CTX] {context_str}" for opt in options] | |
| scores = [] | |
| for pair in input_pairs: | |
| encoded = tokenizer(pair, return_tensors="pt", truncation=True, padding="max_length", max_length=128) | |
| with torch.no_grad(): | |
| output = model(encoded["input_ids"]) | |
| score = torch.sigmoid(output).item() | |
| scores.append(score) | |
| best_idx = int(scores[1] > scores[0]) | |
| return ( | |
| options[best_idx], | |
| f"{options[0]}: {scores[0]:.3f} vs {options[1]}: {scores[1]:.3f}", | |
| max(scores), | |
| context_str | |
| ) | |
| def get_gpt_response(query, user_context=""): | |
| try: | |
| context_block = f"\n\nContext:\n{user_context}" if user_context else "" | |
| response = openai.chat.completions.create( | |
| model="gpt-3.5-turbo", | |
| messages=[ | |
| {"role": "user", "content": query + context_block} | |
| ], | |
| temperature=0.7, | |
| ) | |
| return response.choices[0].message.content.strip() | |
| except Exception as e: | |
| return f"⚠️ GPT error:\n\n{str(e)}" | |