IFMedTechdemo commited on
Commit
3cc5be7
·
verified ·
1 Parent(s): 85dfb18

Fix model path from models/model.pt to model.pt

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -26,7 +26,7 @@ def load_model():
26
  # Download model from HuggingFace
27
  model_path = hf_hub_download(
28
  repo_id="MONAI/example_spleen_segmentation",
29
- filename="models/model.pt"
30
  )
31
 
32
  # Initialize UNet architecture
@@ -105,7 +105,7 @@ def segment_spleen(input_file):
105
  overlay[seg_slice == 1] = [255, 0, 0] # Red for spleen
106
 
107
  return overlay, output_path, "Segmentation completed successfully!"
108
-
109
  except Exception as e:
110
  return None, None, f"Error: {str(e)}"
111
 
@@ -115,13 +115,13 @@ with gr.Blocks(title="Spleen Segmentation") as demo:
115
  gr.Markdown(
116
  """Upload a CT scan in NIfTI format (.nii or .nii.gz) to segment the spleen using the
117
  [MONAI/example_spleen_segmentation](https://huggingface.co/MONAI/example_spleen_segmentation) model.
118
-
119
  **Model Info:**
120
  - Architecture: UNet
121
  - Input: 3D CT image (96×96×96)
122
  - Output: Binary segmentation (spleen vs background)
123
  - Mean Dice Score: 0.96
124
-
125
  **Instructions:**
126
  1. Upload a NIfTI file (.nii or .nii.gz)
127
  2. Click Submit
@@ -155,7 +155,7 @@ with gr.Blocks(title="Spleen Segmentation") as demo:
155
  - nibabel
156
  - numpy
157
  - huggingface_hub
158
-
159
  ### Citation
160
  If you use this model, please cite:
161
  ```
 
26
  # Download model from HuggingFace
27
  model_path = hf_hub_download(
28
  repo_id="MONAI/example_spleen_segmentation",
29
+ filename="model.pt"
30
  )
31
 
32
  # Initialize UNet architecture
 
105
  overlay[seg_slice == 1] = [255, 0, 0] # Red for spleen
106
 
107
  return overlay, output_path, "Segmentation completed successfully!"
108
+
109
  except Exception as e:
110
  return None, None, f"Error: {str(e)}"
111
 
 
115
  gr.Markdown(
116
  """Upload a CT scan in NIfTI format (.nii or .nii.gz) to segment the spleen using the
117
  [MONAI/example_spleen_segmentation](https://huggingface.co/MONAI/example_spleen_segmentation) model.
118
+
119
  **Model Info:**
120
  - Architecture: UNet
121
  - Input: 3D CT image (96×96×96)
122
  - Output: Binary segmentation (spleen vs background)
123
  - Mean Dice Score: 0.96
124
+
125
  **Instructions:**
126
  1. Upload a NIfTI file (.nii or .nii.gz)
127
  2. Click Submit
 
155
  - nibabel
156
  - numpy
157
  - huggingface_hub
158
+
159
  ### Citation
160
  If you use this model, please cite:
161
  ```