Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- app.py +246 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
import random
|
| 5 |
+
import re
|
| 6 |
+
import sys
|
| 7 |
+
import warnings
|
| 8 |
+
|
| 9 |
+
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import AutoModel, AutoTokenizer
|
| 13 |
+
|
| 14 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
| 15 |
+
|
| 16 |
+
from diffusers import ZImagePipeline
|
| 17 |
+
from diffusers.models.transformers.transformer_z_image import ZImageTransformer2DModel
|
| 18 |
+
|
| 19 |
+
# ==================== Environment Variables ==================================
|
| 20 |
+
MODEL_PATH = os.environ.get("MODEL_PATH", "Tongyi-MAI/Z-Image-Turbo")
|
| 21 |
+
ENABLE_COMPILE = os.environ.get("ENABLE_COMPILE", "true").lower() == "true"
|
| 22 |
+
ENABLE_WARMUP = os.environ.get("ENABLE_WARMUP", "true").lower() == "true"
|
| 23 |
+
ATTENTION_BACKEND = os.environ.get("ATTENTION_BACKEND", "flash_3")
|
| 24 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 25 |
+
# =============================================================================
|
| 26 |
+
|
| 27 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 28 |
+
warnings.filterwarnings("ignore")
|
| 29 |
+
logging.getLogger("transformers").setLevel(logging.ERROR)
|
| 30 |
+
|
| 31 |
+
RES_CHOICES = {
|
| 32 |
+
"1024": [
|
| 33 |
+
"1024x1024 ( 1:1 )", "1152x896 ( 9:7 )", "896x1152 ( 7:9 )",
|
| 34 |
+
"1152x864 ( 4:3 )", "864x1152 ( 3:4 )", "1248x832 ( 3:2 )",
|
| 35 |
+
"832x1248 ( 2:3 )", "1280x720 ( 16:9 )", "720x1280 ( 9:16 )",
|
| 36 |
+
"1344x576 ( 21:9 )", "576x1344 ( 9:21 )",
|
| 37 |
+
],
|
| 38 |
+
"1280": [
|
| 39 |
+
"1280x1280 ( 1:1 )", "1440x1120 ( 9:7 )", "1120x1440 ( 7:9 )",
|
| 40 |
+
"1472x1104 ( 4:3 )", "1104x1472 ( 3:4 )", "1536x1024 ( 3:2 )",
|
| 41 |
+
"1024x1536 ( 2:3 )", "1600x896 ( 16:9 )", "896x1600 ( 9:16 )",
|
| 42 |
+
"1680x720 ( 21:9 )", "720x1680 ( 9:21 )",
|
| 43 |
+
],
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
EXAMPLE_PROMPTS = [
|
| 47 |
+
["一位男士和他的贵宾犬穿着配套的服装参加狗狗秀,室内灯光,背景中有观众。"],
|
| 48 |
+
["极具氛围感的暗调人像,一位优雅的中国美女在黑暗的房间里..."],
|
| 49 |
+
["一张中景手机自拍照片拍摄了一位留着长黑发的年轻东亚女子..."],
|
| 50 |
+
["Young Chinese woman in red Hanfu, intricate embroidery..."],
|
| 51 |
+
["A vertical digital illustration depicting a serene and majestic Chinese landscape..."],
|
| 52 |
+
["一张虚构的英语电影《回忆之味》(The Taste of Memory)的电影海报..."],
|
| 53 |
+
["一张方形构图的特写照片,主体是一片巨大的、鲜绿色的植物叶片..."],
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
def get_resolution(resolution):
|
| 57 |
+
match = re.search(r"(\d+)\s*[×x]\s*(\d+)", resolution)
|
| 58 |
+
if match:
|
| 59 |
+
return int(match.group(1)), int(match.group(2))
|
| 60 |
+
return 1024, 1024
|
| 61 |
+
|
| 62 |
+
def load_models(model_path, enable_compile=False, attention_backend="native"):
|
| 63 |
+
print(f"Loading models from {model_path}...")
|
| 64 |
+
|
| 65 |
+
use_auth_token = HF_TOKEN if HF_TOKEN else True
|
| 66 |
+
|
| 67 |
+
# Load VAE, Text Encoder, Tokenizer
|
| 68 |
+
if not os.path.exists(model_path):
|
| 69 |
+
vae = AutoencoderKL.from_pretrained(
|
| 70 |
+
f"{model_path}", subfolder="vae", torch_dtype=torch.bfloat16,
|
| 71 |
+
device_map="cuda", use_auth_token=use_auth_token,
|
| 72 |
+
)
|
| 73 |
+
text_encoder = AutoModel.from_pretrained(
|
| 74 |
+
f"{model_path}", subfolder="text_encoder", torch_dtype=torch.bfloat16,
|
| 75 |
+
device_map="cuda", use_auth_token=use_auth_token,
|
| 76 |
+
).eval()
|
| 77 |
+
tokenizer = AutoTokenizer.from_pretrained(f"{model_path}", subfolder="tokenizer", use_auth_token=use_auth_token)
|
| 78 |
+
else:
|
| 79 |
+
vae = AutoencoderKL.from_pretrained(os.path.join(model_path, "vae"), torch_dtype=torch.bfloat16, device_map="cuda")
|
| 80 |
+
text_encoder = AutoModel.from_pretrained(os.path.join(model_path, "text_encoder"), torch_dtype=torch.bfloat16, device_map="cuda").eval()
|
| 81 |
+
tokenizer = AutoTokenizer.from_pretrained(os.path.join(model_path, "tokenizer"))
|
| 82 |
+
|
| 83 |
+
tokenizer.padding_side = "left"
|
| 84 |
+
|
| 85 |
+
if enable_compile:
|
| 86 |
+
print("Enabling torch.compile optimizations...")
|
| 87 |
+
torch._inductor.config.conv_1x1_as_mm = True
|
| 88 |
+
torch._inductor.config.coordinate_descent_tuning = True
|
| 89 |
+
torch._inductor.config.epilogue_fusion = False
|
| 90 |
+
torch._inductor.config.coordinate_descent_check_all_directions = True
|
| 91 |
+
torch._inductor.config.max_autotune_gemm = True
|
| 92 |
+
torch._inductor.config.max_autotune_gemm_backends = "TRITON,ATEN"
|
| 93 |
+
torch._inductor.config.triton.cudagraphs = False
|
| 94 |
+
|
| 95 |
+
pipe = ZImagePipeline(scheduler=None, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=None)
|
| 96 |
+
|
| 97 |
+
if enable_compile:
|
| 98 |
+
pipe.vae.disable_tiling()
|
| 99 |
+
|
| 100 |
+
# Load Transformer
|
| 101 |
+
if not os.path.exists(model_path):
|
| 102 |
+
transformer = ZImageTransformer2DModel.from_pretrained(
|
| 103 |
+
f"{model_path}", subfolder="transformer", use_auth_token=use_auth_token
|
| 104 |
+
).to("cuda", torch.bfloat16)
|
| 105 |
+
else:
|
| 106 |
+
transformer = ZImageTransformer2DModel.from_pretrained(os.path.join(model_path, "transformer")).to("cuda", torch.bfloat16)
|
| 107 |
+
|
| 108 |
+
pipe.transformer = transformer
|
| 109 |
+
pipe.transformer.set_attention_backend(attention_backend)
|
| 110 |
+
|
| 111 |
+
if enable_compile:
|
| 112 |
+
print("Compiling transformer...")
|
| 113 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs", fullgraph=False)
|
| 114 |
+
|
| 115 |
+
pipe.to("cuda", torch.bfloat16)
|
| 116 |
+
return pipe
|
| 117 |
+
|
| 118 |
+
def generate_image(pipe, prompt, width=1024, height=1024, seed=42, guidance_scale=5.0, num_inference_steps=50, shift=3.0, max_sequence_length=512, progress=gr.Progress(track_tqdm=True)):
|
| 119 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
| 120 |
+
scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=shift)
|
| 121 |
+
pipe.scheduler = scheduler
|
| 122 |
+
|
| 123 |
+
image = pipe(
|
| 124 |
+
prompt=prompt, height=height, width=width,
|
| 125 |
+
guidance_scale=guidance_scale, num_inference_steps=num_inference_steps,
|
| 126 |
+
generator=generator, max_sequence_length=max_sequence_length,
|
| 127 |
+
).images[0]
|
| 128 |
+
|
| 129 |
+
return image
|
| 130 |
+
|
| 131 |
+
def warmup_model(pipe, resolutions):
|
| 132 |
+
print("Starting warmup phase...")
|
| 133 |
+
dummy_prompt = "warmup"
|
| 134 |
+
for res_str in resolutions:
|
| 135 |
+
try:
|
| 136 |
+
w, h = get_resolution(res_str)
|
| 137 |
+
for i in range(3):
|
| 138 |
+
generate_image(pipe, prompt=dummy_prompt, width=w, height=h, num_inference_steps=9, guidance_scale=0.0, seed=42 + i)
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print(f"Warmup failed for {res_str}: {e}")
|
| 141 |
+
print("Warmup completed.")
|
| 142 |
+
|
| 143 |
+
# Global Pipe Variable
|
| 144 |
+
pipe = None
|
| 145 |
+
|
| 146 |
+
def init_app():
|
| 147 |
+
global pipe
|
| 148 |
+
try:
|
| 149 |
+
pipe = load_models(MODEL_PATH, enable_compile=ENABLE_COMPILE, attention_backend=ATTENTION_BACKEND)
|
| 150 |
+
print(f"Model loaded. Compile: {ENABLE_COMPILE}, Backend: {ATTENTION_BACKEND}")
|
| 151 |
+
|
| 152 |
+
if ENABLE_WARMUP:
|
| 153 |
+
all_resolutions = []
|
| 154 |
+
for cat in RES_CHOICES.values():
|
| 155 |
+
all_resolutions.extend(cat)
|
| 156 |
+
warmup_model(pipe, all_resolutions)
|
| 157 |
+
|
| 158 |
+
except Exception as e:
|
| 159 |
+
print(f"Error loading model: {e}")
|
| 160 |
+
pipe = None
|
| 161 |
+
# 移除 Prompt Expander 初始化
|
| 162 |
+
|
| 163 |
+
@spaces.GPU
|
| 164 |
+
def generate(prompt, width=1024, height=1024, seed=42, steps=9, shift=3.0, random_seed=True, gallery_images=None, progress=gr.Progress(track_tqdm=True)):
|
| 165 |
+
if pipe is None:
|
| 166 |
+
raise gr.Error("Model not loaded. Please check logs.")
|
| 167 |
+
|
| 168 |
+
if random_seed:
|
| 169 |
+
new_seed = random.randint(1, 1000000)
|
| 170 |
+
else:
|
| 171 |
+
new_seed = seed if seed != -1 else random.randint(1, 1000000)
|
| 172 |
+
|
| 173 |
+
image = generate_image(
|
| 174 |
+
pipe=pipe, prompt=prompt, width=int(width), height=int(height),
|
| 175 |
+
seed=new_seed, guidance_scale=0.0, num_inference_steps=int(steps + 1), shift=shift,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
if gallery_images is None:
|
| 179 |
+
gallery_images = []
|
| 180 |
+
gallery_images.append(image)
|
| 181 |
+
|
| 182 |
+
return gallery_images, str(new_seed), int(new_seed)
|
| 183 |
+
|
| 184 |
+
# Initialize
|
| 185 |
+
init_app()
|
| 186 |
+
|
| 187 |
+
# ==================== AoTI (Ahead of Time Inductor compilation) ====================
|
| 188 |
+
# 安全检查:只有 pipe 成功加载后才执行优化配置,避免 AttributeError
|
| 189 |
+
if pipe is not None:
|
| 190 |
+
try:
|
| 191 |
+
pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"]
|
| 192 |
+
spaces.aoti_blocks_load(pipe.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3")
|
| 193 |
+
except Exception as e:
|
| 194 |
+
print(f"Warning: Failed to load AoTI blocks: {e}")
|
| 195 |
+
else:
|
| 196 |
+
print("CRITICAL: Pipe is None. Model failed to load in init_app(). Check upstream errors.")
|
| 197 |
+
|
| 198 |
+
# ==================== UI Construction ====================
|
| 199 |
+
with gr.Blocks(title="Z-Image Demo") as demo:
|
| 200 |
+
gr.Markdown(
|
| 201 |
+
"""<div align="center">
|
| 202 |
+
# Z-Image Generation Demo
|
| 203 |
+
[](https://github.com/Tongyi-MAI/Z-Image)
|
| 204 |
+
*An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer*
|
| 205 |
+
</div>"""
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
with gr.Row():
|
| 209 |
+
with gr.Column(scale=1):
|
| 210 |
+
prompt_input = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...")
|
| 211 |
+
|
| 212 |
+
with gr.Row():
|
| 213 |
+
width = gr.Slider(label="Width", minimum=640, maximum=2048, value=1024, step=64)
|
| 214 |
+
height = gr.Slider(label="Height", minimum=640, maximum=2048, value=1024, step=64)
|
| 215 |
+
|
| 216 |
+
with gr.Row():
|
| 217 |
+
seed = gr.Number(label="Seed", value=42, precision=0)
|
| 218 |
+
random_seed = gr.Checkbox(label="Random Seed", value=True)
|
| 219 |
+
|
| 220 |
+
with gr.Row():
|
| 221 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1, interactive=False)
|
| 222 |
+
shift = gr.Slider(label="Time Shift", minimum=1.0, maximum=10.0, value=3.0, step=0.1)
|
| 223 |
+
|
| 224 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 225 |
+
|
| 226 |
+
gr.Markdown("### 📝 Example Prompts")
|
| 227 |
+
gr.Examples(examples=EXAMPLE_PROMPTS, inputs=prompt_input, label=None)
|
| 228 |
+
|
| 229 |
+
with gr.Column(scale=1):
|
| 230 |
+
output_gallery = gr.Gallery(
|
| 231 |
+
label="Generated Images", columns=2, rows=2, height=600, object_fit="contain", format="png", interactive=False
|
| 232 |
+
)
|
| 233 |
+
used_seed = gr.Textbox(label="Seed Used", interactive=False)
|
| 234 |
+
|
| 235 |
+
generate_btn.click(
|
| 236 |
+
generate,
|
| 237 |
+
inputs=[prompt_input, width, height, seed, steps, shift, random_seed, output_gallery],
|
| 238 |
+
outputs=[output_gallery, used_seed, seed],
|
| 239 |
+
api_visibility="public",
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
css='''
|
| 243 |
+
.fillable{max-width: 1230px !important}
|
| 244 |
+
'''
|
| 245 |
+
if __name__ == "__main__":
|
| 246 |
+
demo.launch(css=css, mcp_server=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
accelerate
|
| 5 |
+
spaces
|
| 6 |
+
openai
|
| 7 |
+
git+https://github.com/huggingface/diffusers.git
|
| 8 |
+
kernels
|