File size: 16,744 Bytes
94a0f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
"""Tests for probability aggregation utilities."""

import pytest

from sentinel.models import RiskScore
from sentinel.probability_aggregation import (
    AggregatedRisk,
    aggregate_probabilities,
    categorize_risk,
    get_display_cancer_type,
    normalize_cancer_type,
    separate_score_types,
)


class TestAggregateProbabilities:
    """Test probability aggregation functionality."""

    def test_single_model_per_cancer_type(self):
        """Test aggregation with one model per cancer type."""
        scores = [
            RiskScore(
                name="Gail",
                score="1.5%",
                cancer_type="breast",
                probability_percent=1.5,
                time_horizon_years=5.0,
                score_type="probability",
            ),
            RiskScore(
                name="PLCOm2012",
                score="2.3%",
                cancer_type="lung",
                probability_percent=2.3,
                time_horizon_years=6.0,
                score_type="probability",
            ),
        ]

        aggregated = aggregate_probabilities(scores)

        assert len(aggregated) == 2

        # Check breast cancer aggregation
        breast_agg = next(agg for agg in aggregated if agg.cancer_type == "breast")
        assert breast_agg.time_horizon_years == 5.0
        assert breast_agg.avg_probability_percent == 1.5
        assert breast_agg.risk_category == "Moderate"  # 1.5% for 5-year horizon
        assert breast_agg.model_count == 1
        assert len(breast_agg.individual_scores) == 1
        assert breast_agg.individual_scores[0].name == "Gail"

        # Check lung cancer aggregation
        lung_agg = next(agg for agg in aggregated if agg.cancer_type == "lung")
        assert lung_agg.time_horizon_years == 6.0
        assert lung_agg.avg_probability_percent == 2.3
        assert lung_agg.risk_category == "Moderate"  # 2.3% for 6-year horizon
        assert lung_agg.model_count == 1

    def test_multiple_models_same_cancer_same_horizon(self):
        """Test aggregation when multiple models assess same cancer with same time horizon."""
        scores = [
            RiskScore(
                name="Model1",
                score="2.0%",
                cancer_type="breast",
                probability_percent=2.0,
                time_horizon_years=10.0,
                score_type="probability",
            ),
            RiskScore(
                name="Model2",
                score="3.0%",
                cancer_type="breast",
                probability_percent=3.0,
                time_horizon_years=10.0,
                score_type="probability",
            ),
            RiskScore(
                name="Model3",
                score="4.0%",
                cancer_type="breast",
                probability_percent=4.0,
                time_horizon_years=10.0,
                score_type="probability",
            ),
        ]

        aggregated = aggregate_probabilities(scores)

        assert len(aggregated) == 1
        agg = aggregated[0]

        assert agg.cancer_type == "breast"
        assert agg.time_horizon_years == 10.0
        assert agg.avg_probability_percent == pytest.approx(3.0)  # (2+3+4)/3
        assert agg.risk_category == "Moderate"  # 3.0% for 10-year horizon
        assert agg.model_count == 3
        assert len(agg.individual_scores) == 3

    def test_multiple_models_same_cancer_different_horizons(self):
        """Test aggregation with same cancer type but different time horizons."""
        scores = [
            RiskScore(
                name="Model1",
                score="1.5%",
                cancer_type="breast",
                probability_percent=1.5,
                time_horizon_years=5.0,
                score_type="probability",
            ),
            RiskScore(
                name="Model2",
                score="3.0%",
                cancer_type="breast",
                probability_percent=3.0,
                time_horizon_years=10.0,
                score_type="probability",
            ),
            RiskScore(
                name="Model3",
                score="15.0%",
                cancer_type="breast",
                probability_percent=15.0,
                time_horizon_years=79.0,
                score_type="probability",
            ),
        ]

        aggregated = aggregate_probabilities(scores)

        assert len(aggregated) == 3  # Three different time horizons

        # Verify each time horizon is separate
        horizons = {agg.time_horizon_years for agg in aggregated}
        assert horizons == {5.0, 10.0, 79.0}

        # Verify each has single model
        for agg in aggregated:
            assert agg.model_count == 1

    def test_excludes_non_probability_scores(self):
        """Test that non-probability scores are excluded from aggregation."""
        scores = [
            RiskScore(
                name="Gail",
                score="1.5%",
                cancer_type="breast",
                probability_percent=1.5,
                time_horizon_years=5.0,
                score_type="probability",
            ),
            RiskScore(
                name="PCPT",
                score="No Cancer: 45%, Low Grade: 30%, High Grade: 25%",
                cancer_type="prostate",
                probability_percent=None,
                time_horizon_years=None,
                score_type="categorical",
            ),
            RiskScore(
                name="Model",
                score="N/A: Age out of range",
                cancer_type="lung",
                probability_percent=None,
                time_horizon_years=None,
                score_type="not_applicable",
            ),
        ]

        aggregated = aggregate_probabilities(scores)

        assert len(aggregated) == 1
        assert aggregated[0].cancer_type == "breast"

    def test_empty_list(self):
        """Test aggregation with empty score list."""
        aggregated = aggregate_probabilities([])
        assert aggregated == []

    def test_all_non_probability_scores(self):
        """Test aggregation when all scores are non-probability."""
        scores = [
            RiskScore(
                name="PCPT",
                score="Results",
                cancer_type="prostate",
                score_type="categorical",
            ),
            RiskScore(
                name="Model",
                score="N/A",
                cancer_type="lung",
                score_type="not_applicable",
            ),
        ]

        aggregated = aggregate_probabilities(scores)
        assert aggregated == []

    def test_case_insensitive_cancer_type_grouping(self):
        """Test that cancer types are grouped case-insensitively."""
        scores = [
            RiskScore(
                name="Model1",
                score="1.5%",
                cancer_type="Breast",
                probability_percent=1.5,
                time_horizon_years=5.0,
                score_type="probability",
            ),
            RiskScore(
                name="Model2",
                score="1.8%",
                cancer_type="breast",
                probability_percent=1.8,
                time_horizon_years=5.0,
                score_type="probability",
            ),
            RiskScore(
                name="Model3",
                score="1.7%",
                cancer_type="BREAST",
                probability_percent=1.7,
                time_horizon_years=5.0,
                score_type="probability",
            ),
        ]

        aggregated = aggregate_probabilities(scores)

        assert len(aggregated) == 1
        assert aggregated[0].cancer_type == "breast"  # normalized to lowercase
        assert aggregated[0].model_count == 3
        assert aggregated[0].avg_probability_percent == pytest.approx(1.6667, abs=0.001)


class TestSeparateScoreTypes:
    """Test score type separation functionality."""

    def test_separate_all_types(self):
        """Test separation of all three score types."""
        scores = [
            RiskScore(
                name="Gail",
                score="1.5%",
                score_type="probability",
            ),
            RiskScore(
                name="BOADICEA",
                score="2.0%",
                score_type="probability",
            ),
            RiskScore(
                name="PCPT",
                score="No Cancer: 45%",
                score_type="categorical",
            ),
            RiskScore(
                name="Model",
                score="N/A: Age out of range",
                score_type="not_applicable",
            ),
            RiskScore(
                name="Model2",
                score="N/A: Invalid",
                score_type="not_applicable",
            ),
        ]

        separated = separate_score_types(scores)

        assert len(separated["probability"]) == 2
        assert len(separated["categorical"]) == 1
        assert len(separated["not_applicable"]) == 2

    def test_empty_list(self):
        """Test separation with empty list."""
        separated = separate_score_types([])

        assert separated["probability"] == []
        assert separated["categorical"] == []
        assert separated["not_applicable"] == []

    def test_only_probabilities(self):
        """Test separation when all scores are probabilities."""
        scores = [
            RiskScore(name="Model1", score="1%", score_type="probability"),
            RiskScore(name="Model2", score="2%", score_type="probability"),
        ]

        separated = separate_score_types(scores)

        assert len(separated["probability"]) == 2
        assert separated["categorical"] == []
        assert separated["not_applicable"] == []


class TestFilterFunctions:
    """Test individual filter functions."""

    def test_separate_score_types_for_probability(self):
        """Test using separate_score_types to get probability scores."""
        scores = [
            RiskScore(name="Model1", score="1%", score_type="probability"),
            RiskScore(name="Model2", score="Result", score_type="categorical"),
            RiskScore(name="Model3", score="2%", score_type="probability"),
        ]

        separated = separate_score_types(scores)

        assert len(separated["probability"]) == 2
        assert all(
            score.score_type == "probability" for score in separated["probability"]
        )

    def test_separate_score_types_for_categorical(self):
        """Test using separate_score_types to get categorical scores."""
        scores = [
            RiskScore(name="Model1", score="1%", score_type="probability"),
            RiskScore(name="Model2", score="Result", score_type="categorical"),
            RiskScore(name="Model3", score="N/A", score_type="not_applicable"),
        ]

        separated = separate_score_types(scores)

        assert len(separated["categorical"]) == 1
        assert separated["categorical"][0].score_type == "categorical"

    def test_separate_score_types_for_not_applicable(self):
        """Test using separate_score_types to get not_applicable scores."""
        scores = [
            RiskScore(name="Model1", score="1%", score_type="probability"),
            RiskScore(
                name="Model2", score="N/A: Reason 1", score_type="not_applicable"
            ),
            RiskScore(
                name="Model3", score="N/A: Reason 2", score_type="not_applicable"
            ),
        ]

        separated = separate_score_types(scores)

        assert len(separated["not_applicable"]) == 2
        assert all(
            score.score_type == "not_applicable"
            for score in separated["not_applicable"]
        )

    def test_separate_score_types_for_all_types(self):
        """Test using separate_score_types to get all score types at once."""
        scores = [
            RiskScore(name="Model1", score="1%", score_type="probability"),
            RiskScore(name="Model2", score="2%", score_type="probability"),
            RiskScore(name="Model3", score="Result", score_type="categorical"),
            RiskScore(name="Model4", score="N/A: Age", score_type="not_applicable"),
        ]

        separated = separate_score_types(scores)

        assert len(separated["probability"]) == 2
        assert len(separated["categorical"]) == 1
        assert len(separated["not_applicable"]) == 1


class TestAggregatedRiskDataclass:
    """Test the AggregatedRisk dataclass."""

    def test_dataclass_creation(self):
        """Test creating an AggregatedRisk object."""
        score = RiskScore(
            name="Gail",
            score="1.5%",
            cancer_type="breast",
            probability_percent=1.5,
            time_horizon_years=5.0,
            score_type="probability",
        )

        agg = AggregatedRisk(
            cancer_type="breast",
            time_horizon_years=5.0,
            avg_probability_percent=1.5,
            risk_category="Low",
            model_count=1,
            individual_scores=[score],
        )

        assert agg.cancer_type == "breast"
        assert agg.time_horizon_years == 5.0
        assert agg.avg_probability_percent == 1.5
        assert agg.risk_category == "Low"
        assert agg.model_count == 1
        assert len(agg.individual_scores) == 1


class TestNormalizeCancerType:
    """Test cancer type normalization."""

    def test_normalize_with_cancer_suffix(self):
        """Test removing 'cancer' suffix."""
        assert normalize_cancer_type("Breast Cancer") == "breast"
        assert normalize_cancer_type("Lung cancer") == "lung"
        assert normalize_cancer_type("PROSTATE CANCER") == "prostate"

    def test_normalize_without_cancer_suffix(self):
        """Test normalization without 'cancer' suffix."""
        assert normalize_cancer_type("Breast") == "breast"
        assert normalize_cancer_type("LUNG") == "lung"
        assert normalize_cancer_type("Prostate") == "prostate"

    def test_normalize_with_whitespace(self):
        """Test trimming whitespace."""
        assert normalize_cancer_type("  Breast Cancer  ") == "breast"
        assert normalize_cancer_type("Lung   cancer") == "lung"

    def test_normalize_empty_string(self):
        """Test empty string."""
        assert normalize_cancer_type("") == ""

    def test_display_cancer_type(self):
        """Test display-friendly cancer type names."""
        assert get_display_cancer_type("breast") == "Breast"
        assert get_display_cancer_type("lung") == "Lung"
        assert get_display_cancer_type("prostate") == "Prostate"


class TestCategorizeRisk:
    """Test risk categorization."""

    def test_categorize_short_horizon_very_low(self):
        """Test very low risk for short time horizon."""
        assert categorize_risk(0.3, 5.0) == "Very Low"

    def test_categorize_short_horizon_low(self):
        """Test low risk for short time horizon."""
        assert categorize_risk(1.0, 5.0) == "Low"

    def test_categorize_short_horizon_moderate(self):
        """Test moderate risk for short time horizon."""
        assert categorize_risk(2.0, 5.0) == "Moderate"

    def test_categorize_short_horizon_moderately_high(self):
        """Test moderately high risk for short time horizon."""
        assert categorize_risk(4.0, 5.0) == "Moderately High"

    def test_categorize_short_horizon_high(self):
        """Test high risk for short time horizon."""
        assert categorize_risk(6.0, 5.0) == "High"

    def test_categorize_long_horizon_very_low(self):
        """Test very low risk for long time horizon."""
        assert categorize_risk(0.5, 10.0) == "Very Low"

    def test_categorize_long_horizon_low(self):
        """Test low risk for long time horizon."""
        assert categorize_risk(2.0, 10.0) == "Low"

    def test_categorize_long_horizon_moderate(self):
        """Test moderate risk for long time horizon."""
        assert categorize_risk(5.0, 10.0) == "Moderate"

    def test_categorize_long_horizon_moderately_high(self):
        """Test moderately high risk for long time horizon."""
        assert categorize_risk(10.0, 10.0) == "Moderately High"

    def test_categorize_long_horizon_high(self):
        """Test high risk for long time horizon."""
        assert categorize_risk(20.0, 10.0) == "High"

    def test_categorize_lifetime_risk(self):
        """Test categorization for lifetime risk."""
        assert categorize_risk(0.5, 79.0) == "Very Low"
        assert categorize_risk(2.0, 79.0) == "Low"
        assert categorize_risk(5.0, 79.0) == "Moderate"
        assert categorize_risk(12.0, 79.0) == "Moderately High"
        assert categorize_risk(20.0, 79.0) == "High"